
Received July 30, 2021, accepted August 15, 2021, date of publication September 3, 2021, date of current version September 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3110370

Content Matters: Clustering Web Pages
for QoE Analysis With WebCLUST
LUIS ROBERTO JIMÉNEZ 1, (Graduate Student Member, IEEE), MARTA SOLERA 1,
MATÍAS TORIL 1, CAROLINA GIJÓN 1, AND PEDRO CASAS 2
1Instituto de Telecomunicación (TELMA), Universidad de Málaga, CEI Andalucía TECH E.T.S. Ingeniería de Telecomunicación, 29010 Málaga, Spain
2AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria

Corresponding author: Luis Roberto Jiménez (lrjp@ic.uma.es)

This work was supported in part by Spanish Ministry of Science, Innovation and Universities under Grant RTI2018-099148-B-I00, in part
by the Presidency of the State Research Agency under Grant FPI/BES-2016-07631, and in part by Spanish Ministry of Education,
Culture and Sports under Grant FPU17/04286.

ABSTRACT The properties of a web page have a strong impact on its overall loading process, including the
download of its contents and their progressive rendering at the browser. As a consequence, web page content
has a strong impact on the experience of web users. In this paper, we present WebCLUST, a clustering-based
classification approach for web pages, which groups pages into quality-meaningful content classes impacting
the Quality of Experience (QoE) of the users. Groups are defined based on standard Multipurpose Internet
Mail Extensions (MIME) content breakdown and external subdomain connections, obtained through in-
browser, application level measurements. Using a large corpus of multi-device, heterogeneous web content
and QoE-relevant measurements for the top-500 most popular websites in the Internet, we show how Web-
CLUST can automatically identify relevant web content classes showing significantly different performance
in terms of Web QoE relevant metrics, such as Speed Index. We additionally evaluate the impact of content
caching and device type on the identification performance of WebCLUST, showing how content classes
might look significantly different, depending on the access device type (desktop vs mobile), as well as when
considering browser caching. Our findings suggest thatWeb QoE assessment should explicitly consider page
content and subdomain embedding within the analysis, especially when it comes to recent work onWeb QoE
inference through machine learning models. To the best of our knowledge, this is the first study showing the
impact of web content on Web QoE metrics, opening the door to new Web QoE assessment strategies.

INDEX TERMS Web, Quality of Experience, clustering, WebPageTest, service performance.

I. INTRODUCTION
Recent advances in information and communication tech-
nologies have brought new opportunities for accessing digital
content. As a result, user expectations for products and ser-
vices involved in this interaction are increasing. This trend
has forced network operators to change the way they man-
age their systems from a network-centric to a user-centric
approach. Thus, customer experience management is a key
process in the daily routine of network operators [1].

User satisfaction depends on multiple factors (e.g., human,
system, context), which makes it difficult to measure and
analyze [2]. Yet, network operators and content providers
attempt to estimate service performance as perceived by the
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customer, defined as Quality of Experience (QoE) [3].
The simplest approach is to conduct subjective tests with
real users. However, subjective tests are time-consuming
and not valid for large-scale real-time monitoring. Alterna-
tively, objective methods can use measurements collected by
applications or network elements to infer QoE [4]. Objec-
tive methods are classified into signal-based, bitstream-based
and parametric models. The former two techniques rely on
decoding the content, which requires access to the application
layer and are therefore only suitable for service providers.
In contrast, parametric packet-layer methods analyze proto-
col messages to identify the different stages of a session,
from which Service Key Performance Indicators (S-KPIs)
can be obtained on a per-session basis. Then, S-KPIs are
translated into Mean Opinion Score (MOS) values [5] by
formulas derived in subjective tests. In the past, S-KPIs could
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be directly measured or at least inferred using deep packet
inspection monitoring technology, deployed at key network
interfaces of the core network [6]. Unfortunately, traffic
encryption used by most content providers nowadays pre-
vents the analysis of session events [7]. In the absence of
other methods, simpler parametric models are developed
per service to blindly relate basic network-level quality-
of-service measurements (e.g., average session throughput)
to MOS scores [8]. This approach is followed by most frame-
works for large-scale, in-network passive monitoring [9],
[10]. Recently, these platforms have been extended with
data analytics capabilities to isolate the indicators that better
reflect user experience and predict their trends [11]. These
advanced QoE models still have to be calibrated in field
trials by comparing their estimates with real measurements
obtained with automated terminal agents [12].

One of the most challenging services to deal with in
QoE management is web browsing. Originally designed
for accessing static content, current web browsing con-
sists of many intertwined processes difficult to characterize
(e.g., user interactions, object downloading from multiple
domains, content conversion, scripts, visual rendering, etc.).
As a consequence, web experience has to be measured from
multiple indicators showing service availability (e.g., web
access failure ratio, first access time), integrity (e.g., aver-
age download data rate, download time) and retainability
(e.g., download success ratio). Some of these indicators
depend on subjective factors, as it is difficult to define
when the user thinks that a page download has completed
(e.g., full load, above-the-fold content or non-interactive
time). The web page loading time is affected by several
delay components, some of which cannot be directly mea-
sured by traffic monitoring tools [12]. For instance, delays
associated to Domain Name Service (DNS) resolution and
TCP handshake are often not included since these tools are
only able to identify web browsing service once the first
HyperText Transfer Protocol (HTTP) message is sent. Like-
wise, monitoring tools cannot measure the delay associated to
processes executed in the terminal (e.g., scripts, rendering).
In addition, the rich and heterogeneous nature of web page
contents increases the complexity of the analysis, as the
page download and rendering process and the associated
user experience depend on the type of media, be it text,
images, video, dynamic contents such as JavaScript, and
more. Indeed, previous work on Web QoE modeling and
assessment has already hypothesized on the need for content-
specific Web QoE models [13]. All these issues justify the
need for Web QoE models specifically designed for different
types of web pages.

