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ABSTRACT The main goal of this work is to design a supervising controller able to detect an anomaly in
the milling process and implement the soultion in Field Programmable Gate Array (FPGA) chip. Executing
this task, the controller continuously monitors the vibration signal coming from the acceleration sensor,
installed on the milling machine, and striving to isolate new vibration patterns which are different from
typical patterns recorded for the correct milling process. The detection method relies on determining selected
signal features in the frequency domain and applying an auto-associative neural network (AANN) for novelty
detection. It has been shown that by exercising the frequency spectrum of the vibration signal, extracting
specific features of the signal’s spectrum, and using an auto-associative neural network, it is possible to
detect anomalies in a milling process with relatively high efficiency. The accuracy, sensitivity, specificity,
precision, and false alarm rate are equal to 94.3, 100, 91.2, 88.9, and 8.8 percent. All necessary calculations
can be accomplished by the developed single-chip FPGA embedded supervising controller. The controller
allows high-speed calculations under low power consumption. It characterizes high reliability and low price
compared to typically encountered solutions.

INDEX TERMS Anomaly detection, autoencoder, field-programmable gate array, vibration analysis.

I. INTRODUCTION
The goal of anomaly detection is to identify rare data records
called anomalies (outliers, discordant observations, devia-
tions, exceptions, etc.) that come from different distribu-
tions from that of the majority, i.e., normal class [1]. The
algorithms enabling anomaly detection may be supervised,
semi-supervised or unsupervised [2]. Supervised anomaly
detection is a class-imbalanced classification problem that
requires labeled normal and anomaly data to train a model.
The solution to this problem is to build a binary classification
model for the normal class versus the anomaly class. In semi-
supervised anomaly detection approach, anomalies are not
required to train the model since all the training data belong
to the normal class. The goal, in this case, is to identify data
samples distant from the distribution of normal data. Unsu-
pervised anomaly detection does not require labeled training
data. In this paper, we focus on semi-supervised anomaly
detection.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yingxiang Liu .

It is well-known that almost all engineering systems are
subject to mechanical failures resulting from deterioration
with usage and age or abnormal operating conditions. For
many industrial processes, e.g., milling operations, both near-
failures, i.e., abnormal state monitoring and tool wear moni-
toring, in automated machining processes are essential needs
due to numerous benefits [3], [4]. A standard failure mode
in milling is the wear of the cutting tool. Without a timely
tool change, a tool dulled beyond a set threshold can result
in low product surface quality, leading to part rejection and
waste of time, money, and energy [5]. Detecting when a
tool has passed its wear threshold from sharp to blunt is
critical and defines a binary classification problem. Different
sensors could be used to solve this problem, such as vibra-
tion [6], force [7], motor current [8] and acoustic emission [9].
After signal cleaning, significant features (metrics) indica-
tive of tool condition should be extracted using the meth-
ods based on the time domain, frequency domain, wavelet
transform, or the other approach. Next, the cutting tool con-
dition should be evaluated with extracted feature parame-
ters based on specific pattern recognition methods, such as
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artificial neural network (ANN), decision tree, k-nearest
neighbor, genetic programming, support vector machine,
or the other algorithm.

ANNs, both shallow and deep, have been used for anomaly
detection for several years. For example, an effective convo-
lutional neural network-based anomaly detection method to
detect tool breakage was proposed in [10]. The procedure was
implemented as software, and it was shown that tool break-
age of computer numerical control (CNC) machine could be
detected by spindle current. It is worth noting that ANNs pro-
cess information parallelly and usually perform low-precision
computations. Therefore they are suitable for efficient digi-
tal implementations, e.g., on field-programmable gate arrays
(FPGAs), which are characterized by low power consump-
tion, high processing speed, and possibilities for parallel
processing and reconfiguration on-the-fly [11]. Autoencoders
(AEs) belong to the ANNs suitable for anomaly detec-
tion [12], [13]. The key idea is to train the autoencoders to
learn normal states and, after training, use them to identify
abnormal states.

Various FPGA-based neural network applications were
presented in the literature. In [14] an FPGA-based
ECG arrhythmia detection using an ANN was presented and
tested on the MIT-BIH database. In [15] an FPGA-based
neural network method to handle the real-time fault detec-
tion and isolation system on the aircraft was proposed,
and the procedure of the method containing two stages:
off-line system’s construction and real-time monitoring, was
explained. An advanced neural network-based on-device
learning anomaly detector for edge devices (ONLAD), which
realizes fast sequential learning semi-supervised anomaly
detection by constructing an autoencoder with an online
sequential extreme learning machine (OS-ELM), was pre-
sented in [2]. The system was tested but not applied in
anomaly detection for a milling process. In [16] the first full
hardware-based implementation of the contracting autoen-
coder [17], comprising hardware-implemented learning was
provided. A methodology for real-time stator condition mon-
itoring of an induction motor using a fuzzy system imple-
mented on FPGA was presented in [18]. The fuzzy system
designed in VHDL was successfully compiled, and simu-
lated and the results obtained from FPGA were compared
with the results obtained from the Matlab Fuzzy Logic
Toolbox. An intelligent condition monitoring approach was
presented in [19] for the detection, diagnosis, and progno-
sis of a broad range of faults in induction motors. Three
algorithms were developed and implemented on an FPGA.
This implementation ensures a real-time, low-cost solution
due to the parallel processing capability of FPGA. A stacked
autoencoder neural network-based automated feature extrac-
tion method for anomaly detection in online condition mon-
itoring was presented in [20]. The authors showed that
the proposed method could achieve very high detection
accuracy for determining the bearing health states, and
their simple design method is promising for easy hardware
implementation.

