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ABSTRACT The popularity of printing devices has multiplied the diffusion of printed documents, raising
concerns regarding the security and integrity of their content. The same device that prints reliable contracts,
newspapers, and others, can also be used for malicious purposes, such as printing fake money, forging fake
contracts, and produce illegal packaging, thus calling for the development of image forensics techniques to
pinpoint criminal printed materials and trace back to their origin. Despite some recent advances, previous
works model such a problem as a big data-focused closed-set classification problem. In this work, we address
the source linking problem of printed color documents by treating it as a verification problem. Specifically,
we aim at deciding if two documents have been printed by the same printer or not. To achieve this goal,
and to cope with the data scarcity deriving from the difficulty of gathering massive amounts of printed and
scanned documents, we propose to use an ensemble of Siamese Neural Networks, with unique architectures
expressly designed to work with a small training dataset. As a further unique feature, the proposed approach
is suited to work in an open set scenario, where the printers used to produce the documents analyzed at the
test time are not included in the training set. Results obtained under both open and closed set conditions,
with a thorough comparison with available baseline methods, showed classification performance higher than
97% in the closed set scenario and higher than 86% in the open set case, highlighting the practicality of such
approaches in real-world scenarios.

INDEX TERMS Digital image forensics, laser printer forensics, printer source attribution, Siamese
networks.

I. INTRODUCTION
Despite the tremendous efforts to replace the number of
printed documents with their digital counterparts, printed
documents are still common and can be found everywhere.
Generating printed documents is very cheap, with printing
devices being more accessible and easy to use than ever. This
accessibility and ease of use plays a major role in the produc-
tion of vast amounts of printed documents, as we see every
day. From advertisements to currencies, books to newspa-
pers, magazines to contracts, and product packaging, there
is always a printing technology involved. With the diffusion

The associate editor coordinating the review of this manuscript and

approving it for publication was Wentao Fan .

of staff-less and cashless stores in big cities [1], there will
be only printed data available (such as the QR-CODES) for
purchases and interaction with clients, making printing and
scanning technologies even more important in a near future.

Notwithstanding the wide diffusion of printed informa-
tion, the lack of regulation and forensic procedures on
printed documents allow counterfeiters and other crimi-
nals to use printing technology for malicious purposes. For
example, fake currency can be printed and distributed in a
neighborhood, thus harming the local economy; pedophiles
can print and distribute child porn to avoid the controls
over the Internet of security agencies; deceivers can fake
badges to access restricted areas, hitting up the organiza-
tion and the security of meetings and other kinds of events.
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Additionally, the analysis of printed documents related to
other criminal activities like corruption or terrorism may help
to trace back to crime perpetrators.

In addition to the previous issues, modern printing and
scanning technologies have made counterfeiting easier and
more profitable than ever, as counterfeiters can perfectly
copy and print packages of fake products that are visually
identical to the original ones. Acknowledging such a problem,
the International Chamber of Commerce has raised an alarm
of 3.7 trillion loss due to counterfeiting and piracy, with
5.4million jobs at risk by 2022 [2]. Finally, counterfeiting has
also a significant impact on health: according to the World
Health Organization, up to half of the malaria medications
could be fake [3].

As an answer to the above needs, several works have
focused on present Printer Source Linking solutions using
Computer Vision and Machine Learning to pinpoint the
ownership of printed texts [4]–[23], color images [24]–[34]
or both [35]–[37]. In particular, the approaches based on
Convolutional Neural Networks (CNNs) and Deep Learning
(DL), in general, [19], [21], [37] have allowed significant
progress in this research area, in special due to their ability of
learning from the data itself, artefacts specific to given print-
ers. CNN-based solutions usually have better performance
than previous image/noise description approaches for printer
attribution.

When applied in real-life scenarios, however, CNN-based
approaches have the following significant limitations:
(i) as far as we know, there is no study in the literature
considering the fact that the source of an unknown docu-
ment is not included in the training set. Such an open-set
setting is the most probable one in the real world and the
lack of methods suitable to work in such a scenario limits
strongly the practical usability of CNN techniques proposed
so far; and (ii) DL models require a huge amount of data
(printed and scanned documents) for training, especially
when very deep networks with a huge amount of parameters
are used. However, the dataset generation process is not only
expensive (given that printer inks/toners are among the most
expensive liquids in the world [38]), but it is also a very
time-consuming task, requiring dedicated personnel and very
strict procedures.

In this paper, we propose to deal with the previous limita-
tions by treating the source linking problem as a verification
problem. According to such an approach, any new sample is
compared against a reference document, producing a score
indicating how similar the unknown sample and the reference
template are. Given that the network is trained to decide
whether two printed documents have been generated by the
same device, the samples analyzed at test time do not need
to been generated by one of the printers used during training,
thus opening the way to the use of the network in an open-set
scenario. Indeed, a similar approach has been conveniently
adopted in biometric recognition [39], where one person is
allowed to access a system if his/her biometric traits are
similar to anyone in the dataset of enrolled users, even when

the system has not been trained to directly ‘‘recognize’’ the
biometric traits of the users. However, In contrast to the bio-
metrics scenario, where visually-relevant traits are compared,
the answer to the question: ‘‘have two documents containing
different or even the same content, been generated by the
same printer?’’, requires the analysis of subtle, texture-like
patterns produced by different printers, possibly neglecting
the semantic of the images. The answer to such a question can
be useful in several forensics and anti-counterfeiting applica-
tions. As a first example, we may consider a situation where
a printed child pornography picture is found and someone is
suspected to have printed it. The investigators can print other
pictures with the printer of the suspect person and detect if
the criminal document has been printed by the same printer.

Anti-counterfeiting provides another scenario fitting our
solution. Assuming that authentic packages or labels can
be printed only by a pool of authorized printers. If, in a
suspected counterfeited merchandise, the printing artefacts
of the barcode (or any other pattern) printed on the package
do not match the patterns present in the original (templates)
barcodes printed by an authorized printer, the product is
classified as being counterfeited. Finally, the manipulation of
printed documents is another interesting application of our
research. As the verification network is trained to find simi-
larities, or dissimilarities, in printed patterns, if a document
(e.g., a contract) is counterfeited by replacing some pages
with fake ones printed by a different printer, then the fake
document can be revealed by verifying that all the image pairs
of the documents have been printed by the same printer.

In order to develop a printed document verification system,
expressly thought to cope with the data scarcity problem
typical of such a scenario, we propose to use an ensemble of
Siamese Neural Networks (SNNs) with novel architectures
characterized by shallow-but-wide topologies. In particular,
we tested the performance of two different ensembles: one
with diverse SNN topologies and another consisting of net-
works having the same topology, but with some tweaks in
the SNNs parameters. The results we got in the closed set
and, most importantly, in the open set scenarios built based
on a challenging realistic dataset, demonstrate the promising
performance of the proposed solution.