We take a first step in the automatic characterization
and classification of web pages by content type, aim-
ing at a more atomic and content-tailored analysis of
Web QoE. We introduce WebCLUST, a clustering-based
classification approach for web pages, which groups
pages into quality-meaningful content classes impacting
the QoE of the users. Using application-level, in-browser

measurements, WebCLUST uses the Multipurpose Internet
Mail Extensions (MIME) content breakdown of a web page
and its TCP connections to external subdomains to build input
features, which are then used to automatically identify groups
of web pages sharing similar content characteristics. Group-
ings are built in an unsupervised manner through k-means,
one of the simplest and most well-known clustering algo-
rithms. Unsupervised learning avoids the need for labeled
training datasets, which are difficult to obtain and maintain,
as web technologies constantly evolve. The resulting groups
are validated through the analysis of relevant performance
indicators associated to web service, including QoE-related
metrics such as Speed Index, first interactive time, fully
loaded time, and more. In-browser measurements are col-
lected through a custom web measurement platform, built
on top of WebPageTest (WPT) [14], the default, open-source
web-performance-analysis tool used both in industry and
academia.

We apply WebCLUST to multiple web datasets corre-
sponding to the top 500 most popular websites in the Internet,
spanning different end-device configurations; these include
the usage of both desktop and smartphone devices, as well
as the usage of browser caching. Our analysis demonstrates
how WebCLUST can identify relevant web content classes
with different Web QoE; in addition, it also shows how web
content varies when changing the end-device type and the
browser’s caching configuration.

The main contributions of this work are as follows: (a) the
definition of a set of web page descriptors to characterize
web pages from a QoE-relevant perspective, (b) a method
for QoE-relevant web page classification in the absence of
ground truth, and (c) an analysis of the impact of device type
and browser caching on web page characteristics, their asso-
ciated QoE, and the performance of the proposed method.
The remainder of the paper is structured as follows. Section II
reviews related work and presents relevant contextual con-
cepts. Section III presents the WebCLUST system, including
themeasurement platform conceived for the study. Section IV
elaborates on the evaluation of WebCLUST functioning
and performance using desktop measurements. The impact
of the device type and the usage of browser caching on
the characterization of web pages and the overall func-
tioning of WebCLUST is studied in Section V, relying on
mobile/smartphone measurements. Finally, Section VI con-
cludes this work.

II. RELATED WORK
Several objective metrics have been proposed in the literature
to measure Web QoE. These metrics can be classified into
network-related and visual-related metrics. The former are
computed from network-layer measurements collected by
traffic monitoring tools, whereas the latter requires access to
the application layer. In the first group, Page Load Time (PLT)
is often used to measure the performance of web browsing in
the industry and academia, since it is well defined and can
be quantified precisely [15]. Complementary, several tools
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build a timeline with all events related to the download of
individual objects [16]. From this information, other relevant
indicators can be obtained by detecting specific time events
(e.g., time to first byte, document object model load time) or
aggregating statistics (e.g., byte/object index [17]). Network
indicators can be enriched by adding processing (i.e., on-load
time) and rendering times (i.e., time to render the full page
and time to first picture painted [18]). However, none of
these indicators take into account that not all the objects
in a web page are equally important. A good example is
dynamic web pages (e.g., advertising), in which page load
time might be arbitrarily large even if the important content
is downloaded almost instantly. Likewise, the visual part of
the page depends, among others, on the screen size, which
is not reflected by the page load time [19]. To circumvent
these issues, alternative metrics have been proposed based
on the progress of the visual content, namely Above the
Fold Time (AFT) [20] and Speed Index (SI) [21], [22].
Unfortunately, these indicators are computed by analyzing
screen shots of the visible part of the page, which is a
complex and time consuming operation that can only be done
at the client side. In [23], an unsupervised learning system
to measure web performance by analyzing the timeline of
events at the transport layer is proposed. The output of the
system is strongly correlated with the on-load time and the SI.
More recent work relying on machine learning models to
infer the SI from (encrypted) network traffic level features
is presented in [24], [25], including the analysis of Web
QoE in mobile devices [25]. A detailed comparison of expert
QoE models ( naïve (linear), ITU-T (logarithmic) [26], and
IQX (exponential) [27]) against machine-learning basedWeb
QoE models (support vector regression, regression trees,
and random forest) is presented in [13]. Authors conclude
that expert models can accommodate new metrics beyond
PLT, achieving accuracy comparable to that of data-driven,
machine-learning based models. However, it is stressed that
a single model cannot cope with the wide heterogeneity of
web pages. At the same time, per-page models show higher
accuracy, but the modeling approach is not scalable, given
the millions of web pages available in the Internet. To solve
the latter problem, web pages can be classified into groups,
so that an appropriate QoE model can be derived per group.

Large-scale characterization and analysis of web pages has
been the subject of previous work [28], [29], early showing
the high complexity of modern web page contents and the
underlying hosting/server infrastructure. Content-based web
page categorization has been done in the past mainly for
retrieval and information management purposes. Semantic
classification based on content is key for maintaining web
directories [30], web search/ranking [31] or contextual adver-
tising [32]. A comprehensive survey of criteria, features, and
methods for content-based web categorization is presented
in [33] and [34]. Web page content can be classified based
on subject (e.g., arts, business, sports), role (e.g., personal,
institutional) and opinion (attitude). Content features used
to define groups of web pages include word chains [35],

HyperTextMarkup Language (HTML) tags [36], images [37],
and spatial relationship between objects [38]. Features for the
analysis might also include characteristics from ‘‘neighbor-
ing’’ pages [39]. In addition, web page categorization can be
done based on creation strategy (static or dynamic) or design
technology (Flash, HTML, etc.). To the authors’ knowledge,
no method has been proposed to classify web pages from a
QoE perspective, considering how different page elements
affect download times.

Given a relevant set of features (generally manu-
ally selected, based on domain-knowledge) groups can
be obtained by supervised learning algorithms trained
with labeled datasets (e.g., k-nearest neighbors, support
vector machine, neural network [40]), semi-supervised
algorithms combining both labeled and unlabeled data
(e.g., co-training [41]), or unsupervised algorithms
(e.g., relaxation labeling [42]). The first two approaches
require manually labeling web pages, which is a complex and
error-prone task. Therefore, WebCLUST relies exclusively
on unsupervised learning techniques for the web page char-
acterization task; in particular, WebCLUST uses clustering
approaches, applied to features describing the share of bytes
for specific contents (e.g., share of image bytes, share of
video bytes, share of JavaScript (JS) bytes, etc.), as well as
the number of external contents and third-party resources
embedded in the page, reflected by the number of connections
to external subdomains.