A configurable FPGA-based time-series outlier detection
hardware was reported in [21]. The proposed method is
more power-efficient as compared to the general-purpose
processors performing the same algorithm. A binarized
encoder-decoder network and binarized deconvolution
engine to enable low-power, real-time semantic segmentation
was proposed in [22]. The binarized deconvolution engine
was implemented on FPGA and accelerated the proposed
encoder-decoder within CamVid 11 images achieving notable
performance.

In recent years, FPGA architectures have also begun to be
used for deep neural networks, which have gained various
engineering applications. A deep neural network hardware
implementation based on stacked sparse autoencoder was
presented in [23], where for the experiments, a dataset of
manuscript digits (MNIST) was used. In [24], the authors
compared the time and frequency domain for audio event
recognition using deep learning and shown that feature learn-
ing from the frequency domain is superior to the time domain.

In this paper, an FPGA implementation of an integrated
anomaly detection system that is energy efficient, parallel,
integrated on the same chip as the other processing hardware,
and customized to achieve high performance is described.
To the best of the authors’ knowledge, in this paper it
is shown for the first time how to develop a single-chip
FPGA embedded supervising controller for anomaly detec-
tion for the milling process. It was also proven that using the
appropriate frequency-domain features of the vibration signal
and an auto-associative neural network (AANN), detection
anomalies in a milling process with relatively high efficiency
is possible.

The rest of the paper is organized as follows. Section II
briefly characterizes an anomaly detection method, describes
a testbed and milling experiments performed on real CNC
machine. Section III details the process of input data prepara-
tion for an auto-associative neural network and the hardware
implementation of neuron’s activation function. An idea of
AANN implementation to anomaly detection in the milling
process is given in Section IV. Architecture of an AANN
and its hardware implementation is described in Section V.
Sections VI and VII contain discussion of the obtained results
and conclusions, respectively.

II. TESTBED AND EXPERIMENTS DESCRIPTION
The main task performed by the supervising controller is
to detect an anomaly in the milling process. Executing this
task, the controller continuously monitors the vibration sig-
nal coming from the acceleration sensor, installed on the
milling machine, and striving to isolate new vibration pat-
terns which are different from typical patterns recorded for
the correct ongoing milling process. The detection method
of new vibration patterns roughly relies on selecting signal
features in the frequency domain and applying an AANN
for novelty detection. Vibration sensors have been selected
due to the relatively easy installation of them in industrial
CNC machines (in relation to force sensors) and the lower
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impact on system operation by external disturbances (in rela-
tion to acoustic emission). Motor current sensors have not
been used in this study, as it is a continuation of previous
authors’ work focusing on the use of vibration sensors [25].

Milling experiments were performed on Haas VF-1 CNC
machining center (Fig. 1). Milling process parameters:
X-Y geometry; 4-flute end milling cemented carbide cutter
(Fig. 3 - diameter: 10 mm, producer: Van Hoorn; spin-
dle speed 862 rpm; feed rate 150 mm/min; milling depth
0.5 mm; milling width 10 mm; coolant was used. In this
study, signals were collected from one single axial Hansford
(HS-100ST1000706, sensitivity 100 mV/g, bandwidth
10 kHz) accelerometer mounted on the lower bearing of the
spindle as shown in Fig. 2 a).

FIGURE 1. Haas VF-1 CNC machine.

FIGURE 2. a) - CNC spindle and acceleration sensor mounted on the
lower bearing of the spindle [26], b) - exemplary inconel disc.

The data acquisition system uses a platform for rapid proto-
typing of intelligent diagnostic systems [26] developed by the
authors of the paper. The platform includes Beckhoff Indus-
trial Computer C6920 (IPC) and distributed input/output
system based on EtherCAT protocol. Analog input module
EL3632 from Beckhoff was used to collect signals from the
accelerometer sensor. This module is designed for devices
that meet the Integrated Electronics Piezo-Electric standard.
The oversampling factor of EL3632, as the number of probes
internally collected by the module per one sampling interval
of the main real-time data collection task, was set to 50.
The software part of the data acquisition system consists
of a real-time Programmable Logic Controller task created
in Structured Text language (norm IEC 61131-3). A fac-
tory automation programming environment TwinCAT 3 from

FIGURE 3. 4-flute end milling cutter.

