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ABSTRACT As the amount of data increases, it is more likely that the assumptions in the existing economic
analysis model are unsatisfied or make it difficult to establish a new analysis model. Therefore, there has
been increased demand for applying the machine learning methodology to bankruptcy prediction due to its
high performance. By contrast, machine learning models usually operate as black-boxes but credit rating
regulatory systems require the provisioning of appropriate information regarding credit rating standards.
If machine learning models have sufficient interpretablility, they would have the potential to be used
as effective analytical models in bankruptcy prediction. From this aspect, we study the explainability of
machine learning models for bankruptcy prediction by applying the Local Interpretable Model-Agnostic
Explanations (LIME) algorithm, which measures the feature importance for each data point. To compare
how the feature importance measured through LIME differs from that of models themselves, we first
applied this algorithm to typical tree-based models that have ability to measure the feature importance of the
models themselves. We showed that the feature importance measured through LIME could be a consistent
generalization of the feature importance measured by tree-based models themselves. Moreover, we study the
consistency of the feature importance through the model’s predicted bankruptcy probability, which suggests
the possibility that observations of important features can be used as a basis for the fair treatment of loan
eligibility requirements.

INDEX TERMS Bankruptcy prediction, machine learning, explainable AI, feature importance.

I. INTRODUCTION
Owing to the importance in measuring corporate solvency,
bankruptcy prediction has been a widely studied topic in
the field of finance and economics [1], [2]. The bankruptcy
prediction model, which predicts whether a company will go
bankrupt, must meet two main requirements, high accuracy,
and interpretability [3]. Because it is important to creditors,
investors, and banks, a clear interpretation of the results is a
key aspect in determining whether the model is usable in the
industry.

During the early stage, researchers mainly focused on
a small number of features and the statistical models. For
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instance, Altman [4] and Altman et al. [5] used a multiple
discriminant analysis, and Ohlson [6] created a model based
on a logistic approach. With an increase in the number of
available features (e.g., financial ratios), a clear interpretation
issue has arisen. In general, a small number of indepen-
dent variables and a simple model were required for a clear
interpretation of the model. As a consequence, many studies
attempting to select the most relevant features and model the
bankruptcy based upon the selected features and a simple
statistical model have been reported [7]–[11]. Another way
to deal with large numbers of features is to apply machine
learning algorithms [3], [12]–[15]. These two branches,
namely, feature selection based approach and machine
learning based approach both have their own pros and
cons.
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Feature selection based methods are easily interpretable
because they use a few number of variables that are cho-
sen as relevant to a bankruptcy prediction. Feature selection
based methods usually rely on a simple predictive model,
such as a simple multivariate function. However, compared
to the machine-learning based models, the accuracy is much
lower. By contrast, although the machine-learning based
methods attain a higher accuracy, such models are too com-
plex to be clearly interpreted. Recently, Son et al. [3] sug-
gested a way to overcome the lack of interpretability of
the machine-learning based approaches by leveraging feature
importance techniques for boosting tree models [16], [17].
This study enables one to interpret the results of an extremely
complicated bankruptcy prediction model, but their result
remains a model-wise interpretation.

There is one clear limitation of the model-wise interpre-
tation. It is impossible to track the important features com-
pany by company in a model-wise interpretation scenario.
Therefore, as a good alternative, instance-wise interpretation
has been spotlighted in the machine learning community.
Although there are many studies regarding the interpretability
of machine learning algorithms (e.g., [18]–[20]), we focus
on an instance-wise local interpretation method. In the
previous work of Ribeiro et al. [21], the authors pro-
posed a local interpretation method called local interpretable
model-agnostic explanations (LIME). LIME can generate
an instance-wise explainable prediction of any classifier by
learning a locally interpretable model. Compared to gen-
eral sensitivity analysis explaining the models themselves,
LIME has an advantage in that it gives an explanation for each
data point.