A. WEB PAGE LOADING 101
To assess the impact of connection performance on web
experience, it is important to understand first how the browser
renders a web page [43]. The browser engine starts parsing
the HTML text as soon as a few characters of the document
are received. The result is a Document Object Model (DOM),
which is a tree structure with nodes representing HTML ele-
ments. TheDOM is built incrementally, but can be interrupted
by the execution of embedded or external JS scripts. Concur-
rently, the browser provides styles to HTML elements as they
become available by reading Cascading Style Sheets (CSS)
from embedded or external sources. The result is a CSS
Object Model (CSSOM), including only elements that can be
printed on the screen. Then, the browser builds a Render Tree
with objects that will be visible, which is used to compute
the layout of visible objects and print individual elements on
the screen. The process continues until all page objects are
downloaded and displayed.

Web performance can be measured based on session
events [13]. The foremost of them are the reception of the
first byte (first byte), the display of the first pixel, image/text
or large pieces of them (first paint/first contentful paint/large
contentful paint), the start and consolidation of interactivity
(first interactive/consistently interactive), the rendering of the
visible part of the page (above-the-fold time), the processing
of all page elements (onload) and the end of the network
activity (full load). All these events are affected by page
content and design, browser engine, and network conditions.
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FIGURE 1. Web measurement platform for WebCLUST analysis. Web measurements are instrumented and collected
through a WPT private instance. WebCLUST identifies relevant groupings on top of the pre-processed web measurements,
auto-calibrating the underlying k-means algorithm.

III. THE WebCLUST SYSTEM
In this section, we describe the WebCLUST system in detail.
We firstly present the web measurement platform conceived
for the study, which allows for automated browsing of web
pages and collection of relevant data using the WPT suite of
tools. We then describe the set of features describing a single
web page for the subsequent clustering analysis and present
the Web QoE-relevant features that serve for web service
performance assessment and analysis. Last, we describe the
unsupervised grouping step based on k-means clustering,
providing details on the calibration of the algorithm and the
labeling of the resulting clusters.

A. WEB MEASUREMENT PLATFORM
Fig. 1 shows a diagram of the platform conceived to auto-
mate the collection of web measurements and the subsequent
clustering. The platform is made up of two components: the
measurement platform itself, responsible for automating
the web browsing activity, the collection of measurements,
and the extraction of specific S-KPIs or features, and the
WebCLUST system,which classifieswebs into groups based
on their characteristics. The measurement platform consists
of a desktop PC running a local instance of WPT [14], which
automates the browsing of individual web pages, collecting
all data involved in the loading process, from the initial web
page request until the page is fully loaded. For each visited
web page, a set of pre-defined S-KPIs is computed from the
collected raw data.WebCLUST then selects a sub-set of these
features for the clustering step, which is executed on top of the
full dataset of web measurements. The last step of the system
consists of the analysis and interpretation of the generated
groups or clusters, for the subsequent labeling in relevant web
page content classes. In particular, WebCLUST defines six
web page content classes, which are described in Section IV.
To select a significant sample of websites capturing the

diversity in themost widely used Internet applications (search
engines, news, e-commerce, social media, file download
sites, etc.), we use Alexa’s top global 500 sites list [44].

Alexa’s ranking is based on a combination of average daily
visitors and pageviews over the last month. Web pages can be
located anywhere in the world. As the access to these pages is
done from a local server located in our laboratory (University
of Málaga – EU), those sites not served from EU-located
servers or Content Delivery Networks could perform worse.
In this work, web page server location has not been taken into
account, but it is certainly a relevant aspect to consider for
future work.

Using this list of 500 websites, we rely on WPT to exe-
cute the measurement process. WPT is designed to measure
the performance of a web page for different browsers and
terminals and is used mainly in the industry for website
optimization purposes [14]. A private instance of the WPT
framework is installed on a windows desktop PC containing
a standard HTTP web server. The installation of a private
instance enables WPT advanced features, such as control of
queues and test agents, removal of daily testing limitations,
creation of custom metrics, and extensive tests (bulk testing).
To implement a private instance, a WPT server and an agent
emulating client requests are launched on the PC. Specifi-
cally, WPT version 20.05.01 is used. This version supports
measurements on Internet Explorer, Chrome, Firefox, and
Safari browsers. In our study, Chrome was the selected web
browser. A total of six tests are performed per web page to
build a more robust dataset and avoid the presence of outliers.
Thus, 500 × 6 = 3, 000 individual page loading tests are
conducted.

WPT generates a comprehensive list of features describ-
ing both the contents of a web page and its loading
performance/timing events. For each web page loading
session, we extract about 90 different S-KPIs, including
both content-related metrics (in particular metrics reflect-
ing the share of bytes for specific contents (image, video,
text, etc.) as well as the number of connections to exter-
nal resources) and Web-QoE related metrics such as PLT,
Speed Index, Byte/Image/Object Index, rendering and inter-
active timing events, and more. The reader is referred to
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WPT documentation for a detailed description of the S-KPIs
collected by the system [45], [46]. We complement the set of
WPT S-KPIs with an identification of all third-party contents
related to advertisement sites. Advertisement is pervasive
in the web, and as we show in our results, it has a signif-
icant impact on the web page loading process, due to its
dynamic content nature and its distributed location. For this
purpose, the hostnames of all TCP connections registered by
WPT are extracted and compared with EasyList, one of the
largest online databases registering the hostnames belonging
to online advertisement companies [47]. Originally designed
for Adblock applications, the EasyList filter lists are sets of
rules that automatically remove unwanted content from web
browsing sessions, including adverts, banners and trackers.
The obtained dataset consists of about 3,000 individual tests,
each one described by a test id, the corresponding web page
URL, the broad set of WPT S-KPIs, and the number of exter-
nal TCP connections belonging to advertisement domains.

B. FEATURES AND CLUSTERING APPROACH
As the goal of WebCLUST is to identify web page classes
based on content properties, we base the characterization of
each web page and the clustering of pages on a small and
tractable set of S-KPIs describing its core components. In par-
ticular, we consider eight MIME-type content-breakdown
descriptors, as well as a the number of external contents and
third-party resources embedded in the page, the latter reflect-
ing how complex and distributed the page content is. Table 1
summarizes the set of features or web page descriptors used
in the clustering step, which are described next.

TABLE 1. WebCLUST web page features/S-KPIs for clustering.