Beckhoff [27], as well as custom made Simulink projects,
Matlab functions and scripts (m-files) [28] were used. Data
collection performed during milling experiments was done
using Matlab/Simulink External Mode. Data files (mat) were
collected and stored on an engineering workstation hard drive
connected to IPC by the use of an Ethernet network. The
sampling interval of the real-time data collection task was
equal to 2 ms. The duration of signal buffer (time series
data) stored in one mat-file was equal to 640 ms. Taking into
account values of IPC real-time collection task interval (2 ms)
and EL3632 oversampling factor (50), the final sampling
interval for signals collected from the accelerometer was
equal to 40 µs, which corresponds to fs = 25 kHz frequency.
In each mat-file, N = 16000 samples from the sensor were
stored on a mass storage device.

Data from 11 experiments were analyzed in this study.
A single experiment includes time series data collected
for one complete circular milling trajectory performed at
the edge of one inconel 625 disc (diameter: 100 mm,
thickness: 8 mm) which is shown in Fig. 2 b). Each machin-
ing experiment lasted approximately 120 s and was per-
formed using the same one four-teeth milling cutter and
the spindle speed 862 rpm which corresponds to 14.36 Hz.
Two types of milling cutters were used during experi-
ments, i.e., sharp and blunt. In our case, the term ‘‘blunt’’
refers to a tool condition that causes unacceptable surface
roughness (Ra = 1 µm) as a result of the milling pro-
cess. After each milling experiment, the roughness of the
surface (Ra) was measured with a Taylor Hobson con-
tact profilometer. It was approximately Ra = 0.5 µm and
Ra = 1 µm for sharp and blunt tools, respectively. In this
study, data files/buffers collected for machining performed
with different pieces (3 pieces) of sharp tools (7 discs) were
treated equally. The same approach was applied in the case
of different pieces (2 pieces) of blunt tools (4 discs). Finally,
after cleaning and pre-processing operations performed for
all collected data, NC = 1085 and NI = 624 files/buffers
were used in this study for analysis of machining process
done with sharp and blunt tools, respectively.

For the collected data, a series of experiments were carried
out using Matlab software, including the choice of crucial
parameters for AANN, AANN training, and evaluation of
the final classification performance. In addition, a complete
C/C++ application was prepared, performing all the nec-
essary computational tasks as a reference model for the
hardware implementation of the supervisory controller. The
computations results delivered by the C/C++ application
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were, in turn, compared with the Matlab results to verify the
correctness of FPGA implementation.

III. INPUT DATA PREPARATION FOR AANN
IMPLEMENTATION
Let us denote by X= [X (k) , . . . ,X (N )] the vector contain-
ing 16000, 16-bit signed integer samples of the input signal
from the acceleration sensor. An example of such a signal,
referring to the correct milling process, is presented in Fig. 4.

FIGURE 4. An example of input signal from the acceleration sensor.

From the authors’ experience and other works, it is clear
that signal features in the frequency domain instead of fea-
tures in the time domain should be considered for build-
ing a classifier [29], [24], [25], [30]. Thus, the vector Z =
[Z (k) , . . . ,Z (N1)] containing N1 = 214 = 16384 elements
as input for discrete Fourier transform (DFT) was formed

Z (k)=

{
c1 (X (k)−mx) for k = 1, . . . ,N
0 for k = N + 1, . . . ,N1

, (1)

where

mx =
1
N

∑N

k=1
X (k) (2)

is the mean value of input samples, whereas c1 =

490.5/32768 is a scaling constant value related to the sen-
sitivity of the acceleration sensor, range of input values,
and their digital representation. Having prepared the vector
Z = [Z (1) , . . . ,Z (N1)], a DFT transform is calculated,
and results are stored in the vector F = [F (1) , . . . ,F (N1)],
where

F (k)=
∑N1

i=1
Z (i) exp

(
−
2kπ ij
N

)
, k=1, . . . ,N1, (3)

and j =
√
−1. The actual computation of the DFT has been

accomplished using the FFT algorithm, and the bit accurate
C/C++ software library delivered by the vendor of the FPGA
chip [31], applied in the developed supervising controller.
Single precision floating point arithmetic has been used for
FFT calculations as well as for further computations. It is
worth noting that the subtraction operation of the mean value
from each input sample in (1), which is equivalent to the
DC component removal, improves the quality of FFT results.