In summary, the contributions of this paper are:
1) We propose the use of Siamese Networks for printed

documents attribution, treating it as a verification prob-
lem. This approach marks a significant difference con-
cerning state-of-the-art solutions, which mostly treat
such a problem as a classification one.

2) To deal with the availability of small training datasets,
we propose several shallow-and-wide SNN architec-
tures, that can be trained also on small amounts of
data.

3) We propose two different ensemble strategies with and
without diversity in the network topologies, achieving
different, and somewhat complementary results.

4) As far as we know, this is the first study dealing with
open set source linking of printing devices.
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Last but not least, we compare all the proposed solutions
against several baseline techniques, in both open and closed
set conditions.

The remaining of this paper is organized as follows: in
Section II, we discuss some progress of the related work in
detail. Section III describes our printer verification solution
composed of SNNs ensembles. Section IV details the exper-
imental procedure adopted to validate the solutions for the
printer verification problem. Section V reports the results
of the experiments we carried out and, finally, Section VI
concludes this paper highlighting future research directions
and open problems.

II. RELATED WORK
Several previous works have investigated artifacts that print-
ers leave in the generated documents in order to identify
their source. Although several other works have worked on
physical, microscopical, and chemical techniques [40], most
of them are destructive methods that require specialized staff
and expensive material [35]. Therefore, we focus our dis-
cussion on methods based on machine learning and com-
puter vision, as they are cheaper, faster, and simpler. For the
task of pinpointing the owner of printer documents, most
of the surveys in the literature [41]–[44] divide them into
the following branches: (i) approaches focused on text docu-
ments source linking; (ii) approaches for colored documents
source linking; and (iii) approaches for any kind of document.
Several other techniques have been proposed to identify
among different printing technologies (e.g., inkjet, laser, etc.)
[45]–[49], however, in this section, we focus on linking the
laser printer source of any kind of documents.

The literature has reported two possible clues that can be
used to pinpoint the source of a text document. The first
one is the extrinsic signatures. These signatures are intro-
duced by the printing process in order to explicitly input
the printer biometrics in any printed document. Such signa-
tures are investigated by active forensic methods, and some
examples are the embedding code sequences in electrophoto-
graphic halftone images [50] and also machine identification
codes [51]. Approaches based on extrinsic signatures are usu-
ally expensive because they require expensive modifications
of the printer. The main disadvantages of techniques based on
extrinsic signature are the fact that some of these signatures
can be hidden from the printed material [52] and that they are
not adopted as a standard for all printer brands.

The second branch of investigation analyses intrinsic sig-
natures through passive forensic methods. Intrinsic signa-
tures are unintentionally injected into the printed document
due to electromechanical printer devices imperfections. The
most investigated intrinsic signatures are banding, jitter, and
skewed jitters [25]. As the artifacts investigated by such a
branch of research are difficult to erase, the literature has been
mostly focused on such signatures, which are also the focus
of our proposed solution.

In the case of text documents, intrinsic signatures are
not so explicit given that the printed data is very small,

and such artifacts are often visible only employing a micro-
scope [35]. Due to this limitation, literature solutions have
been focused on character extraction and texture description
of such images [27]. For example, in one of the first works in
this regard, Ali et al. [4] extracted ‘‘I’’ letters from printed
text, using the raw pixel values in a multi-class machine
learning algorithm to discriminate different printers intrin-
sic artifacts. Given an unknown document, majority voting
of individual ‘‘I’’ letters classification defines the printer
source of the document. Inspired by this solution, several
works have followed a similar path. Some examples are the
Gray Level Co-occurrence Matrices (GLCMs) features from
Mikkilineni et al. [5]–[7], [12] and Ferreira et al. [35], fea-
tures from Distance Transform from Deng et al. [9], fea-
tures from Discrete Cosine Transform from Jiang et al. [11],
statistics of GLCMs, residual noise and Wavelet Transform
features from Tsai and Liu [13], Tsai et al. [15], [18] and
Elkasrawi and Shafait [14], ad-hoc texture descriptors from
Joshi and Khanna [20], [23], SURF and ORB features from
Kumar et al. [53], and geometric distortions signatures
from Jain et al. [22]. Finally, the use of deep neural net-
works from Ferreira et al. [19] and their extension from
Joshi et al. [21] proved their ability to learn better the features
from the data itself when sufficient data is used for training.

In the case of colored documents, which is the focus
of the research presented in this paper, intrinsic artifacts
are more frequently found as more areas in the paper are
printed. One of the first works in this direction comes from
Ali et al. [24], who extracted from image patches Fourier
transform features to discriminate color laser printers through
different banding frequencies. Eid et al. [25] looked for jitter
artifacts with Gabor filtering and Discrete Fourier Transform.
Choi et al. [27] looked for specific banding artifacts by
calculating noise features from Discrete Wavelet Transform
sub-bands in RGB and CMYK channels. Later, the same
authors estimated noise with Wiener filtering and Gray Level
Co-occurrenceMatrix statistics [28]. Tsai et al. [30] extracted
features from different Discrete Wavelet Transform sub-
bands, adding to the pipeline feature selection. Other impor-
tant techniques for color documents source attribution involve
describing geometric distortions [26], [33] and halftone tex-
ture descriptors [29], [32], [34].

The last branch of approaches is those that can deal with
any kind of document, being it a color-image or a text
document. For example, the work of Ferreira et al. [35]
proposed texture descriptor approaches based on GLCMs,
together with a Convolutional Texture Convolutional Filter
approach to be applied on frames, which are areas of the
printed paper with sufficient printed material. Tsai et al. [36]
applied several filters to the documents, extracting fea-
tures from GLCMs, Discrete Wavelet Transform, spatial fil-
ters, Gabor filter, Wiener filter, Gray Level Co-occurrence
Matrices features, and fractal features. In recent work,
Nguyen et al. [54] printed eight different patterns and
investigated the printer attribution using shape descriptor
indexes features on Support Vectors Machines and Random
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FIGURE 1. General pipeline of a Siamese network, where trainable layers share weights among two neural networks in order to evaluate the similarity of
the input image pair.

FIGURE 2. The proposed printed document verification pipeline.

Forest classifiers to perform printer attribution. Finally,
Bibi et al. [37] reached state of the art results by using
convolutional neural networks.

Notwithstanding the progress made in the last 20 years,
there are still several gaps and limitations that should be
explored, including: (i) solutions proposed so far treat laser
printer attribution as a classification problem, neglecting the
possibility to treat it as a verification problem; (ii) the datasets
considered in the research are quite outdated, without profes-
sional printers being considered; and (iii) as far as we know,
the open set laser printer attribution has not been explored in
the literature. In the next section, we detail our solution to
tackle such limitations.