Content breakdown shows the total data volume (bytes)
downloaded in a fully loaded page, broken down by MIME
type, expressed in relative terms (percentage of total down-
loaded bytes). It consists of eight S-KPIs indicating the
specific content type: Image, JS (JavaScript), HTML, Font,
CSS, Flash, Video, and Other. Image denotes image objects,
JS denotes code to create dynamic web interactivity, HTML
corresponds to HTML resources, Font denotes resources to
modify the size, color, or font of the text, CSS denotes
cascading style sheets resources to control the appearance of
documents, Flash denotes Flash resources used for animation,
Video denotes video sequences, and Other denotes all other
content types.

Connections (CNX) corresponds to the number of TCP
sockets opened with support subdomains to download
embedded objects until the page is fully downloaded.

To characterize the resulting clusters and to assess
their associated Web QoE, we additionally take seven

S-KPIs linked to time-based loading performance and char-
acterization of embedded contents, shown in Table 2 and
described as follows:

TABLE 2. WebCLUST web performance/QoE characterization features.

Start Render (SR) is the time elapsed from the page
request until the first non-white content is painted in the
browser display. In other words, how long the user waits
before seeing any part of the page.

First Interactive (FI) is the time elapsed from the page
request until the page is responsive to user interaction [45].

Speed Index (SI) is an aggregate metric representing the
average time at which visible parts of the page are displayed
in the viewport [21]. Different from instant-like metrics
(SR, FI, PLT, etc.), the SI considers the whole visual progress
of the page loading, measuring how quickly the page contents
are visually populated.

Fully Loaded Time (FLT) is the time elapsed from the
page request until 2 seconds of no network activity after
the document complete event, which generally corresponds
to the time when all of the static page content has loaded.

Fully Loaded Bytes (FLB) is the total data volume down-
loaded until the page is fully loaded.

Advertisement Domains (ADs) is the number of
TCP connections to advertisement domains, according to
EasyList [47].

Advertisement Domain Bytes (ADB) is the total data
volume downloaded for all advertisement domains ADs.

The group discovery is done through the well-known
k-means algorithm [48], [49]. k-means is a partitioning-based
algorithm that assigns samples to a fixed number of disjoint
clusters k , based on their similarities. Each cluster is repre-
sented by a centroid. The algorithm starts by randomly select-
ing k samples within the dataset as initial centroids. Then,
k clusters are formed by associating every sample of the
dataset to the nearest centroid, according to some distance
criterion (e.g., Euclidean distance, Hamming distance, etc.).
Centroids are recomputed after all samples have been
assigned to one of the k clusters. This process is repeated until
a convergence criterion is met; in particular, as the goal of
k-means is to find centroids that minimize their intra-cluster
variance, the standard stopping criterion corresponds to the
total sum of squared distances from each sample to its cor-
responding cluster centroid (referred to as WSST reaching a
value below a certain threshold). If we define WSS(j) as the
intra-cluster sum of squared distances to cluster centroid cj,
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thenWSST can be expressed as:

WSST =
k∑
j=1

WSS(j) =
k∑
j=1

∑
xi∈ j

|cj − xi|2, (1)

where j is the cluster index (i.e., web pages group), k is
the number of clusters, cj is the centroid of cluster j, i is
the sample index (i.e., a web page), and xi is the feature
representation of sample i (i.e., web page descriptors). The
k-means algorithm assumes normalized data, so that the dif-
ferent dimensions are comparable and have a similar scale.
To this end, the eight web page features/S-KPIs reflecting
the content breakdown are expressed as a ratio to the total
page size, ranging from 0 to 1. In addition, a min-max feature
scaling method is used to normalize the number of connec-
tions CNX [50]. The normalized value of CNX, denoted as
CNXnorm, is computed as:

CNXnorm =
CNX − CNXmin

CNXmax − CNXmin
, (2)

where CNXmax and CNXmin are the maximum and minimum
values of CNX in the dataset, respectively. Min-max nor-
malization is one of the most common and simplest ways
to normalize data. However, min-max scaling might not be
robust with outliers. If this was the case, a standard Z-score
normalization for CNX could be used, but the output might
not be in the range [0,1].

In our specific web page clustering problem, the number
of clusters k is unknown a priori. Therefore, as suggested in
previous work [51], the optimal number of clusters is selected
by comparing the evolution of WSST with the average sil-
houette score, obtained for a growing number of clusters k .
Naturally, WSST decreases with growing values of k
(i.e., when considering a more atomic partitioning of the
data). The silhouette is a structural measure of the similarity
of a clustered sample to other samples in its own cluster
compared to those in other clusters. This measure is com-
monly used to assess the goodness of a clustering technique
by checking that the identified clusters are compact and
separated from each other. In this work, the silhouette score
provides complementary information that is used to select the
optimal number of clusters by visual inspection. The score
ranges from −1 to +1, where a high value indicates that
the sample is well matched to its own cluster and poorly
matched to neighboring clusters. Thus, the higher the aver-
age silhouette score, the better. The best value of k is that
providing a ‘‘reasonably low’’ WSST value (which depends
on the specific application), while maximizing the average
silhouette score. We would explain the notion of ‘‘reasonably
low’’ for our particular problem in the evaluations, but in a
nutshell, when increasing the number of clusters does not
result in further noticeable reductions in WSST , then we
should select the smallest value of k that results in the most
cohesive partitioning, reflected by the silhouette score.

The last step consists of the interpretation of the cluster-
ing results, understanding the commonalities in each group.

For ease of analysis, each group orweb class is characterized
by the median value of its features (share of MIME types
and connections) for the web pages in the corresponding
group. Note that we take median values instead of mean
values, to filter out outliers and provide more robust char-
acterizations. To enrich the characterization and analysis,
we additionally consider themedian values of the loading per-
formance and content features previously defined in Table 2.
Our study exclusively considers features that are intrinsic to
web pages, and independent of the characteristics of the end-
to-end web-browsing system, consisting of the web browser,
the end-device, the network connection and the content dis-
tribution server. Our thesis, and as we show next, is that the
contents of a web page (e.g., images, videos, JavaScript, etc.)
and the number of connections to external subdomains (CNX)
have a direct and strong influence on the user experience
when browsing a web page, in terms of perceived loading
times (e.g., Speed Index).

IV. WebCLUST PERFORMANCE ASSESSMENT
In this section, we study the performance of WebCLUST
through its application to a dataset of desktop web
measurements, collected through the above-described web
measurement platform (cf. Section III-A). We firstly describe
the collected measurements, and then dive into the obtained
results.