Since the F vector contains complex numbers, the absolute
value A, representing the amplitudes of frequency compo-
nents (a frequency spectrum), needs to be calculated. This
operation is accomplished by means of the following formula

A (k) =
1
N1
|F (k)| , k = 1, . . . ,N1/2, (4)

where |x| is the absolute value of the complex number x
and 1/N1 is a scaling factor. The length of the A vector is
one-half of the F vector’s lenght. For example, the calcu-
lated FFT spectrum (the A vector’s elements) of the signal
presented in Fig. 4 is depicted in Fig. 5a. Although high
spectrum amplitudes are located above the 10 kHz frequency
(which is irrelevant since it is out of the sensor bandwidth),
the conducted analysis revealed that the pivotal frequency
range spans from 210 Hz to 1 kHz [25].

As a result of applying the decision tree method to a
dozen different frequency ranges, the frequency band from
210-1000 Hz was selected as the most appropriate for the
milling process under consideration [25]. At this stage of the
research, the authors do not know the physical justification
for this frequency band other than the above band contains the
subsequent harmonics associated with the milling process.

In order to extract some essential features of the fre-
quency spectrum of the input signal, some signal metrics have
been introduced. These metrics convert spectrum amplitudes,
within the selected range of frequency, into a single number.
Conducted experiments revealed that two metrics are suffi-
cient for classification of milling process performed by sharp
or blunt tools, namely:

m1 =
∑c3

k=c2
A (k) , (5)

m2 = max
c4≤k≤c5

A (k) , (6)

where c2, c3, c4 and c5 are integer constant values cor-
responding to the start and end of the frequency range.
The authors used multiple features determined in both fre-
quency [26], [25], and time domains [32] to solve similar
data classification problems. For features in the frequency
domain, the entire frequency interval was subdivided into
many smaller bands, including the intervals determined by
values c2, . . . , c5, in which different features were defined,
i.a. m1 and m2 metrics. In this article, a single decision tree
that identified the features as in (5) and (6) from a broad set
of features with the highest estimated importance from the
perspective of the AANN-based classification task was used.
For input data collected for the considered milling process,
it turned out that the following values prove to be quite good:
c2 = 329 (which corresponds to the 514 Hz frequency),
c3 = 656 (1 kHz), c4 = 138 (215 Hz ), c5 = 163 (254 Hz ).
Metrics values, according to (5) and (6), have been cal-

culated for all of the collected data files (1709 collectively)
and exported to a comma-separated values (CSV) file. The
specially developed C/C++ application has been used for
metrics calculations. Next, Matlab software has been used for
training AANN.
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FIGURE 5. a) - FFT spectrum of the signal presented in Fig. 4, b) - FFT
spectrum of the signal representing the correct milling process,
c) - FFT spectrum of the signal representing the blunt tool.

IV. AANN TRAINING AND TESTING
AANN is a kind of feed-forward neural network for which
the main goal is to mimic on its outputs the values presented
on the network’s inputs [12]. The AANN developed and
used for these considerations has two inputs, two outputs,
and five layers: input, mapping, bottleneck, demapping, and
output layer, respectively. For mapping and demapping lay-
ers, the hyperbolic tangent function is used as a neuron’s
activation function, whereas for the rest of the layers - a linear
function is applied. The number of neurons for AANN layers
has been determined experimentally, i.e., 2, 5, 2, 5, and 2.

As training data for the AANN, the data imported from
the CSV file have been applied. The imported data have been
grouped into the two matrices, calledMC = {MC (i, k)}2×NC
and MI = {MI (i, k)}2×NI , containing metrics calculated for
the correct and incorrect milling process, respectively. The
matrices have two rows, corresponding to two metrics (5)
and (6), and as many columns as the number of input data
files/buffers were collected, i.e., NC = 1085 and NI = 624.
For the AANN training process, the sub-matrix of the MC ,
containing only the first N2 = 200 columns, has been used.
The weights and biases values of the neural network were
updated according to the scaled conjugate gradient backprop-
agation method. The training was performed for 1000 epochs
and experimentally adjusted iteration parameters. An impor-
tant threshold factor δ, useful for further considerations, must
be calculated with the AANN already trained.

Assume that P = {P (i, k)}2×N2 is the matrix containing
N2 two-dimensional intput vectors of the AANN, such that

P (i, k) = MC (i, k) , i = 1, 2, k = 1, . . . ,N2, (7)

and Q = {Q (i, k)}2×N2 is the matrix containing the
same number of two-dimensional output vectors of the
trained AANN. The threshold coefficient δ is calculated in
the following steps

E (k) =
∑2

i=1
|P (i, k)−Q (i, k)|2 , k = 1, . . . ,N2, (8)

µ =
1
N2

∑N2

k=1
E (k) , (9)

σ =

√
1

N2 − 1

∑N2

k=1
|E (k)− µ|2, (10)

δ = µ+ c6σ, (11)

where c6 = 3 is the arbitrary chosen constant coefficient [33].
It turned out that, for the AANN input data determined by (7),
the threshold coefficient δ amounted to 2.286 · 10−2. The
δ coefficient plays a pivotal role in the determination of the
presence of a new vibration pattern. This presence may indi-
cate that the currently analyzed milling process is incorrect.
The procedure which enables the determination mentioned
above is in the following three steps. For all collected samples
of the input signal from the acceleration sensor, the metrics
described by (5) and (6) should be calculated. Next, the met-
rics values should be fed to the input of the AANN, previously
trained according to the descriptionmentioned above. Finally,
the coefficient of so-called novelty assessment level, which
is described by (8) by N2 = 1, where P and Q are matri-
ces containing the input and output vectors of the AANN,
is calculated. If the value of the novelty assessment level
coefficient is higher than the δ threshold, then this indicates
the occurrence of the novelty signal [33].