III. PROPOSED METHOD
In this paper, we propose to treat the printed document source
linking problem as a verification problem. To do so, we train
an ensemble of Siamese Neural Networks on a dataset of
printed images. Siamese networks can learn similarities from
pairs of images to minimize the distance of similar pairs by

sharing the same weights in the two networks. The general
pipeline of a Siamese neural network is reported in Figure 1.

Siamese Networks have the following advantages over
common CNNs for our specific problem: (i) they learn to find
similarities or dissimilarities between different documents
according to the printing sources, learning to detect if the
patterns introduced during the printing process originate from
the same printer or not; (ii) Siamese Neural Networks are
also known for their one-shot learning capabilities [55]–[57],
not requiring many samples for successful learning; and
(iii) since they learn to match - or unmatch - similar pairs
no matter their class labels, they can be used in an open set
modality to also classify samples produced by printers that do
not belong to the training set.

The pipeline of the proposed method is illustrated
in Figure 2. During the training stage, patches of interest
are extracted from a dataset of known printers, and then
several Siamese Networks are trained so to let them learn to
minimize the distances between patches from the same print-
ers andmaximize themwhen the patches have been generated
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by different printers. After the models have been trained,
we ensemble them in two manners: (i) without diversity,
where we tweak only some parameters of a unique SNN
architecture; and (ii)with diversity, where completely diverse
SNN topologies are considered. During testing, unknown test
patterns are compared by these networks with a template
generated by a printer that does not necessarily belong to the
training dataset. Each pair of patches is classified according
to a majority voting procedure. Finally, the second round
of majority voting, this time merging the results obtained
on every single patch, is applied to decide on the source of
the analyzed images. In the following subsections, we detail
each of the above steps of our proposed ensemble. For repro-
ducibility and open access purposes, the source code of our
approach can be found at GitHub.1

A. PRE-PROCESSING (ROI EXTRACTION)
Most of the solutions in the literature consider source linking
in specific regions of the printed material, where the artifacts
investigated are expected to be more visible: Ali et al. [24]
searched for letters ‘‘I’’, Kee and Farid [8] performed
their investigation by focusing only on letters ‘‘E’’, and
Ferreira et al. [35] searched for artifacts on areas with suf-
ficient printed material.

In this paper, we follow a path similar to that adopted
in [58], focusing on the top-n high energy patches of printed
documents after Canny filtering binarization. Selecting pairs
of patches in this way has a threefold advantage: (i) more
relevant information about printer sources is acquired, as the
top-n high energy patches are usually noisy areas contain-
ing more information about printing patterns (edges/banding
with high energy); and (ii) they can generate significant
training data of different printers from a relatively small
dataset of printed documents, as one printed document is
now represented by several high energy patches; (iii) The
binarization and edge extraction applied by Canny filtering
helps to remove the semantic content of the images, given
that all the edges are equally weighted thanks to binarization.

The first step for the detection of high-energy patches
consists of the application of a Canny filter. Such a filter
initially applies a Gaussian filter to images. The Gaussian
filter F of size (2k + 1)× (2k + 1) is defined as follows:

F(i, j) =
1

2πσ 2 × e

(
(i− (k + 1))2 + (j− (k + 1))2

2σ 2

)
, (1)

where σ is the standard deviation of the Gaussian distribution.
After Gaussian lowpass filtering, the smoothed image is

filtered with a Sobel kernel in both horizontal and vertical
directions to get first the derivative in the horizontal (Gx)
and vertical (Gy) directions. The derivatives are computed by
applying to the images two 3× 3 kernels, defined as follows:

Gx =

∣∣∣∣∣∣
1 0 −1
2 0 −2
1 0 −1

∣∣∣∣∣∣ , Gy =

∣∣∣∣∣∣
1 2 1
0 0 0
−1 −2 −1

∣∣∣∣∣∣ . (2)

1https://github.com/anselmoferreira/siamese4PrintedVerification

After such convolutions, the magnitude G and the
direction θ of the gradient are computed:

G =
√
G2
x + G2

y,

θ = atan2(Gy,Gx). (3)

Then, the edges are processed by two final steps. The first
one, commonly called non-maximum suppression, eliminates
thin edges. To do that, the strength of each edge pixel is
compared with the edge strength of the neighboring pixels
in the positive and negative θ gradient directions calculated
in Equation 3. If the edge strength G of the current pixel is
the largest, such a value is preserved, otherwise, it is set to
zero. The second step uses one low and one high threshold
value to filter edges. The following comparisons are then
made using the two thresholds: (i) if a pixel gradient is
higher than the upper threshold, the pixel is an edge detected;
(ii) if a pixel gradient value is below the lower threshold, then
it is rejected; and (iii) if the pixel gradient is between the
thresholds interval, then it is accepted only if it is connected
to an accepted edge (a pixel whose gradient is higher than
the upper threshold, or one that passed condition (i)). The
low and high thresholds are automatically generated and are
image-dependent so, in our system, we used the median
intensity of the gray-level image Ĩ to generate the intervals
of thresholds as follows:

low = max(0, ((1− δ)× Ĩ )) (4)

high = min(255, ((1+ δ)× Ĩ )) (5)

where δ is used to vary the thresholds using a percentage of
the median Ĩ . In our system, we used δ = 0.33, a value that
works well in many object detection applications [59].

After the above operations have been completed, we divide
the resulting binary image into squared blocks of varying
sizes. We choose squared blocks of 28 × 28, 64 × 64,
224 × 224, depending on the size of the input accepted by
the SNNs used in our system. Then, we apply a one-level
Discrete Wavelet Decomposition (DWT) using Daubechies
family to calculating the energy E of each image patch by
considering the horizontal detail (H ), vertical detail (V ), and
diagonal detail (D) sub-bands of the DWT as follows:

E =

∑i=N
i=1

∑j=N
j=1 H (i, j)2+

M2 +

∑i=N
i=1

∑j=N
j=1 V (i, j)

2

M2

+

∑i=N
i=1

∑j=N
j=1 D(i, j)

2

M2 , (6)

whereN is the number of values in the sub-bands of the DWT
and M is the size of the squared patches.

We chose to compute the energy in the DWT domain
because DWT sub-bands contain useful information about
edges in different directions, as noted by several previous
works [13], [27], [30], [36]. After the energy is calculated
for all patches, we select only the n patches with the largest
energy of each printed image to train and test the Siamese
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networks. The areas with high energy contain enough infor-
mation for printer source linking based on noisy/banding
artifacts.