A. DATA DESCRIPTION
We collect a first batch of webmeasurements, using a desktop
PC as terminal, emulating a user accessing the aforemen-
tioned top-500 Alexa websites (no browser caching is con-
sidered in this first evaluation). We refer to this dataset as the
PC-First dataset. As explained before, six tests are performed
per web page. Among the 500 web pages initially selected,
53 presented failed S-KPIs values in at least one of the tests.
For the sake of robustness of the analysis, these web pages
were discarded. Thus, the PC-First dataset includes the value
of the selected sixteen S-KPIs (cf. Table 1 and Table 2) for
a total of 447 web pages, where the value of these S-KPIs
for each web page are computed as the median value over
the six test runs. We take the median values to avoid skewed
conclusions (i.e., outliers) due to variable network conditions,
that are out of the control of the measurement platform, as the
websites are hosted at the open Internet.

To get a first glimpse on the data, Figs. 2 and 3 depict
the empirical distributions of the nine clustering features, for
the 447 web pages. As shown in Fig. 2, about 50% of the
web pages have less than 50 connections to external domains;
the number of connections is above 150 for about 10% of
the pages, and may reach up to almost 400 connections,
showing the diversity in page complexity within the dataset.
In terms of downloaded contents, Fig. 3 shows boxplots
for the absolute values of the MIME data-volume contents
(some upper whiskers are not shown for better visualization).
The maximum size of Image, Video, and Others MIME
contents are 21 MB, 186 MB, and 39 MB, respectively.
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FIGURE 2. Distribution of number of connections to external subdomains
(i.e., CNX), for desktop PC browsing without browser caching.

FIGURE 3. MIME content metrics boxplots. Images and JavaScript are the
heaviest components of the top Alexa web pages, showing the richness
of current websites.

Image and JavaScript represent the highest-volume contents,
with a median size of 580 KB and 495 KB, respectively.

B. CLUSTERING RESULTS
The 447web pages are divided into groups by k-means, based
on the number of support subdomains (CNX) and the MIME
content breakdown ratios. To identify the optimal number of
web classes, we follow the approach described in Section III:
we perform ten different clustering tests by changing the
number of clusters k from 1 to 10, evaluating the quality of
each resulting partitioning. For each clustering test, 500 runs
are executed with random initial centroid positions, selected
by the k-means++ seeding scheme [52]. In a nutshell,
k-means++ defines an improved initialization algorithm for
the cluster-centroids, which enhances convergence of the
partitioning. The maximum number of iterations per run is set
to 2000 and the distancemetric is squared Euclidean distance.

The number of groups to identify in a clustering analysis is
rarely known in advance, and the literature provides multiple
approaches to identify the optimal number of clusters in

a data-driven manner. In general terms, the more clusters
identified by an algorithm, the more homogeneous each clus-
ter is (the extreme case is a number of clusters equal to the
number of data points). However, if the number of clusters
is high, then the usefulness of clustering analysis diminishes,
as the interpretation of the obtained clusters becomes more
difficult. There is therefore a trade-off between homogeneity
of the resulting clusters and usefulness of the clustering anal-
ysis, as the number of clusters increases. Fig. 4 shows the
evolution of the total intra-cluster sum of squared distances
to clusters’ centroids,WSST , and the average silhouette score
for increasing number of clusters k . For comparison, values
for each indicator are normalized to their maximum values.
As expected, WSST decreases as k increases, but the amount
of the decrease stagnates for k = 6 onwards. Likewise, the sil-
houette score shows two local maxima at k = 2 and k = 6.
Taking both indicators, a value of k = 6 results in more
compact and cohesive clusters with a bigger inter-cluster sep-
aration. Therefore, the solution splitting the web pages into
six classes or web groups is the one adopted by WebCLUST.
Additionally, we also tested other structural, unsupervised
clustering quality metrics, such as the well-known Rank
Index [53], and even considered density-based evaluation
metrics, such as DBCV (Density-based Clustering Valida-
tion) [54] and CDbw (ComposedDensity validity index) [55].
However, results were comparable to the usage of silhouette
scores, so we kept the latter, which is by far simpler and easier
to understand and interpret.

FIGURE 4. Clustering performance and identification of optimal number
of classes. The silhouette score is highest for k = 2 and k = 6, with the
latter showing a much more compact structure.

To characterize the resulting web classes, Table 3 presents
the values of the sixteen S-KPIs for each of the clusters.
For each S-KPI, the table shows the median value for the
web pages within the corresponding cluster. Again, using
median values provides better results than mean values in
our analysis, given the heterogeneity of web pages (reflected
in Figs. 2 and 3). Probably here where the 95%-percentile
could make more sense, at least when considering the
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TABLE 3. Web classification results for PC-first dataset (desktop PC browsing without browser cache). Cluster attributes correspond to the median values,
for each cluster and for each different dimension.

FIGURE 5. Normalized clustering metrics per group. For the sake of comparison among groups, cluster attributes are normalized, thus median values
are not directly comparable to those reported in Table 3.

QoE-relevant metrics. We still decided to go for the median
because we wanted to reflect the characterization of general
or expected behavior for each web page group. To improve
readability, unless stated otherwise, it should be clear to
the reader that all results presented in the paper correspond
to median values. For ease of analysis, the minimum and
maximum values per column are highlighted in red and green,
respectively. Each of the groups is manually labeled, based
on the most dominant feature (e.g., most downloaded type
of content) in the data points of each cluster. For example,
if image content is the most relevant/most present type of

content in the web pages of a certain cluster, it makes sense to
refer to this cluster as the Images Group. Fig. 5 additionally
shows the normalized features per cluster as boxplots, to ease
the interpretation of the labeling. Note that, here, outliers
(i.e., red crosses) correspond to values which are higher than
(1.5 x 75% percentile). For the sake of comparison among
groups, cluster attributes in Fig. 5 are normalized. Thus
median values are not directly comparable to those reported
in Table 3.
Group 1 is referred to asHTML, group 2 asVideo, group 3

as Images, group 4 as JavaScript (JS), group 5 as CNX,
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FIGURE 6. Web performance and page characteristics for the six web-page groups identified by WebCLUST. Data correspond to desktop measurements,
without using browser caching (first view results). Results report median values per group.

and group 6 as Styled Images (sIMG), the latter based on
the strong images component (about 50% of the content)
and the dominance in CSS as compared to the other groups.
The number of web pages clustered together is also reported,
showing an uneven distribution across groups. For example,
while Images, JS, and sIMG groups have around 130 pages,
Video and CNX groups have a few tens of pages, and the
HTML group only five pages. Again, this points out the
dominance of Images and JS contents in modern web pages,
with more traditional only-HTML pages being marginally
used today, at least within the most popular sites.