In order to test the efficiency of the proposed classification
method of the correct and incorrect milling process, some
evaluations exercising the previously prepared MC and MI
matrices have been carried out. In the case of theMC matrix,
only these columns which have not been previously applied
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for the AANN training have been taken into consideration,
i.e., the columns from N2 + 1 to NC . The values of novelty
assessment level coefficients for metrics values in both matri-
ces have been calculated and compared with the δ threshold
value, taking advantage of the prepared Matlab script and
the previously trained AANN. Results of the comparison are
presented in Tab. 1. In this paper milling process performed
with a sharp tool is treated as a negative class (N), and the
operation performed with a blunt tool is treated as a positive
class (P).

Our result is comparable to the state-of-the-art deep con-
volutional neural network proposed in [10] and generative
adversarial networks [9]. The classification results show that
all cases of the incorrect milling process have been rec-
ognized correctly. However, in 78 cases, the novelty has
been indicated for the data coming from the correct milling
process.

Tab. 2 shows the statistical measures of the classifica-
tion performance, achieved for the introduced classification
method and calculated using data form Tab. 1. It is worth not-
ing that the attained classification performance seems to be
quite encouraging and allows detecting the incorrect milling
process with relatively high accuracy.

TABLE 1. Contingency table for the conducted classification task using
1509 testing data records.

TABLE 2. Statistical measures of the classification performance.

The proposed method of anomaly detection for the milling
process uses neural networks. FPGA implementation of neu-
ral networks is not a straightforward process and almost
always entails some loss of calculation accuracy com-
pared to software implementations of these networks. It is
related to difficulties in hardware implementation of neuron’s
non-linear activation function and some introduced simplifi-
cations. The previously developed method of FPGA imple-
mentation of neural networks [34] has been applied for the
presented supervising controller. The method characterizes
high calculation accuracy and a unique feature of easy alter-
ation of network structure without reimplementing the whole
FPGA project.

In order to prove that the classification performance
obtained with FPGA is the same as the performance deter-
mined by Matlab, the entire software model in C/C++ accu-
rately reflecting the sequence of arithmetic operations has
been developed. As the first step, using a simple Matlab
script, all neurons’ weights of the trained AANN and biases
were exported and written to the external file, i.e., weights
file. Next, this file was read by the C/C++ application,
and data were stored in internal structures (arrays). Then,
the C/C++ application read subsequent data records from
the previously prepared CSV file with metrics values and
calculated the novelty assessment level coefficients. Detailed
calculations are described below.

Since the Matlab model of the AANN use the data nor-
malization for inputs, i.e., “mapminmax” the inputs values
(the P vector) for calculations of the AANN should be pre-
pared according to the formula

P (j) = 2
mj −Mmin (j)

Mmax (j)−Mmin (j)
− 1, j = 1, 2, (12)

where m1, m2 are the metrics values read from the CSV
file and described by (5) and (6), Mmin (j) and Mmax (j) are
the minimum and maximum values of the corresponding
metrics (j = 1, 2), and the sizes of all elements in the
equation (12) are compatible [28]. Thus, all elements P (j) are
from the interval [−1, 1]. The Mmin (j) and Mmax (j) values
were obtained as the properties of the Matlab “net” object of
the trained AANN.

The calculations of the AANN output were performed
utilizing the following computations

L1 (i1)= tanh
(∑NI

j=1
WI (i1, j) · P (j)+ b1 (i1)

)
, (13)

L2 (i2)=
∑NL1

j=1
W21 (i2, j) · L1 (j)+ b2 (i2) , (14)

L3 (i3)= tanh
(∑NL2

j=1
W32 (i3, j) · L2 (j)+ b3 (i3)

)
, (15)

Q (i4)=
∑NL3

j=1
W43 (i4, j) · L3 (j)+ b4 (i4) , (16)

for ir = 1, . . . ,NLr , r = 1, 2, 3 and i4 = 1, . . . ,NI . In (13)
WI = {WI (·, ·)} is the weight matrix for the weights going
to the first network layer from the network input, Wuv =