When we apply such a procedure to digital images, we also
tend to find areas with strong sharp edges. However, for the
case of printed documents, flat areas can also be selected.
This happens because, by ranking the energy of binarized
Canny filtered images, the algorithm searches areas with
many edges, instead of extracting areas with the sharpest
edges. This is useful when the noise of the printer is hidden
in the background or flat areas. As the halftone printing pat-
terns and printing imperfections from printers can introduce
several new edges in the form of noise in the background,
the proposed patch extractor can help in the forensic analysis
by isolating such areas for further investigation. To exemplify
such an effect, in Figure 3, we show the background of a
digital and printed version of the same image. In the printed
version, more halftoning and noisy artifacts are visible, which
can be used for printer attribution.

FIGURE 3. The same background portion in the digital and printed
versions of the same image. Our patch extractor can, in specific cases,
extract background patches as they contain some intrinsic artefacts
useful for the printer source verification task.

B. APPLYING SIAMESE NETWORKS ARCHITECTURES TO
HIGH ENERGY PATCHES
In our method, we take further advantage of SNNs charac-
teristics by training them on a small training set. Inspired
by previous works on steganalysis [60], [61] we propose
to use shallow-but-wide architectures, where multiple and
diverse filters are applied to the same outputs of the pre-
vious layers, with their final outputs fused and forwarded
through the network. Specifically, we propose three novel
SNNs architectures based on this idea as discussed in the
following paragraphs.

1) MULTI-CONVOLUTION SUMMATION SNN (MCS-SNN)
Our first architecture is inspired to the the Residual Convolu-
tional Neural network, also known as RESNET. Proposed by
He et al. [62], RESNET uses a residual module consisting of
two convolutional layers, where the output of the second layer
is summed to the input of the first one through a bottleneck
operation.

The MCS-SNN model is a shallow-but-wide SNN that
uses multiple convolutions modules, where different feature
maps are built in parallel, and further fused and forwarded
to the rest of the network. Part of the topology of one
sister MCS-SNN is illustrated in Figure 4. Every input is

FIGURE 4. Pipeline of one Siamese network with MCS-SNN architecture.
The parameters in red are modified in order to create similar SNNs with
different performances while parameters in black are fixed. After the
summation of the feature maps, batch normalization and max pooling
are applied.

processed by three different convolutional layers, then the
output maps are summed together and forwarded to an output
convolutional layer. This procedure is repeated three times,
and then a global average pooling is applied to build a
pair of 48-dimensional vectors indicating the similarity or
dissimilarity of a pair of printed image patches. Concern-
ing RESNET, MCS-SNN is wide, simpler, and shallower.
In addition, we neither apply bottleneck nor skip connections,
making such a network more effective and fast for printer
documents verification in data scarcity scenarios.

Similar to the other architectures that will be discussed
later, the MCS-SNN is trained by applying the Contrastive
Loss function. Such a loss is more effective than the common
Binary Cross Entropy as the goal of SNNs is not to classify
sample pairs, but to differentiate between them. Essentially,
such a loss evaluates how well the SNNs are distinguishing
image pairs using the following formula:

CL = Yp ∗ D2
p + (1− Yp) ∗ max(m− Dp, 0)2, (7)

where Yp is the label of the training pairs images (0 if the
pair comes from different printers and 1 otherwise) and Dp is
the Euclidian Distance between the image pairs given by the
48-D output vectors of the SNNs. Finally, the margin m
defines a radius around the sample space in such a way that
dissimilar pairs only contribute to the loss function if Dp is
within the margin. In particular, we set m = 1, so that only
distances between 0 and 1 will contribute to the loss.

By training the networks with such a loss, pairs of images
coming from the same printer, have lower distances, while
images generated by different sources have large distances.
Then, according to a threshold value T (we set it to 0.5),
we verify if the pair of documents have been printed by the
same printer or not.

We instantiated four different networks with this specific
architecture, whose details are given below:

1) MCS-1: it contains the same number of filters (32) in
all layers, but in the multiple convolution summation
modules we apply 3× 3, 5× 5 and 7× 7 convolutions.
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The receiver convolutional layer has 3× 3 filters, and
we apply the LeakyRELU [63] activation in all layers.

2) MCS-2: it contains the same number of filters (32)
in all layers, but in the multiple convolution sum-
mation modules we apply 3× 3, 5 × 5 and 7 × 7
convolutions. In the multiple convolutions summation
modules, we have different activations for each layer
inside the multiple convolutions summation modules:
LeakyRELU, RELU, and sigmoid. The receiver con-
volutional layers have 3× 3, 5 × 5 and 7 × 7 convolu-
tions through the different modules, and we apply the
LeakyRELU [63] activation to their outputs.

3) MCS-3: it is somewhat similar to MCS-1Ṫhe differ-
ences are: (i) the receiver convolutional layers have
3× 3, 5× 5 and 7× 7 convolutions through the differ-
ent modules, and they also have 32, 64, and 96 filters.

4) MCS-4: it contains the same number of filters (32)
in all the multiple convolutions summation modules
layers, and we apply 3× 3, 5 × 5 and 7 × 7 con-
volutions in every multiple convolutions summation
module. However, the activation is fixed to be only
LeakyRELU [63], RELU, or Sigmoid for each module.
The receiver convolutional layers have 3× 3, 5× 5 and
7 × 7 convolutions, and they also have 32, 64, and
96 filters, all of them activated by LeakyRELU [63].

All the networks (as all the others that will be presented in
the remaining of this section) work on 64×64×3 top-energy
input patches, extracted as explained in Section III-A.

2) MULTI-CONVOLUTION INCEPTION SNN (MCI-SNN)
The second shallow but wide set of Siamese Net-
works is based on the Inception modules proposed by
Szegedy et al. [64]. The SNN with Inception modules uses
modules of parallel convolutional layers with filters of differ-
ent sizes. The output feature maps are concatenated, as illus-
trated in Figure 5, and passed through the rest of the SNN.
These SNNs are somewhat similar to the MCS-SNNs, with
the difference of performing concatenation of feature maps
instead of summation.

FIGURE 5. Pipeline of one siamese sister of the MCI-SNN class.
Parameters in red can be modified to create an ensemble of similar SNNs
while the parameters in black are fixed. After the inception operation,
batch normalization and max pooling are applied.

As detailed below, we also created four networks with this
specific architecture:

1) MCI-1: it contains the same number of filters (32) in
all layers but in the multiple convolutions inception
modules we apply 3× 3, 5× 5 and 7× 7 convolutions.
The receiver convolutional layer has 3× 3 filters, and
we apply the LeakyRELU [63] activation in all layers.

2) MCI-2: it contains the same number of filters (32) in
all layers but in the multiple convolutions inception
modules we apply 3× 3, 5× 5 and 7× 7 convolutions.
In the multiple convolutions inception modules we also
have different activations for each layer in a given mul-
tiple convolutions inceptionmodule: LeakyRELU [63],
RELU, and sigmoid. The receiver convolutional layers
have 3× 3, 5 × 5 and 7 × 7 convolutions through
the different modules, and we apply the LeakyRELU
activation to their outputs.