For characterization and QoE assessment purposes,
the table also indicates additional content metrics reflect-
ing downloaded volumes and advertisement contents
(FLB, ADs, and ADB), as well as loading-time metrics
(SR, FI, SI, and FLT). To ease interpretation, Fig. 6 depicts
the QoE-related metrics (loading times), along with the
downloaded volume (FLB) and the number of connections to
support domains (CNX). Next, we provide a deeper assess-
ment of each web group. As reference for QoE assessment,
the SI thresholds recommended as target for excellent web
performance vary between 1 second (desktop) and 3 seconds
(mobile), with an overall accepted target around 2 seconds
for good Web QoE [25].

Fig. 6.(a) reports the (median) SI values per group,
which serves as the central Web QoE-relevant metric [25].
The first interesting observation is that, indeed, web
content has a significant impact on Web QoE (recall
that web groups are identified exclusively by content-based
descriptors). There are significant QoE differences among

the different web groups, as reflected by median SI values
varying between around half a second (excellent Web QoE)
and up to 3.5 seconds (average to poorWebQoE) [25]. To bet-
ter understand the influence of web contents on QoE, Fig. 7
reports the (rank) correlation (RC) between Speed Index and
selected content S-KPIs, including FLB, CNX, Images, JS,
and CSS, for all web pages (first column), as well as per
web groups. Content has a moderate, but non-negligible,
correlation to Web QoE, with page size (RC = 0.62), num-
ber of connections (RC = 0.61), and relative image volume
(RC4 = 0.53) as the most relevant content characteristics for
loading performance. While there are particular exceptions
per web page class linked to the different mix of contents,
both FLB and CNX are strong indicators of Web QoE.
As expected, the smaller the page and the less connections
to support domains, the faster the loading and the better the
QoE. As shown in Fig. 6.(a), HTML, JS and sIMGweb pages
present the best Web QoE. Not surprisingly, pages in these
groups are smaller (cf. Fig. 6.(e)) and have less connections
(Fig. 6.(f)). Let us look into the specifics of each web group.
Group 1 (HTML) consists of only five web pages, and it

is characterized by a MIME data type mostly concentrated in
HTML, with few images, JS, and a small number of external
connections. Web pages in this group are simple, lightweight
(FLB = 145 KB), they load very quickly (SI = 0.66 s
and FLT = 0.89 s), and have very few connections to
other domains (CNX = 6), none of which corresponds to
advertisement domains. Some examples of the web pages in
this group include https://godaddy.com and https://friv.com.
As expected, given their simplicity and low volumes, web
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FIGURE 7. Rank correlation between Speed Index and selected content
S-KPIs, including FLB, CNX, Images, JS, and CSS, for all web pages (first
column), as well as per web group.

pages in the HTML group have the best loading performance
and best QoE-related indicators as compared to the other
groups. Note for example that SR, FI, and SI values are
basically the same, meaning that this class of pages immedi-
ately displays fully above the fold once the content has been
rendered. The median value for FI is slightly smaller than for
SR, which in theory should not be the case (i.e., SR ≤ FI ≤
SI ≤ FLT). As the measurement tool WPT has a reported
reduced precision to measure FI values below one second,
so we can consider them as equal.

Group 2 (Video), with 20 web pages, comprises sites
using video content. These web pages are the heaviest,
with a median size FLB = 5716 KB. They have the sec-
ond highest number of connections to other subdomains
(CNX = 84), a few of them corresponding to advertisement
domains (ADs = 9), and a significantly high loading time
(FLT = 7.76 s). They show reasonably good SR = 1.50 s and
FI = 1.79 s starting loading times, but their median Speed
Index has the second worst value SI = 3.10 s in the dataset,
probably due the high volumes of downloaded content, and
from advertisement domains (ADB = 128 KB, the second
highest value). Some examples of web pages in this group
include https://netflix.com and https://youtube.com.

Group 3 (Images) consists of 123 web pages where
images prevail. Images are compressed resources (JPEG,
GIF, and PNG are the standard file formats) downloaded
from different servers and inserted into the HTML web
page code. Some examples are https://mercadolibre.com.ar
and https://amazon.com. This group includes relatively heav-
ier web pages with less connections to other domains
(CNX = 45), very few corresponding to advertisement
domains (ADs = 2). Regarding QoE-related indicators,
the SR time is usually higher than in the other groups, prob-
ably linked not only to the larger content volumes, but also
due to the image decompression process which has to be
done at the browser side during rendering. The SI is high
(about 3 seconds) and comparable to the video web pages.

While images take between 2 to 3 seconds to appear on the
screen, the fully loading time is rather high, taking about
5 seconds for the process to conclude.

Group 4 (JS) comprises 143 web pages with a highly
dominant percentage of JS content. JS code is inserted into
HTML to instruct the browser to execute actions for dynamic
and interactive pages. Examples of pages in this group are
https://twitter.com and https://pixnet.net. This group presents
very good QoE indicators and is ranked second in terms of
web performance (below the HTML group), probably due
to the relatively lightweight content and the small number
of connections to other subdomains (CNX = 30). Even if
FLT = 3.5 s, the user can notice screen activity after only
SR = 1.35 s, and see the visible contents before 2 seconds.
Group 5 (CNX), with 32 web pages, contains highly con-

nected sites with a large number of connections to other
domains. It is worth noting that many of these external con-
nections correspond to advertisement domains (ADs = 25).
Webs with embedded advertisements are often designed as
dynamic pages, and their content is generated on the fly by
the server, depending on the specific user and time (e.g., due
to targeted advertisement). This might explain the extremely
high loading times, with FLT = 13.09 s, almost 15 times
higher than the HTML group. CNX web pages undergo
the worst QoE of all groups, with a SI value higher than
3.5 seconds. Web pages in the CNX group have also an
important fraction of their contents as Images and JS, sug-
gesting a more complex page structure, that combined with
the high number of external connections, slows down the page
loading process. Examples of web pages in this group are
https://speedtest.net and https://accuweather.com.