In this study by leveraging the advantage of LIME,
we propose a novel, highly accurate, and instance-wise inter-
pretable bankruptcy prediction model. The proposed model
meets the two aforementioned requirements of high accuracy
and interpretability. The experiment results show that the
instance-wise interpretation of a LightGBM (or XGBoost)
based bankruptcy prediction model is mostly consistent
with the model-wise interpretation, which implies that the
instance-wise interpretation is reliable. We also empirically
show that instance-wise feature importance is more robust
along with the predicted probability when equipped with
the LightGBM-based model than with the XGBoost-based
approach. Moreover, the experiments show that the important
feature distribution is similar in the training and testing data,
which implies that our instance-wise interpretation is robust
to a random splitting of the data.

The rest of this paper is organized as follows. In section II,
we provide information regarding the data we used.
In section III and IV, we briefly introduce the tools we
used in our experiment, including LIME. In section V,
we present the methodology how we preprocessed our data.
In section VI, we present results and a comparison between
instance and model-wise interpretations. In section VII,
we present the some concluding remarks regarding this
research.

Themain contribution of our work comprises the following
items.

1) For bankruptcy prediction problem, it is important to
provide a reason for the judgment. By demonstrat-
ing that the method by which tree-based models mea-
sure feature importance in a model-wise manner can
be sufficiently reproduced using LIME on bankruptcy
dataset, we showed the possibility that the feature
importance can be meaningfully extracted by using
LIME on other models that do not have the ability
to measure feature importance themselves but perform
better.

2) Since credit regulatory systems require the provi-
sion of appropriate information on credit rating stan-
dards, we empirically showed that a model with a
relatively high consistency in the selection of fea-
ture importance can be chosen by applying the
LIME method to black-box models such as XGB
and LightGBM.

II. DATA
A. DATA DESCRIPTION
In this study, we used data on Korean companies ranging
from 2009 to 2015, provided by the Douzone Bizon ICT
Group, which services enterprise resource planning (ERP)
and accounting service tools. The data to be analyzed include
accounting information of not only corporate but also indi-
vidual businesses. As for the composition ratio, corporations
account for 61.9% and private enterprises account for 38.1%.
The number of data increased from 81 in 2009 to 196,611
in 2015, which is a result of the increase in the number of
customers using the Douzone Bizon ERP service. We use
the financial ratios gathered from the Douzone data for the
features. In this paper, we classified our data into two groups,
namely, corporations and private enterprises, but, when train-
ing our models, we divided the data on the corporations
into two sub-groups, namely, medium or large corporations,
and small corporations to achieve a high performance. The
medium or large corporations and small corporations were
segmented into increments of 2 billion won (Korean cur-
rency) in sales. Details are given in Table 1.

B. FEATURE DESCRIPTION
There are 110 features, 6 of which are categorical features,
labeled type_1, type_2, type_3, type_4, type_5, and type_6,
respectively. These features have values of zero or 1, indi-
cating whether a company’s business is of the corresponding
type. Among the given features, important features used in
previous studies related to bankruptcy prediction, such as [4],
[5], or [6] are included. Of the 110 features used in our
study, 28 use information from a study by Lee and Kim [28],
which systematically arranged suitable features based on a
study on the bankruptcy characteristics of Korean companies.
A comparison of the relation between the features we used
and the features of other previously analyzed papers is given
in Table 2.
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TABLE 1. Ratio of bankrupt companies by year for 2009-2015.

TABLE 2. Summary of the features reported in previous bankruptcy prediction studies.

III. LIME
LIME is a method for trying to interpret a given black-box
model locally through linearization. As the basic idea here,
if we need a trained model f to be explained at an
instance x, we approximate this model f within the region
near x by another relatively simple and explainable model g.
We describe this method briefly in this section, the general
procedure of which is drawn in Figure 1.