3) MCI-3: it is somewhat similar to MCI-1. The differ-
ences are: (i) the receiver convolutional layers have
3× 3, 5× 5 and 7× 7 convolutions through the differ-
ent modules, and they also have 32, 64, and 96 filters.

4) MCI-4: it contains the same number of filters (32) in
all the multiple convolutions inception modules layers,
and we apply 3× 3, 5 × 5 and 7 × 7 convolutions
in every module. However, we let the activation be
LeakyRELU [63], RELU or Sigmoid. The receiver
convolutional layers have 3× 3, 5× 5, or 7× 7 convo-
lutions, and they also have 32, 64, and 96 filters, all of
them activated by LeakyRELU [63].

3) SHALLOW XCeption SNN (SX-SNN)
The last set of Siamese Neural networks is inspired by
the XCeption architecture [65]. Such architectures have
in common point-wise and depth-wise convolutions. Firstly,
ordinary 1×1 convolutions are performed, then channel-wise
spatial convolution is applied (depth-wise convolution).

This architecture evolved from the INCEPTION-v3 [64]
network with two differences: (i) no ReLU is applied after
depth-wise (channel-wise) convolutions; and (ii) the opera-
tions in the XCeption architecture are applied in inverse
order. Such adaptations have been found to be faster to train
than than INCEPTION-v3 (having less parameters), and to
provide a higher accuracy on Imagenet [65], [66].

Point-wise convolutions are a special kind of convolution,
with a size of 1 × 1 × N . 1 × 1 convolutions perform con-
volutions over the channels of an input image, an operation
also called channel-wise pooling or feature map pooling.
Such filters contain one single parameter, or weight, for each
input channel and are then well-suited to summarize the input
feature maps. After the point-wise convolutions, another
convolution is applied to each channel of the feature map
created previously. The result of such operations are added
to the output of another ordinary convolution carried out in
parallel through a bottleneck operation such as the one in
RESNET [62] CNN.
Our XCeption-based Siamese networks follow the original

pipeline of the XCeption network, which is composed of
flows (or modules), which are pieces of networks with their
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specific layers, bottlenecks, separable convolutions, max-
pooling, activation, inputs, and outputs. One of these flows
(the middle flow) is repeated several times, and in the end,
all the flows are stacked in such a way to form a unique CNN.
The main differences between XCeption and our architecture
are (i) the size of the input images is 64× 64× 3; and (ii) we
control the depth of the SNN in our ensemble, by proposing
several variations of shallow XCeptions as follows:

1) SX-1: one input flow, one middle flow, and one final
flow.

2) SX-2: one input flow, three middle flows, and one
final flow.

3) SX-3: one input flow, five middle flows, and one final
flow.

4) SX-4: one input flow, seven middle flows, and one final
flow.

As with the other SNNs, the output of the SX-SNN
networks undergoes global average pooling, then the fully
connected layers output a pair of 48-D of vectors, whose
distances are minimized or maximized according to the labels
of the input images. Training is carried out by adopting the
contrastive loss shown in Equation 7.

C. ENSEMBLES OF DIVERSE AND HOMOGENEOUS SNNs
Ensembles is a popular approach in machine learning accord-
ing to which several complementary models are applied
trusting that even the weakest models can help to classify
some samples that are commonly mistaken by the others. The
power of ensembling has been validated in several works in
diverse applications [67]–[70] in the literature.

In this paper, we ensemble different versions of the SNN
architectures described in the previous section. In particular,
we apply a two-fold majority voting fusion scheme, as illus-
trated in the rightmost part of Figure 2. In the first fusion
stage (patch-wise fusion), we apply several SNN models to
classify each pair of patches as coming from the same printer
or not. The decision on each pair is made by looking at the
most frequent class given by the SNN ensemble. The sec-
ond round (document-wise fusion) considers the decisions
made on all the patch pairs to decide if a pair of docu-
ments comes from the same printer or not. Such a fusion,
also known as late fusion [71] has commonly been applied
in several previous works in the printer source attribution
literature [4], [8], [19], [35].

To enrich the ensembling analysis and performance,
we investigate two different ensembling methods in the
patch-wise classification. In the first one, which we call
Homogeneous ensemble, we apply the same architecture
(either MCS, MCI, or SX) with their unique parameters and
topologies and evaluate the performance of the ensemble
when they are combined three by three (we chose an odd
number to avoid ties in the majority voting). By Evaluating
hundreds of unique combinations of three classifiers with
the same architecture but trained with different weight opti-
mization methods, we found that that the best performance is
achieved with the following combination of SNNs:

1) MCS-2: It contains the same number of filters (32)
in all layers, but in the multiple convolutions sum-
mation modules we apply 3× 3, 5 × 5 and 7 × 7
convolutions. In the multiple convolutions summa-
tion modules, we also have different activations for
each layer in a given multiple convolutions summa-
tion module: LeakyRELU, RELU, and sigmoid. The
receiver convolutional layers have 3× 3, 5 × 5 and
7 × 7 convolutions through the different modules, and
we apply the LeakyRELU activation on their outputs.
Such an SNN is trained with the ADAMAX weight
optimizer [72].

2) MCS-3: It contains the same number of filters (32) in
all layers, but in the multiple convolutions summation
modules we apply 3× 3, 5× 5 and 7× 7 convolutions.
The receiver convolutional layers have 3× 3, 5× 5 and
7 × 7 convolutions through the different modules, and
they also have 32, 64, and 96 filters. Such an SNN is
trained with the RMSPROP optimizer [73].

3) MCS-4: It contains the same number of filters (32)
in all the multiple convolutions summation modules
layers, and we apply 3× 3, 5 × 5 and 7 × 7 convolu-
tions in every module. However, we keep the activation
as being only LeakyRELU, RELU, or Sigmoid for
each module. The receiver convolutional layers have
3× 3, 5 × 5 and 7 × 7 convolutions, and they also
have 32, 64, and 96 filters, all of them activated by
LeakyRELU. Such an SNN is trainedwith theNADAM
optimizer [74].

Throughout the rest of the paper, we refer to the above
ensemble as HOM-ENS.
In the second patch-wise verification ensemble method,

we fuse the output of different SNN architectures. By select-
ing three unique models belonging to theMCS,MCI, and SX
classes, we investigated a total of 4096 unique diverse ensem-
bles with all possible combinations of weight optimization
methods. Based on our experiments, we selected an ensemble
containing the following models:

1) MCS-3: it contains the same number of filters (32) in
all layers, but in the multiple convolutions summation
modules we apply 3× 3, 5× 5 and 7× 7 convolutions.
The receiver convolutional layers have 3× 3, 5× 5 and
7 × 7 convolutions through the different modules, and
they also have 32, 64, and 96 filters. Such an SNN is
trained with the RMSPROP optimizer [73].