Finally, group 6 (sIMG) consists of 124 web pages
where Images and CSS files have considerable size.
CSS files are used to describe the style of the website
(e.g., the layout and variations for different devices or screen
sizes). Pages in this group also stand out because they con-
tain JS and Font files. All these features justify the name
of the group, styled images. Examples of pages in this
group include https://foxnews.com and https://wikipedia.org.
The sIMG group contains rather lightweight web pages
(FLB = 1838 KB), and their loading performance is com-
parable or slightly better than for those in the Images
group, which have a bigger size (FLB = 2551 KB), but
a smaller number of connections to other subdomains
(CNX = 45 vs. CNX = 65). Interestingly, while the
SR time is lower than for the Images group, it takes longer to
achieve interactivity status, due to the more complex content
processing and rendering. Indeed, websites having HTML,
CSS, and JS contents usually have a slower rendering process,
due to the time spent by the browser engine to decode and
arrange the contents in the so-called render tree [56].

V. WebCLUST FOR MULTI-DEVICE AND CACHING
We devote the last part of the study to understand the impact
of the browsing technology used at the end terminal on
the page grouping and characterization through WebCLUST.
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In particular, we focus on (i) the impact of the device type
(i.e.,. mobile browsing with a smartphone), and (ii) the
impact of in-browser caching. In both cases, the volume of
data downloaded during a web session reduces as compared
to the baseline scenario (i.e., desktop PC browsing with-
out caching). Indeed, smartphone terminals often access a
simpler version of web pages, optimized to their smaller
screen size and usability, while enabling in-browser caching
reduces the number of downloaded static contents, such as
images.

To this end, three additional datasets are generated, follow-
ing the same methodology and targeting the same web pages
explored in the PC-First dataset. These datasets include the
PC-Repeat dataset, which corresponds to the activation of
in-browser caching in the desktop PCweb browsingmeasure-
ments (repeat view results in WPT), and two datasets using
a smartphone as end-device, considering either the results
from the first visit to the pages (Mobile-First dataset), or the
usage of in-browser caching (Mobile-Repeat dataset). The
particular question we try to answer is how the web page
groups identified by WebCLUST in the baseline scenario
vary when relying on caching and/or mobile browsing. For
doing so, we now pose the WebCLUST analysis as a classifi-
cation problem, where we take the six web groups identified
by WebCLUST in the PC-First dataset as the classes, and the
distance to their centroids as classification rule, to construct
a minimum-distance classifier. In a nutshell, given a web
page i to classify, we assign it to group ID j = 1..6 such
that

ID(wi) = argmin
j=1..6

d
(
wi, cbaselinej

)
, (3)

where wi is a vector with the median values of the nine
clustering S-KPIs (cf. Table 1) across the six tests performed
per web page i (cf. Section IV-A), and cbaselinej corresponds
to the centroid of group j, as identified by WebCLUST in the
baseline (i.e., using the PC-First dataset).

Table 4 shows the classification results obtained in the dif-
ferent datasets with thisminimum-distance classifier, in terms
of number of web pages assigned to each group. As a first
general observation (and as expected), note how in-browser
caching (i.e., PC-Repeat and Mobile-Repeat) makes a major
share of the web pages to be shifted from Images, JS and
sIMG groups to HTML group. The change of device type has
also and impact as compared to the baseline, but shifts are less
relevant, with a decrease in the number of pages in the Video
and CNX groups, and an increase in the JS group size. To bet-
ter understand these changes, we break down cluster shifts as
compared to the baseline through ConfusionMatrices (CMs).
CMs are used in general classification problems to visualize
the performance of a classifier as compared to the ground
truth. Here we use them slightly differently, as the target is
to understand how web pages are re-assigned to the different
web classes when using caching and/or mobile browsing,
using the baseline partitioning as reference or ground truth.
Discussion is presented next.

TABLE 4. Number of websites per group for the four different datasets,
using the PC-first dataset as baseline for centroids’ computation, and a
minimum-distance classifier to assign web pages to groups.

1) IMPACT OF IN-BROWSER CACHING FOR DESKTOP PC
In-browser caching happens by default in every browsing
session, to accelerate the loading of a page in future visits.
Static contents are prone to caching, including images, files,
and even scripts that are stored in the browser’s cache the
first time a website is visited (or updated in subsequent visits,
upon content expiration). In-browser caching makes subse-
quent page loading sessions faster, as the overall volumes to
download are smaller. Fig. 8 shows the empirical distribution
of the Fully Loaded Bytes (FLB) for the first visit (PC-First)
and the repeated visit (PC-Repeat) of the targeted web pages.
As expected, there is a significant reduction in the FLB values
when relying on cached contents. For example, while more
than 70% of the pages have a FLB value above 1 MB for
non-cached contents, this fraction drops to only 15% of the
pages when using caching.

FIGURE 8. Distribution of FLB for a desktop PC browser with and without
caching (first page visit vs. second page visit in WPT).

To understand the changes in web page groups compared to
the baseline, Table 5 presents the CMobtainedwhen applying
the minimum-distance classifier (3) to the PC-Repeat dataset.
An important fraction of web pages under caching-based
browsing are now classified as HTML, as static contents
(mostly images and JS contents) are no longer part of
the loading process. In fact, now nearly half of the pages
(200/447) are classified as HTML according to the baseline,
whereas only six pages were in this category in the PC-First
results.
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TABLE 5. Confusion matrix showing re-assignation of web pages to web groups for the PC-Repeat dataset (caching).

Overall, four out of the six groups mostly move to
HTML due to the changes in contents’ distribution real-
ized by caching. Video and CNX groups remain more sta-
ble, as either contents in both groups are less prone to
local caching (e.g., video and other dynamic contents, such
as ADs), or their structure is more independent from caching
(e.g., number of support domains).

2) IMPACT OF MOBILE BROWSING
To evaluate the changes with respect to the baseline when
browsing the web pages in a mobile device, we consider
both the non-caching, first visit (Mobile-First) scenario and
the caching, repeated visit (Mobile-Repeat) scenario. Fig. 9
shows the empirical distribution of the FLB values for the
desktop PC and mobile scenarios, with and without caching.
Even if FLB values are higher for web pages browsed in desk-
top PC, the trend is very similar on both device types when
moving from non-caching to caching, and downloaded bytes
become very similar when using caching for both device
types.

Table 6 shows the CM obtained for the Mobile-First
dataset. The CM is mostly a diagonal matrix, as the number
and distribution of web pages along web groups remains
prettymuch the same. Indeed, web pagesmostly belong to the
same groups for both device types. The noticeable exception
is the CNX group, where almost two thirds of the pages are
now assigned to other groups, with half of those assigned to
the sIMG group. A closer analysis reveals that the 11 web
pages re-assigned to sIMG actually reduce the number of
connections to external subdomains by 34% as compared to
the PC-First dataset.