A. NOTATION
Definition 1: Let z1, · · · , zn ∈ Rd be the inputs and

y1, · · · , yn ∈ {0, 1} be the corresponding targets, and define
X := {z1, · · · , zn} and D := {(z1, y1), · · · , (zn, yn)}. That is,
we are considering a binary classification problem.
Definition 2: Let f be a trained black-box model for the

dataset D and g be a simple and explainable model.
Definition 3: If an input zi is given, we set the prox-

imity metric πzi (zk ) to be a bounded metric between zi
and zk . One such candidate of bounded metric would be

the Gaussian radial basis function e−
||zi−zk ||

2

σ in which σ is
a hyperparameter.

B. LOCAL APPROXIMATION
First, X is discretized into bins using a method such as
quantile discretization. Let x1 ∈ X be an instance we are
considering, and its discretization be denoted by x ′1. Then,
with respect to the bin weight, x ′2, · · · , x

′

l+1 are sampled and
undiscretized to x2, · · · , xl+1 using a method such as sam-
pling from truncated normal distributions. Now, we create an
(l + 1)× d matrix T in the following way.
• Fill in the first row to be 1s, representing x ′1.
• For each 2 ≤ i ≤ l + 1 and 1 ≤ j ≤ d , if features x ′i and
x ′1 of j are contained in the same bin, we set Ti,j := 1;
otherwise, we set Ti,j := 0.

This procedure can be regarded as selecting points
x2, · · · , xl+1 near x1. After creating the matrix T , we train g
for the data set {(T1,·, f (x1)), · · · , (Tl+1,·, f (xl+1))} with the
sample weight πx1 (xi). This entire procedure can be regarded
as locally approximating f near x1 by g, which is our desire.

C. MEASURING FEATURE IMPORTANCE
Among the various choices for g, we choose to use the
mixture of a lasso and ridge regression, which is the method
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FIGURE 1. The general procedure of LIME. When we want to analyze how our trained black-box model f predicts for the input x , we first discretize our
dataset according to its statistics, and thus each feature of x is classified into the corresponding bin. For example, if the first feature, namely, feature1,
of our dataset ranges from 300 to 500, and if we discretize it by quantiles, the feature values ranging from 300 to 350 would be classified into the first
bin. Because the first feature of x is 342, its first feature is classified as bin number 1. After we discretize each feature, we sample z ′

i s based on the
statistics of the bins. For example, if there are twice as many instances having the first feature classified into bin 1 than instances having the first feature
classified into bin 2, when z ′

i is sampled, it is twice more likely to be its first feature sampled as 1 than 2. These discretized samples are then
undiscretized using truncated normal, and f predicts the output probability. The matrix T is then created in the way we described above, such T can be
regarded as we are localizing our sampled data near x ′ . We then train a simple explainable model g with domain T and target the predicted probability.

applied by Ribeiro et al. [21]. First, to lower the model
complexity of g, a feature selection was applied. The number
of selected features is called the ‘‘length of explanation.’’ In
detail, if we set the length of explanation K , we first use a
lasso regression in place of g and train it to select the top
K important features. Let T̃ (∈ R(l+1)×K ) be the remaining
features of T after eliminating the remaining features. Then,
we use a ridge regression g̃(z) :=

∑K
i=1 wizi + λ||w||

2 to
train the dataset {(T̃1,·, f (x1)), · · · , (T̃l+1,·, f (xl+1))}, where
wi’s are learnable parameters and λ is a hyperparmeter. After
training the model g̃, we regard the higher the value |wj| is,
the more important we regard the corresponding feature.

IV. MODEL DESCRIPTION
A tree-based gradient boosting method is a type of ensem-
ble method, which minimizes the loss sequentially by weak
learners. In detail, for a given dataset D = {(xi, yi)}ni=1
(xi ∈ Rm, yi ∈ R), a tree ensemble model F uses K additive
functions to predict the output.