2) MCI-3: its an SNN similar to MCS-3, but with
inception modules instead of summation opera-
tions. Such an SNN is trained with the ADAM
optimizer [72].

3) SX-4: its a shallow-based XCeption architecture with
seven blocks in the middle flow (instead of eight from
the original architecture). Such an SNN is trained with
the RMSPROP optimizer [73].

We name such a heterogeneous ensemble as HET-ENS as
it consists of different sister Siamese networks specifically
thought for printed documents verification.
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TABLE 1. The first version of the VIPPrint dataset [58] used for the closed set experiments.

IV. EXPERIMENTAL SETUP
To assess the effectiveness of the proposed SNNs and their
ensembles for the problem of close and open set printed
documents verification, we performed a series of experiments
further explained in this section. In the following subsections,
we discuss the dataset, methodology, baselines, and metrics
considered.

A. DATASET
Our work has been validated on the second version of the
VIPPrint dataset [58]. Such a dataset has a challenging nature
as it contains pictures of human faces printed by several
modern and professional color laser printers. We consider the
original set of eight printers presented in such a dataset which
are further described in Table 1. The first set of experiments
aims at analyzing the behavior of Siamese Networks for
printed documents verification in a closed set environment.

In the second set of experiments, we make one step further,
addressing the capability of the proposed architectures for
open set source linking. To this aim, we printed the same
digital images of the VIPPrint dataset with four new printers,
contained in a second version of the dataset [75], and we
tested the performance of a system trained on the first printers
on these new printers. The printers we used are professional
and large-scale printers such as those used in print shops.
From the analysis of Table 2, we can appreciate the difficul-
ties presented by this new scenario: (i) there are printer brands
that were not present in the training set (such as CANON
and Ricoh printers); and (ii) new printing resolutions are
also present which were not represented in the training set
(e.g., 1200 × 1200 dpi and 2400 × 2400 dpi). For the
acquisition process, we used the same scanner, a TaskAlfa
3551 multi-functional printer scanner with 600 x 600 dpi
resolution at the highest possible sharpness. The images are
saved in a lossless compression configuration and used to
feed and evaluate the accuracy of the proposed and baseline
classifiers.

B. METHODOLOGY
To train the SNNs we selected 800 printed images (100 from
each printer) and extracted the top-10 high energy patches
from all of them (see Section III-A). For each block in the

TABLE 2. New printers in the second version of the VIPPrint dataset [75]
used for the open set experiments.

FIGURE 6. Some examples of top energy image patches coming from
different (in green) and the same printer (in red). From the figure, it can
be noticed that the SNNs learn specific printer artifacts for verification
regardless of whether the patterns in the pair are similar or not.

training set, we semi-randomly2 selected another block from
the same printer and another block from a different printer,
thus building two pairs of similar and dissimilar blocks.
In Figure 6, we show some examples of image patches com-
ing from the same printer or different printers. This procedure
results in about 16,000 pairs of images to train the SNNs.
In a testing scenario, we used other 800 documents printed
by the same printers, but containing different printed patterns
(i.e., different faces). Then, we randomly selected (with a
fixed random seed as stated previously) 400 pairs of doc-
uments for testing. As in a real-world scenario, there will
be more pairs of documents coming from different print-
ers, so we investigate the closed set behavior consider-
ing 357 pairs of documents coming from different printers
and 43 pairs of documents coming from the same printer.

2For sake of reproducibility, the same random seed is chosen so the same
pairs of blocks are used for all SNNs that use the same input block size. All
random operations reported in the remaining of this paper also use the same
methodology.
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We opted for such a random choice of the pairs to avoid any
bias coming from a manual selection.

In the open set scenario, we would like to analyze the
behavior of the SNNswhen facing pairs of documents coming
from unknown printers. For such a task, we initially con-
sidered pairs of documents coming from the same unknown
printers. In such a testing scenario, we printed the same
200 images in the original dataset with the four new unknown
printers, obtaining 100 semi-random pairs of documents from
the same unknown printers for models evaluation. In a second
set experiment, we also select semi-random pairs of docu-
ments from all possible combinations of different printers,
evaluating the probability that documents coming from dif-
ferent printers are judged as being printed by the same printer.

C. BASELINES
We compare our approach against nine baseline approaches,
some of them based on Siamese Networks others relying on
different technologies. The first baseline SNN is inspired by
one CNN applied on the MNIST dataset [76]. This is the
shallower network we have analyzed since it contains only
two convolutional layers, followed by max pooling. Finally,
we adopted a dropout training strategy after the max-pooling
layer. This network, similarly to ours, is trained from scratch
on a dataset of top-10 energy patches.

The second set of SNNs includes IMAGENET pretrained
CNNs: (i) RESNET-50 [62]; (ii) EFFICIENTNET-B0 and
EFFICIENTNET-B7 [77], which are the shallower and
deeper versions of the same network; (iii) MOBILENET [78];
(iv) NASNET-MOBILE [79]; and DENSENET-201 [80].
This second set of approaches are initialized with
IMAGENET weights, and fine tuned on top-10 energy
patches with data augmentation affine image operations.

Finally, specifically for the closed set scenario, we consider
a handcrafted feature approach, used together with K-Nearest
Neighborhood classifiers. According to this approach, which
we call LBP-KNN, pairs of test images are described through
Local Binary Patterns [81], and features from each image
are classified individually by a KNN classifier. The KNN
classifier is previously trained with LBP features from the
8 closed set classes. If the features from a pair of images
under investigation lie in the same cluster, we define them
as coming from the same printer and different printers other-
wise. We performed a grid search on the number of possible
neighbors in the KNN classifier, selecting them on the set of
possible neighbors.

D. METRICS
In this section, we present the metrics used to validate our
approaches against the baselines. For a better understanding
of the metrics shown in the following subsections and also the
discussion present in the remaining of this paper, we define
the positive class as the class with pairs of documents coming
from the same printer, and the negative one as the class with
documents printed by different printers.

1) SPECIFICITY
For binary classification problems, the specificity, also known
as true negative rate, indicates the percentage of correctly
classified negative samples and is calculated as:

SPECIFICITY =
TN

TN + FP
, (8)

where TN (True Negatives) represents the number of samples
correctly classified as negatives, and FP (False positives) is
the number of negative samples wrongly labeled as positive.
In our binary classification problem, the sensitivity metric
measures how many pairs of documents created by different
printers were correctly detected as such.