{Wuv (·, ·)} is the weight matrix for the weights going to the
uth network layer from the vth layer, bk (·)’s are elements
of the bias vectors bk for k = 1, . . . , 4, NI is the number
of network’s input (in our case NI = 2), NLi represents the
number of neurons for the ith layer (NL1 = 5, NL2 = 2,
NL3 = 5, NL4 = 2), P (·) and Q (·) are elements of the input
and output vectors of the network, L1 (·), L2 (·), and L3 (·)
are elements of auxiliary vectors containing neurons’ output
values for the subsequent layers. ThematricesWI ,W21,W32,
and W43, and the vectors b1, . . . ,b4 directly relate to the
specific properties of the Matlab “net” object (these matrices
were created with the usage of the content of the weights file
as mentioned above).
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Let us denote by Tanh (x) and Exp (x) the hardware imple-
mentations of functions tanh (x) and exp (x), respectively,
and define the interval Da = (−a, a) for a > 0. The
calculations of the AANN involve the hyperbolic tangent
function, which is defined inMatlab by the following formula

tanh (x) =
2

exp (−2x)+ 1
− 1. (17)

However, due to the fact that the exponential function is
difficult to implement in hardware, the actual implementation
of the hyperbolic tangent involves the following calculations

Tanh (x) =


−1 for x ≤ −9
tanh (x) for x ∈ D9

1 for x ≥ 9

, (18)

Exp (x) =

{
h (x) for x ∈ D1

G (int (x)) · h (frac (x)) for x ∈ D18\D1
,

(19)

h (x) =
1680+ 840x + 180x2 + 20x3 + x4

1680− 840x + 180x2 − 20x3 + x4
, (20)

G (i) = exp (i) for i ∈ {−17,−16, . . . , 16, 17} \ {0} ,

(21)

where h (x) is the fourth order Padé rational function, int (x)
indicates the integer part of the x argument, frac (x) is the
fractional part of x.
It is worth noting that the accuracy of the hyperbolic tan-

gent function calculations, according to equations (18)-(21),
is relatively high. The maximum absolute error of the calcu-
lations amounts to 2.3 · 10−7. More details on the activation
function implementation in FPGAs can be found in authors’
previous works [35], [36].

Having calculated the Q output vector of the AANN,
the value of the novelty assessment level coefficient (nl) is
assigned according to the following formula

nl =
∑2

i=1
|P (j)− Q (j)|2 . (22)

(see (8) for N2 = 1). The nl coefficients have been calculated
for all metrics and compared each time with the previously
calculated δ threshold value - similarly to the procedure
described earlier in this paragraph and performed by the Mat-
lab script. It turned out that the classification results obtained
by the C/C++ application, accuratelymodeling all arithmetic
operations for FPGA implementation, are exactly the same
as the results calculated by Matlab and presented in Tabs. 1
and 2. This indicates that some simplifications, introduced for
hardware calculations (e.g., the neurons’ activation function
calculations and the usage of single precision floating point
arithmetic instead of double precision arithmetic), as well as
a slightly different way of FFT calculations, do not affect the
final classification results.

V. ARCHITECTURE AND HARDWARE IMPLEMENTATION
The simplified architecture of the software model for all
arithmetic operations, which are to be performed by the

supervising controller, is shown in Fig. 6. The software model
enabled a preliminary test of the efficacy of the proposed
anomaly detection method and essentially facilitated the
development of the controller’s hardware architecture.

An input signal containing samples of vibration data may
come directly from the accelerator sensor, connected to an
analog to digital converter, or delivered from the controller’s
internal blocks allowing connection with the PC computer.
The MUX1 multiplexer is making a choice. The latter possi-
bility mentioned above is beneficial for off-line testing of the
controller operation.

An input signal from the MUX1 is fed to two internal
circuits, dealing with calculations of the mean and RMS
values and directly to the input buffer BUF1. A sum of input
samples for the mean value calculation, according to (2),
is accomplished by the A1 fixed-point adder and FD1 set
of D flip-flops. A sum of squares of input samples for cal-
culation of additional RMS value is, in turn, realized by the
M1 fixed-point multiplier, A2 adder, and FD2 set of D flip-
flops. The BUF1 input buffer is physically implemented as
dual port Block RAMmemory. Port A of the memory is used
to write input data samples, whereas port B serves for data
reading. Having two independent ports of the input buffer
is essential since the input samples must be continuously
collected, and no sample is allowed to be lost.