ŷi = F(xi) =
K∑
k=1

fk (xi) (1)

Algorithm 1 LIME Pseudocode
Require: Classifier f , Number of samples l
Require: Instance x1
Require: Proximity metric πx1 , Length of explanation K
Z ← {}
for i ∈ {2, · · · , l + 1} do

x ′i ← sample around(x ′1)
Z ← Z

⋃
(x ′i , f (xi), πx1 (xi))

end for
w← K -Lasso(Z,K ) F with x ′i as features, f (xi) as target
return w

where fk (x) = wq(x) is a weak learner. Here, q : Rm
→ T

represents the structure of each tree that maps a sample to the
corresponding leaf index, and T denotes the number of leaves
in the tree. Hence, fk (x) represents the leaf weight of the
corresponding leaf index q(x). To learn the set of functions fk ,
we minimize the following loss function:

Loss(F) :=
∑
i

l(ŷi, yi)+
∑
k

�(fk ), (2)

where the first summation is taken over data points and
the second summation is taken over K weak learners
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and l is a differentiable convex loss function and �(fk ) is a
regularization term.

The above loss function includes functions as parameters
and cannot be optimized directly using traditional optimiza-
tion techniques. Instead, the model is trained in an additive
manner. If we write ŷ(t)i as the prediction of the i-th sample
at the t-th iteration, we will need to add ft to minimize the
following objective.

L(t) =
∑
i

l(yi, ŷ
(t)
i + ft (xi))+�(ft ), (3)

where the summation is taken over data points.
Xgboost (XGB) and LightGBM (LGBM) are examples

of tree-based gradient boosting models, although they are
slightly different in the way they grow trees for weak learners.

As described in Figure 2, whereas XGB chooses the
level-wise tree growth algorithm to learn weak learners,
LGBM chooses the leaf-wise tree growth algorithm.

FIGURE 2. (a) Level-wise growth strategy and (b) leaf-wise growth
strategy.

The level-wise tree growth method searches the best pos-
sible node to split, and we split it one level down. This will
result in symmetric trees and trees will be grown horizontally.

The leaf-wise tree growth method searches the leaves,
which will reduce the loss the most, and split this leaf without
bothering the rest of the leaves at the same level. Following
this method, the tree will be grown vertically.

The leaf-wise tree growth method tends to achieve a lower
loss as compared to the level-wise growth method. However,
it tends to be more likely to overfit than the level-wise tree
growth method.

V. METHODOLOGY
A. PREPROCESSING
Raw financial data is usually incomplete and the data dis-
tribution of is complex. As is generally well-known through
experiments [31], [32], data must be standardized tomake our
model stabler and more accurate. Because our data shared the
same problem, we needed a suitable preprocessing process,
and we used the following preprocessing methods.

As indicated in other data analysis studies, raw financial
data are incomplete with missing values and complex data
distributions [3]. Our data also had some missing values.
Among the various methods used for filling in missing val-
ues, we applied a Pearson’s correlation between features
and medians. To simplify the data distribution, a Box-Cox
transformation was used.

1) MISSING VALUES
Out of 110 features, 59 features had missing values. We used
the following methods to fill in these features.

When the Pearson’s correlation ρXY between two random
vectors X and Y is ±1, almost surely Y = aX + b. Using
this fact, for when a feature f1 had a missing value, there
was a feature f2 without a missing value and the Pearson’s
correlation between these two features was≈ ±1, we created
a linear regression model to learn coefficients a, b satisfying
f1 = af2 + b, and then filled in the missing values of f1
using this learned model and f2. Specifically, we used this
filling method for the case when |ρXY | ≥ 0.9. Eight features
with missing values were filled using this method. The rest
of the features with missing values were filled in using their
medians for simplicity.

2) STANDARDIZATION
Although there are various ways to standardize the data,
we exploited the Box-Cox transformations [33] for the
method of normalization because as shown in the previous
work by Son et al. [3], this method greatly reduces the
skew-ness of the data and thus enables the machine learning
models to perform well. Because a Box-Cox transformation
requires inputs to be positive, and some features of our data
have negative values, we shifted each feature by its minimum
value such that every value becomes positive, and we then
applied a Box-Cox transformation.