2) RECALL
For binary classification problems, the recall, also known
as true positive rate, indicates the percentage of correctly
classified positive samples and is calculated as

RECALL =
TP

TP+ FN
, (9)

where TP (True Positives) represents the number of samples
correctly classified as positives, and FN (False Negatives)
is the number of positive samples wrongly labeled as nega-
tive. In our binary classification problem, the Recall metric
measures how many pairs of documents created by the same
printer were correctly detected as such.

3) PRECISION
With this metric, we want to know how many samples classi-
fied as positive are indeed positive. That is

PRECISION =
TP

TP+ FP
, (10)

where FP (False Positives) is the number of samples incor-
rectly classified as being positive (from the same printer).

4) F-MEASURE
This is the most important metric for unbalanced problems
and thus will be used to rank our results. The F-measure
(F) calculates the harmonic mean of precision and recall as
follows:

F = 2×
Precision× Recall
Precision+ Recall

, (11)

such a metric, like all the others considered, is normalized
between 0 and 1 (1 being the best value).

5) GEOMETRIC MEAN
In the binary classification case, Geometric Mean can com-
bine Sensitivity and Specificity into a single score that bal-
ances both concepts in the following manner:

GMEAN =
√
Sensitivity× Recall. (12)

The Geometric mean combines the true negative rate and
the true positive rate at one specific threshold of the SNNs
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TABLE 3. Closed Set experiments details and results. Approaches are trained using the ordinary Binary Cross Entropy (BCE) or the Contrastive Loss (CL)
and we report the losses with the best results. The comparative study uses metrics specifically thought of unbalanced problems, namely: (i) the Balanced
Accuracy (BACC); (ii) G-Mean (GMEAN); and (iii) f-measure (F1). The performance of the proposed approaches are boldfaced while the best results are
highlighted in yellow. Results are sorted according to the F1 measure.

similarity score (in our case, we use 0.5 as threshold accord-
ing to the contrastive loss discussed in Section III-B1). This
formula has the beneficial property of averaging out both
scores penalizing unbalanced pairs.

6) BALANCED ACCURACY
The balanced accuracy gives the quality of detection based on
the mean performance on the positive and negatives classifi-
cation, or

BACC =
Specificity+ Recall

2
. (13)

The balanced accuracy is the most recommended met-
ric when considering unbalanced testing scenarios and was
validated in several works in the literature where such an
environment is found [82], [83].

V. EXPERIMENTS
In this section, we discuss the results we have got by val-
idating our proposed method against the baselines detailed
in the previous section. We first consider the closed set sce-
nario, then we pass on the more challenging case of open set
verification.

A. CLOSED SET PRINTED DOCUMENTS VERIFICATION
We start validating our approaches in a closed set scenario
with the methodology explained in Section IV-B. From the
results in Table 3, we see that deeper networks in a Siamese
setup do not work properly for printer verification. In partic-
ular, we highlight the bad results of EFFICIENTNET-B0
and EFFICIENTNET-B7 for such a problem. Such net-
works were applied successfully in some digital image foren-
sic works [84], [85], however, in the Siamese setup such
networks provide bad performance due to their deep struc-
ture and complexity which would require very large training
sets. Training printed documents data-driven models on large
datasets, however, is a very expensive and time-consuming
task, thus suggesting the use of fewer complex models.

Our second set of experiments included some SNNs of
interest as they are less complex being suitable to run also

on mobile devices: the MOBILENET and NASNET-MOBILE
based SNNs. Both these networks do not show good
results being designed and pre-trained for other applications.
In Table 3 their results are similar or even worse than random
classifiers, even though they have been pre-trained and their
generalization capabilities were supposed to increase due to
data augmentation. In the same regard, results in Table 3
show that IMAGENET-based classifiers that are better than
random guessers are those that include specific modules
such as the dense modules (DENSENET-201) and those at
the basis of our MCS-based approaches (residual modules
from RESNET-50). Results in Table 3 show that the best
IMAGENET-based SNN does not help in the identification
of the source of the printed documents, with a specificity
of 0.79 and a recall equal to 0.48. Such results further prove
the non-transferability of the IMAGENET dataset weights to
the printer verification problem.

The results we got highlight the better results of non-
pre-trained methods. Our specific LBP-inspired approaches
used as baselines (LBP+KNN-224 and LBP+KNN-64) out-
perform the IMAGENET SNNs by a large margin, but with
a performance that are still unsatisfactory. We found that
using 224 × 224 blocks for this task is a little better, with
an almost perfect specificity (0.99) and a small false alarm
probability (0.86 precision). However, such an approach has
the following drawbacks: (i) it is an easy approach to be
attacked given its small recall; and (ii) given the fact that it
uses nearest neighborhoods in a known number of clusters,
it cannot be used for the open set case.

We finish the analysis of the baselines by discussing
the results of the shallower and simpler methods used in
the experiments. The MNIST SNN showed a better bal-
ance between precision and recall, resulting in the highest
F1 measure (0.71) among the baselines. Such better perfor-
mance comes from the fact that this SNN is trained from
scratch on our dataset and because of its simplicity that
makes it easier to train on a small dataset involved. However,
such an approach also has an unacceptable false alarm rate
(0.55 precision).
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TABLE 4. The confusion matrix of the best individual proposed SNN
approach (MCS-3).

Finally, the top results in Table 3 highlight the promising
performance of our shallow but wide SNNs and their ensem-
bles. Our best individual SNN (MCS-3) shows an almost
perfect accuracy of 0.98, classifying correctly all the docu-
ments from the same printer and misclassifying only 4% of
documents from different printers. However, as the problem
is highly unbalanced (there are more documents from differ-
ent printers than from the same), such an approach shows
the fourth better precision (0.74). For sake of completeness,
in Table 4 we report the confusion matrix of MCS-3.
Some interesting findings were discovered by analyzing

the semi-randomly generated pairs of testing documents and
their misclassification/classification performance by the best
proposed individual method. First, all of the misclassified
documents come from the same pairs of printers: the Kyocera
Color Laser (printer #2 in Table 1) and one individual sample
of the Kyocera Task Alfa 3551 (printer #3 in Table 1). Such
difficulty and discriminating such printers are in linewith pre-
vious work in the same dataset [58]. Second, the semi-random
pairs selected for testing contained five pairs of the same
picture, but only one was incorrectly classified (the one that
contained the pair of printers discussed before). Such prob-
lems are only partially alleviated with the ensembles contain-
ing twins Siamese networks (HOM-ENS) which minimized
partially such a confusion of these two printers (exactly one
document is now classified correctly), and no improvement
was done with the diverse ensemble (HET-ENS). As such
a scenario is easier and the individual best classifier got
already an almost perfect result, the real importance of such
ensembles will be further highlighted in the open set scenario
discussed in the following subsections.