The CU2 control unit controls the process of writing input
samples. Once the unit writes 16000 input samples to the
BUF1 buffer, it sends the particular signal to the CU1 cen-
tral control unit and initiates a new cycle of input sample
collection so that no input sample is lost. After receiving
the signal from the CU2, the CU1 unit finishes the calcu-
lation of the mean and RMS value of input samples. Since
all calculations are accomplished using single-precision
floating-point arithmetic, the values from FD1 and FD2 sets
of flip-flops are converted into the floating-point form by the
fixed to floating-point conversion blocks FPC1 and FPC2,
respectively. A similar function performs the FPC3 block,
converting fixed-point data in the BUF1 into floating-point
counterparts. Once themean value is calculated, the CU1 starts
reading the input samples from the BUF1 buffer and writing
them to the FFT block, according to calculations described
by (1). It is worth noting that the latter process lasts many
times shorter than the collection of all 16000 input samples.
Therefore, sample collection for a new cycle can be accom-
plished simultaneously with the process of reading samples
for the previous collection cycle and writing them to the
FFT block.

When all data samples are copied to the FFT block,
the CU1 immediately initiates the FFT calculations per-
formed by the FFT block. The IP core from Xilinx Core Gen-
erator [37] has been used to implement the FFT block. This
block writes the output data to two output buffers BUF2 and
BUF3, representing the real and imaginary parts of the cal-
culated frequency spectrum. After completing FFT calcula-
tions, the CU1 unit initiates further computations controlled
by the CU3 control unit. The CU3 unit uses floating-point
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FIGURE 6. Simplified architecture of the FPGA embedded supervising controller for milling process.

addition (FPADD), multiplication (FPMUL), and square root
(FPSQRT) arithmetic blocks in order to calculate the absolute
value, according to (4), and writes back the result to the
BUF2 buffer. This unit is also responsible for the calculations
of the signal metrics, according to (5), (6), as well as it per-
forms the “mapminmax” normalization of the metrics values,
according to (12). It is worth noting that the CU3 unit shares
the arithmetic blocks (FPMUL, FPADD, and FPSQRT) with
the CU1 central control unit, which lowers the overall require-
ments for the FPGA logic resources.

The calculations related to the AANN network are per-
formed by the CU4 control unit equipped with its own arith-
metic blocks (FPADD, FPMUL, FPDIV) and coefficients
memory (CM), storing the actual structure of the AANN. The
slightly modified implementation described in the authors’

previous work [38] has been used for the AANN imple-
mentation. The CU4 and auxiliary arithmetic blocks perform
operations described by (13) - (21), as well as they calculate
the novelty assessment level coefficient (22). The comparison
of the coefficient above with the threshold value δ (11) is,
in turn, accomplished by the CU1 main control unit. In the
form of simple information indicating either the correctness
or incorrectness of the milling process, the comparison result
is presented on the LCDdisplay connected to the FPGAboard
and controlled by theDISP block. The information is also sent
to the communicationmodule, which enables communication
with an external PC.

The communication module plays an essential role as an
internal part of the supervising controller. It enables the
transfer of the actual AANN’s structure and all constant
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values, i.e., c1 . . . c6, from PC to internal memory (CM block
and registers). The communication module also allows full
offline testing of the controller’s functionality - this module
exchanges data with a PC using simple serial communication
(115200 baud rate is actually implemented). The Intel HEX
data format has been adopted as a communication protocol
applied by the communication module.

The module consists of several blocks depicted in Fig. 6,
namely the serial port transmitter (STX), serial receiver
(SRX), direct digital frequency synthesizer (DDFS), Intel
hex decoder (IHD), Intel hex coder (IHC), returned mes-
sages generator (RMG), memory access controller (MAC),
nand-flash controller (NFC), and command realization block
(CRB). TheDDFS generates specific frequencies for the STX
and SRX blocks. The IHD, IHC, and RMG deal with the
decoding and coding of data and commands transmitted using
Intel HEX-based protocol. The MAC block writes data to the
CM memory block, whereas the NFC delivers an interface to
external NAND-flash memory storing all significant values
such as AANN’s structure, etc.

All the controller’s components depicted in Fig. 6 (except
the FFT block and all floating-point arithmetic blocks,
which were used as IP cores delivered by the FPGA ven-
dor) were described using Verilog Hardware Description
Language and implemented in the FPGA board previously
developed and assembled as part of the multiprocessor
programmable controller [39]. The board uses the Xilinx
Spartan-6 XC6SLX100 FPGA chip. Tab. 3 shows resource
utilization for implementing the supervising controller in the
chip mentioned above.

TABLE 3. FPGA resources utilization for supervising controller.

Tab. 4 presents, in turn, calculations speed of subsequent
stages of calculations given in terms of the number of clock
cycles needed to accomplish specific operations.

The values shown in Tab. 4 were measured by the inter-
nal counters added to the Verilog code and integrated with
the controller’s hardware. In the presented version of the
supervising controller, the overall number of clock cycles
needed for completion of all calculations amounts to 440567.
Since the controller implemented in the board with Spartan-6
FPGA chip was synchronized with 50 MHz clock fre-
quency (essentially slower than the maximum allowable fre-
quency), the overall calculation time (the response time)
amounts to 8.8 ms. To generate the response, the con-
troller must collect 16000 samples of input vibration sig-
nal, which takes 640 ms under the 25 kHz sampling
frequency.