B. MODELS
Because the purpose of this study is to emphasize the scala-
bility and consistency of an instance-wise feature importance
measurement method LIME, we choose black-box models
that are widely used for measuring the model-wise feature
importance in the machine learning community and com-
pare these model-predicted feature importances with our
results achieved using LIME. Specifically, we used XGBoost
and LightGBM because they are likely the most commonly
used models one uses for measuring the model-wise feature
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TABLE 3. ROC-AUC scores of XGB and LightGBM.

importance and achieve a state of the art performance, partic-
ularly for classification problems [16], [17].

For tuning the hyperparameters, we used a Bayesian
optimization method [34] for XGBoost and a grid-search
cross-validation [35] for LightGBM. Bothmethods have their
own advantages and disadvantages; however this is not the
focus of our paper, and thus we do not go into details of this
herein.

C. ACCURACY
Because our data shows that our classification problem
is imbalanced (only 3% are bankrupt companies overall),
instead of a typical 0-1 loss, we drew the receiver operating
characteristic (ROC) curve, and measured the area under the
curve (AUC) as a metric indicating whether our black-box
model is trained correctly or not.

VI. EMPIRICAL RESULTS
We trained two black-box models XGB and LightGBM
on three different datasets (Medium or Large Corporation,
Small Corporation, and Private Enterprise). The classification
results of each model on each training dataset using a 5-fold
cross validation are given in Table 3. The AUC socres were
sufficiently high, and thus we concluded that our models were
trained well. In our experiment, the performances of the mod-
els in each fold were similar. Hence, we fixed one fold and
trained our models on that fold to compare its ability to select
the feature importance using the LIME approach to measur-
ing the feature importance. The fixed fold data distribution
is briefly described as follows. For medium or large corpora-
tions, among the training set of size 90613, 2266 companies
went bankrupt and among the test set of size 23220, 530 com-
panies went bankrupt. For small corporations, among the
training set of size 177806, 7207 companies went bankrupt
and among the test set of size 44452, 1835 companies went
bankrupt. For private enterprises, among the training set of
size 166609, 3692 companies went bankrupt and among the
test set of size 41653, 937 companies went bankrupt. Having
these trained black-box models, we set the length of expla-
nation K to 20 in our experiment. The higher K we choose,
the lower the interpretability of models. We heuristically
chose K = 20 believing that this is a compromise between
these two.

A. GLOBAL-IMPORTANCE
Although our black-box models measure the feature impor-
tance in a model-wise manner (herein, this is referred

as Model-Global-Importance), LIME measures the feature
importance for each instance. Hence, we need to define a
metric for LIME, which measures the feature importance
globally, to directly compare with the model-wise feature
importance. Among the many candidates, we defined the
global feature importance of a feature indicated by LIME
(herein, this is referred as LIME-Global-Importance) as the
number of companies whose given feature is ranked as the
top-5 most important features by LIME. Indeed, we believe
this is natural to define the global importance in this manner.

1) VALIDITY OF USE OF TEST SET
LIME discretizes the instances and samples based on training
set. Hence, sampling near an instance in the training set and in
the test set basically have the same sampling routine. Hence,
assuming that the data distribution of the training and test
sets are similar, we can expect that LIME-Global-Importance
for the training set and the LIME-Global-Importance for
the test set are similar. In fact, machine learning algorithm
is generally designed under the assumption that the train-
ing and test sets have similar data distributions. Conse-
quently, it does not matter which training set and test set
we choose for measuring LIME-Global-Importance. Indeed,
we tested this for the XGB model, and we obtain affirmative
results (Figure 3).
In practice, the training set is large relative to the test

set, and thus it would take much more time to measure
LIME-Global-Importance for the training set than for the
test set. When this algorithm is implemented for business
purposes, it is recommended to use the test set for measuring
LIME-Global-Importance, which is also supported by our
experiment results.