Similarly, Table 7 shows the CM obtained for the
Mobile-Repeat dataset, where in-browser caching is activated
in the mobile device. Results are close to those obtained
for the in-browser caching on desktop PC, with a strong
re-assignment of web pages from the Images, JS, and sIMG
groups to the HTML group. The variation in the CNX group
is again rather different in mobile, with a stronger shift from
CNX to HTML as compared to the desktop PC browsing
scenario.

3) IMPACT OF IN-BROWSER CACHING AND MOBILE
BROWSING ON WEB PERFORMANCE
How does caching and mobile browsing impact web perfor-
mance and QoE? This is the final aspect we study. To this

FIGURE 9. Distribution of FLB for desktop PC and mobile browser with
and without caching (first page visit vs. second page visit in WPT).

end, similarly to Fig. 6, we compare the QoE-related metrics
(loading times), along with the downloaded volume (FLB)
and the number of connections to support domains (CNX),
among the PC-First (baseline), the PC-Repeat (caching), and
the Mobile-First (mobile browsing) datasets, for the web
groups previously identified, using the minimum-distance
classifier (3). Fig. 10 depicts the results, corresponding to
median values per group. It is worth noting that the set of web
pages in each group is not the same for the different datasets
and classes (cf. Table 4), which should be considered in the
analysis.

In-browser caching has a significant impact on Web
QoE, as reflected by the reduction on all the page load-
ing time metrics. Fig. 10.(b) shows the SR, which is the
time for something to appear in the screen. As expected,
in-browser caching reduces this time considerably, espe-
cially for Images, sIMG, and CNX, with a SR about 20%
faster. This is due to the reduction of downloaded data,
as depicted in Fig. 10.(e). These three groups reduce the
size of their web pages by more than 80%. This is also
the main reason for the strong shift of web pages to the
HTML group (cf. Table 4). As a consequence of this shift, all
loading time metrics for the HTML group actually increase
for the caching scenario (PC-Repeat); in fact, the HTML
group in PC-Repeat contains 200 web pages, as compared
to the 5 pages in the HTML group for PC-First, which

123884 VOLUME 9, 2021



L. R. Jiménez et al.: Content Matters: Clustering Web Pages for QoE Analysis With WebCLUST

TABLE 6. Confusion matrix showing re-assignation of web pages to web groups for the Mobile-First dataset (mobile browsing).

TABLE 7. Confusion matrix showing re-assignation of web pages to web groups for the Mobile-Repeat dataset (mobile browsing + caching).

FIGURE 10. Impact of in-browser caching (PC-Repeat) and mobile browsing (Mobile-First) on web performance indicators. Results correspond to
median values per group. In-browser caching has a strong impact on the Web QoE, as reflected by the reduction on the Speed Index metric.

significantly increases the heterogeneity of the group, with
an impact in the median performance values. Note also how
the median number of connections significantly increases
for this group, changing from 6 to 28 (cf. Fig. 10.(f)),
which has a direct connection to the worse performance,
as noted by the correlations shown in Fig. 7. When it comes

to the mobile browsing scenario, there are no significant
observable differences in terms of SR times, with the only
exception of the CNX group, where the SR increases by
about 12%.

Fig. 10.(c) depicts the FI, which is the time for the website
to be interactive for the first time. In this case, the mobile
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browsing consistently shows better performance than desktop
PC, most probably due to the smaller page sizes, as reflected
in Fig. 9. Interestingly, in-browser caching does not always
result in an advantage for the FI compared to the non-caching
browsing, as observed for example in the JS group.

Fig. 10.(a) shows the SI, which reflects the average time
for the visible part of the page to complete. In-browser
caching improves the SI due to smaller data sizes to down-
load, with reductions ranging from 2.5% in JS to about 25%
in Images/sIMG. Mobile browsing also performs slightly
better than desktop PC, with reductions of more than 10%
in the SI for Images, sIMG, and Video groups. However,
for those groups where the number of connections actually
increases (JS and CNX, cf. Fig. 10.(f)), desktop PC outper-
forms mobile, but the differences are limited.

Finally, Fig. 10.(d) shows the FLT, representing the end of
network activity when downloading the web page. Caching
shows significant improvements for the CNX and sIMG
groups, but there are no noticeable differences for the rest
of the groups. When considering mobile browsing, the only
noticeable difference in FLT happens for the Video group,
which is surprising given the increase in the FLB values
for the Video group in mobile (cf. Fig. 10.(f)). Again here,
the number of connections seems to play an important
role.

VI. CONCLUDING REMARKS
The type and distribution of contents of a web page play a key
role on the QoE perceived by the user. We have introduced
WebCLUST, an unsupervised web characterization approach
to group web pages based on content features affecting the
QoE as perceived by the end-user. The classification method
relies on clustering techniques, using as input the MIME
content breakdown of a web page and its TCP connections
to external subdomains. Through WebCLUST, we have iden-
tified six different families of web pages in the top-500, most
popular web pages of the Internet.

Our analysis has shown that the different web groups
or families of web pages identified by WebCLUST realize
significant different end-user experience in terms of loading
times. Indeed, we found significant QoE differences among
the different web groups, as reflected by median Speed Index
values varying between around half a second (excellent Web
QoE) and up to 3.5 seconds (average to poor Web QoE) [25].

We have also studied the influence of in-browser caching
and browsing device type, both in the identification of
web groups through WebCLUST, as well as in the asso-
ciated web group QoE. In-browser caching improves Web
QoE, mainly driven by the reduced volume of data to be
downloaded; caching speeds up the page rendering process
and reduces the time to page interactivity, especially for
those web pages with strong CSS and images contents, and
for those with a larger number of connections to external
resources.Mobile browsing has a less relevant impact, mostly
improving loading times and QoE for web pages with video
contents.

The identification of families of web pages realizing
markedly different Web QoE opens the door to better Web
QoE modeling and monitoring approaches, as more targeted
(per class) yet generic enough (not single-page oriented, but
class oriented) Web QoE models could be constructed inde-
pendently for each of the web page families. Future work
will consider the development of parametric QoE models
to estimate web performance from high-level network-layer
metrics, specifically designed for the different types of web
pages.
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