TABLE 4. Calculations speed of the controller’s operations.

VI. DISCUSSION
As the controller has not been tested yet in online mode with
a vibration sensor connected through an analog to digital
converter, extensive offline tests have been carried out. The
previously prepared data files containing vibration samples
were subsequently transferred to the controller using the
communication module, and the controller’s response was
carefully analyzed. Thanks to the communication module’s
functionalities, the final results were observed, and many
intermediate values were analyzed, such as frequency spec-
trum of the input signal, metrics values, AANN calcula-
tions results, etc. All of the values were in total accordance
with the results produced by the developed software model-
ing controller’s functionality. This proves that the presented
FPGA embedded supervising controller works correctly.

It has been shown that by using the frequency spectrum
of the vibration signal and specific features (metrics) of the
signal’s spectrum as well as by using an auto-associative
neural network, it is possible to detect anomalies in a milling
process with relatively high efficiency; an accuracy, sensitiv-
ity, specificity, precision and false alarm rate of 94.3, 100,
91.2, 88.9 and 8.8 percent, respectively. It also has been
shown that all necessary calculations can be accomplished by
the developed single-chip FPGA embedded supervising con-
troller. The controller allows high-speed calculations under
low power consumption (below 1 Was the conducted mea-
surements indicated). It also characterizes high reliability
and low price compared to typically encountered solutions
using industrial computers or Programmable Automation
Controllers (PACs).

The proposed FPGA implementation of the supervising
controller has a high potential for further development, par-
ticularly in calculation speed. As the other conducted exper-
iments reveal, the calculation speed of the presented hard-
ware version of the controller is merely comparable with
a contemporary high-performance PAC controller, i.e., the
APAX-5620 ofAdvantechCo., Ltd., performing similar oper-
ations. The calculation speed of the presented controller can
be easily increased by applying themaximum allowable clock
frequency, e.g., 59 MHz instead of 50 MHz for the used
FPGA board and the usage of the chip from a newer FPGA
family. Some experiments show that, for the same digital
circuit description, its implementation in Kintex-7 or Artix-7
FPGA chip can be clocked significantly faster (sometimes
even 2..3 times depending on the speed grade of the used chip)
than the implementation in Spartan-6.
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Some reorganization of the calculations can achieve a
further increase of the calculations speed. As data from
Table 4 indicate, the highest number of clock cycles is utilized
for data copying from the input buffer to the FFT block.
Probably, elimination of the operations described by (1) for
k = 1, . . . ,N andwriting data to the FFT block directly with-
out the usage of the input buffer would not degrade the overall
anomaly detection efficiency. However, this requires some
research to be done. Skipping the operations as mentioned
above would save a considerable amount of time. In this case,
the FFT calculations can be initiated as soon as the last sample
of a total of 16000 samples is received.

Since the input samples are, in fact, 16-bit integer val-
ues, the FFT calculations can be accomplished by using
fixed-point calculations. It would lead to further reduction of
the needed clock cycles.

Also, the absolute values of frequency spectrum complex
values are calculated for the entire spectrum (8192 values).
However, only the absolute values for the limited range
of spectrum determined by the type of the applied metrics
(the c2, . . . , c5 constant values) are needed. Decreasing the
number of calculated absolute values to merely (c3 − c2) +
(c5 − c4) + 2 = 354 values (the actual requirement), obvi-
ously leads to the substantial reduction of the calculations
time.

VII. CONCLUSION
In the paper, results obtained for the current phase of the
research, which is to design a real-time supervising controller
of the milling process, were described. The controller uses
FPGA technology, vibration measurements, features in the
frequency domain, and an auto-associative neural network for
novelty detection. Using simulations performed offline, it has
been proven that it is possible to develop an FPGA-Embedded
anomaly detection system for the milling process, which
operates with an efficiency level that is acceptable from the
practical point of view.

The essential future work will be focused on testing the
supervising controller in a real industrial environment. This
will require the controller’s connection to the vibration sen-
sor through an analog to digital converter external module
(which has already been developed and assembled). Some
adjustments of the electrical parameters of the converter will
also be required so that they would be roughly the same as
the parameters of the industrial module used for offline data
collection.

Also, all of the factors mentioned in Section VI will
be taken into considerations as future works. Additionally,
a new software model using fixed-point FFT calculations
with direct input data usage (and perhaps with a lower number
of input samples, e.g., 8192 instead of 16000) is planned
to be developed. If the simulation results turn out to be
encouraging, a new hardware implementation of the con-
troller, enabling higher calculation speed, will be developed.

It is also worth noting that a disadvantage of the pro-
posed method of anomaly detection is the need for an offline

collection of a remarkable number of vibration data for a
milling process that is realized correctly. The method is also
not immune to some drift of milling process parameters.
In further research work, these limitations are planned to be
overcome by the authors of the paper.
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