B. OPEN SET PRINTED DOCUMENTS VERIFICATION
We start the performance investigation in the open set sce-
nario by considering the case of documents produced by
the same printer, analyzing the recall or true positive rate.
Then, we analyze the false alarm rate obtained by feeding
the networks with documents coming from different printers.
We show and discuss such results in the next subsections.

1) OPEN SET RECALL ANALYSIS
We start by evaluating in Table 5 the performance of some
of the approaches presented previously when tested on pairs
coming from the same but unknown printers (i.e, printers
from Table 2).

The first issue we notice is the bad performance of SNNs
based on IMAGENET, with the best result being achieved
by RESNET-50. These networks face several difficulties
when applied to the problem herein: (i) they were trained

and structured for another kind of application; (ii) they are
too deep for the amount of training data we can rely on; and
(iii) they were never validated in an open set scenario. As we
will see, these networks always predict any pair of documents
as coming from different printers.

For the proposed methods, we see that the multiple con-
volution summation SNN in its third version (MCS-3) clas-
sifies almost perfectly all the pairs coming from the OKI
(printer #9) and CANON (#11). The CANON printer is a
professional printer usually employed by print shops, making
these results very more interesting as it is very likely that this
kind of printer is used by counterfeiters. The images coming
from the other two printers were more difficult to classify:
the KYOCERA P5021 (printer #12) is some months old, and
the Ricoh is a brand that was not included in the training set,
with a resolution (1200× 1220) that was neither used during
training. This last printer presented the hardest challenge for
all the best approaches. The proposed ensembles without
diversity (HOM-ENS) helped just a little, exactly as happened
before in the closed set, improving the detection accuracy of
Kyocera and RICOH.

For the last baseline, the results of MNIST seem to be the
best one in this scenario. The minimum recall is 0.79 for
the Ricoh printer. However, such a simple structure got only
0.01 better result than our approaches, and, as we will show
later, MNIST approach suffers a lot when dealing with docu-
ments produced by different printers.

2) OPEN SET SPECIFICITY ANALYSIS
In this final set of experiments, we fed the various systems
with documents produced by different printers. We did so by
choosing all possible pairs of the four new printers in Table 2.
The results we got, reported in Table 6, confirm the biased

behavior of IMAGENET-based SNNs. For this family of
SNNs, the NASNET-MOBILE showed the best result of all
approaches, with a 0.95 mean specificity, highlighting the
fact that, according to its worse results on Table 5, this SNN
tends to always say that any pair of documents come from
different printers. All other related CNNs (DENSENET-201,
RESNET-50,MOBILENET, EFFICIENTNET-B0 and
EFFICIENTNET-B7) follow a similar path.

The results in Table 6 also show how the shallower
MNIST SNNs can fail in classifying pairs of documents com-
ing from different printers, having the second-worst mean
specificity (0.41).

Finally, the results in Table 6 highlight even better the
promising results allowed by the ensembles, since they boost
significantly the results of the best individual MCS-3 SNN.
In particular, the ensemble with diversity (HET-ENS) with
three different SNN architectures achieves the best result for
three pairs of printers, achieving a mean specificity of 0.94,
with the smallest false alarm of 0.6. Such result improves by
11% the best individual MCS-3 SNN. The ensemble obtained
with homogeneous networks (HOM-ENS) also outperforms
by 5% the best individual approach, with a clear improvement
for the OKI − CANON and RICOH − KYOCERA pairs.
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TABLE 5. Open Set experiments results in terms of recall. Results are sorted by the mean recall, proposed approaches labels and results are boldfaced
and the best results are highlighted in yellow.

TABLE 6. Open Set results considering all possible pairs of unknown printers (specificity metric). Results are sorted by the mean specificity, proposed
approaches labels and results are boldfaced with the best results highlighted in yellow.

FIGURE 7. Summary of the performance of all the approaches in the
open set case, by sorting balanced accuracies.

3) OPEN SET FINAL ANALYSIS
To give a better global view of the results we have got in
the open set scenario, we calculated the Balanced Accura-
cies (BACC) using the previous specificities and recalls, sort-
ing such performance metric in Figure 7. It can be seen that
both proposed ensembles are better positioned among all the
other approaches, with the MNIST being the best competitor.
The fact that shallow networks are better positioned both
in the open and close-set cases, is due to the data scarcity
scenarios we face in this application.

In particular, it can be noticed that the ensembles,
being them homogeneous (HOM-ENS) or heterogeneous
(HET-ENS) outperform the best individual approach
(MCS-3) by 2% and 3% respectively.

In general, the results discussed so far highlight the use
of the diverse ensemble (HET-ENS), achieving the best final
result considering both closed and open sets. In the closed
set, the diverse ensemble showed a competitive performance
with both individual MCS-3 and HOM-ENS. In the open set,
it showed a reasonable 78% recall but a very good 94%
specificity. In summary, the HOM-ENS showed to be the
best when the printer is known, but it yields a 17% false
acceptance and 12% false alarm. Our proposedHET-ENS has
a similar final result of HOM-ENS (it is only 1% better), but its
true power comes from minimizing the false alarms, having
only 6% error when innocent pairs come to test being, thus,
our best proposed method in general.

VI. CONCLUSION AND FUTURE WORK
The accessibility and popularity of printing and scanning
devices is a double-edged sword: while they can generate
increasingly good and reliable printed information such as
currency, advertisements, attention signs, they can also be
used to generate illegal content such as fake currency and
counterfeited products. Several efforts have been made in the
digital forensics literature to detect the source of unreliable
printed documents, however, most of them have been tested
on simple datasets (with common printers), use black-box
approaches that require massive amounts of training data, and
do not consider that printers outside the training dataset could
be used by the counterfeiter.

In this paper, we propose to treat printer source attribution
as a verification problem (instead of a classification problem).
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By using siamese networks, we can make the best out of a
small training dataset. With Siamese networks, documents
coming from unknown printers can be evaluated, given that
the networks learn similarities instead of labels. We propose
to better exploit such networks by creating three shallow but
wide siamese networks. We further propose four variations
of each network and improve even more their verification
accuracy by building ensembles with and without diversity.
Our best approach using ensemble of heterogeneous Siamese
Networks showed a promising mean 0.92 balanced accuracy
when considering a challenging unbalanced closed set sce-
nario and an open set scenario with four unknown printers
at the same time, defeating other baseline approaches (both
deep and shallow ones) by a large margin.

Notwithstanding these promising results, further work can
be done to better exploit the verification scenario in the
printer source attribution. First of all, the obvious search for
more data and their effect on the verification task should be
studied. Second, other losses, such as the triplet loss [86]
could be used to improve the performance of the proposed
networks. Finally, other shallow but wide architectures could
be designed and their performance could also be evaluated to
enrich the ensemble architecture.
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