2) COMPARISON
Because Model-Global-Importance is calculated dur-
ing the training, only the training set affects its the
value. Hence, although it may seem reasonable to mea-
sure LIME-Global-Importance on the training set for
comparison with Model-Global-Importance, following the
justification we made earlier (VI-A1), we measured LIME-
Global-Importance on the test set. If I is the set of top-10most
important features of LIME-Global-Importance and J is
the set of top-10 most important features of Model-Global-
Importance, we define the intersection ratio as follows:

intersection ratio =
|I ∩ J |
10
× 100(%)
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FIGURE 3. The graphs of the left are lime-global-importances measured on the training set, and the graphs of the right are LIME-global-importances
measured on the test set. For each histogram, the top-10 features occur when sorted in order of high LIME-global-importance. It shows that the
top-10 most important features are identical.

FIGURE 4. Global-importance comparison for XGB models. The graphs on the left are model-global-importance measured on the training set, and graphs
on the right are LIME-global-importance measured on the test set. In each histogram on the left side, the top-10 features with the highest
model-global-importance are listed. In each histogram on the right side, the top-10 features with the highest LIME-global-importance are listed.

In our experiment, the intersection ratio ranged from
30% to 70%, as shown in Figures 4 and 5. Of the
110 features, those selected as the top 10 by two different
metrics are consistent with each other, which indicates a
significantly high correlation between two metrics. In con-
clusion, we can state that the method for measuring the
global feature importance using LIME is sort of a generaliza-
tion of customary model-wise feature importance measuring
methods.

B. INSTANCE-WISE FEATURE IMPORTANCE
The LIME algorithm can approximate the feature importance
of any given models in addition to tree-based models such as
XGBoost and LightGBM. Using this property, we propose a
method for verifying the consistency of the feature selection
in the bankruptcy prediction problem.

Given a trained machine learning model estimating the
bankruptcy probability, we analyze the change in feature
importance derived by the LIME according to each section

VOLUME 9, 2021 124893



M. S. Park et al.: Explainability of Machine Learning Models for Bankruptcy Prediction

FIGURE 5. Global-importance comparison for LightGBM models. The graphs on the left are model-global-importance measured on the training set and
graphs on the right are LIME-global-importance measured on the test set. In each histogram on the left side, the top-10 features with the highest
model-global-importance are listed. In each histogram on the right side, the top-10 features with the highest LIME-global-importance are listed.

FIGURE 6. Important feature selection ratio from corporation data: (a) XGB and (b) LightGBM.

of the bankruptcy probability given by the machine learning
model as follows:
Step 1: Apply the LIME algorithm on the trained machine

learning model at each data point.
Step 2: Collect the feature importance measured by the

LIME and the predicted bankruptcy probability
using the trained machine learning model at each
data point.

Step 3: Divide the results in segments according to the
predicted bankruptcy probability, and analyze the
feature importance of data points belonging to a
segment for each segment.

In this paper, we choose the top-20 important features for
each data and divide the results into 10 segments according
to the predicted bankruptcy probability. In each segment,
the ratio of a given feature fi selected as the important feature

is defined by the number of data in a segment having fi as
one of the top-20 important features divided by the number of
data in a segment.

In Figure 6, the ratios of the features selected as the
important features are plotted when LIME is applied on
the trained models XGB and LightGBM for corporation
data. In the two graphs, the points that rise sharply indicate
important features, and both models achieve similar results
in terms of important features such as X78 (cash ratio),
X88 (cash and short-term investments of the current asset),
X104 (growth rate of enrollment), and type_3 (construc-
tion industry). By contrast, in the case of XGB, com-
pared to LightGBM, it seems inconsistent in that it
shows a characteristic in which the important features
change frequently according to the predicted bankruptcy
probability.
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FIGURE 7. Important feature selection ratio from private enterprise data: (a) XGB and (b) LightGBM.

FIGURE 8. Top-20 important features with LightGBM: (a) corporation data and (b) private enterprise data.

Similarly, Figure 7 shows the ratios of the features selected
as important for private enterprise data, and indicates that
both models XGB and LightGBM have similar results in
terms of such features as X6 (growth rate of sale), X69 (raw
materials turnover), X86 (current debt obligation to current
asset) and X104 (growth rate of enrollment) as important.
Morover, it is also similar in that XGB, compared to Light-
GBM, has a characteristic in which the important features
change frequently according to the predicted bankruptcy
probability.

Figure 8 describes the LightGBM results using the bar
graph for each segment of the predicted bankruptcy prob-
ability in proportion to the importance of the features for
corporation and private enterprise data. For corporation data,
it can be seen that features such as X55 (additional paid-in
capital and retained earnings to common stocks), X78, X88,
andX98 (income before income taxes per capita), X102 (days
after establishment), X104, type_3, and type_4 (wholesale
and retail industry) are consistently important features across
the entire segments. By contrast, it can also be seen that the
importance of the features X3 (growth rate of current assets)
and X5 (growth rate of shareholder equity) increase in the
segments P(0.8 < x ≤ 0.9) or P(0.9 < x).

Consequently, we can conclude that, even if a black-box
model is given, the algorithm LIME can be used to
interpret how the model estimates the feature importance.
In the case of problems related to bankruptcy predic-
tion, it has been found that the LightGBM model is
more suitable than the XGB model for consistently cal-
culating the feature importance for predicted bankruptcy
probabilities.

We try to analyze why the feature importance along the
predicted probabilities appears differently depending on the
models. Assume that data with two features and their classi-
fication targets are given, and a smooth model f : R2

→ R
predicting probability is trained on these data. At a fixed
point (a, b), applying LIME is similar to finding the tangent
plane of the surface z = f (x, y) and measuring its coeffi-
cients. Because the tangent plane is given by z = ∂f

∂x (a, b) ·
x + ∂f

∂y (a, b) · y + constant , ∂f
∂x corresponds to the feature

importance of the feature x. Hence, for a given predicted
probability p, the average feature importance of x will be
given by the following:

Feature importance of x =
1
l

∮
p=f (x,y)

∂f
∂x
ds,
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FIGURE 9. Level curves of XGB and LGBM.

where l is the length of the curve p = f (x, y) and the integral
is the line integral of the scalar field ∂f

∂x .
Consequently, we can state that the feature importance

of x of the given predicted probability depend on the shape
of the level curve and partial derivatives of the model. Hence,
when desiring the robustness of the feature importance along
the predicted probabilities, the best scenario is the case when
the level curves all coincide together, which will be the case
when the model is steep at the decision boundary. Because
LGBM is equipped using a leaf-wise tree growth method,
it searches the leaves that will reduce the loss the most,
and split that leaf without bothering the leaves at the same
level. This may result in a narrower decision boundary than
models with a level-wise tree growth method such as XGB.
We compared the two models using various hyperparameters
to solve the problem of fitting the function 1‖x‖1<1 which has
the value 1 on the region ||x||1 < 1 and 0 otherwise, and we
checked that this is indeed the case. One of these experiments
is given in Figure 9, and we can see that the level curves of
LGBM overlap better than the level curves of XGB.

VII. CONCLUSION AND DISCUSSION
By experimenting with representative tree-based models,
XGB and LightGBM, it has been shown that the method
tree-based models measuring feature importance model-wise
manner can be sufficiently reproduced using LIME. Because
LIME is applicable to any model even if the model does
not have the ability to measure feature importance itself,
our experiment shows that a feature importance can be
meaningfully extracted from models such as a neural net.

Based on this, not limited to tree-based models, we expect
that the feature importance can be meaningfully extracted by
using LIME on models that performs better.

Moreover, by comparing the results obtained by apply-
ing LIME on XGB and LightGBM based on the predicted
bankruptcy probabilities of the model, we showed that Light-
GBM is more suitable than XGB for consistently estimating
the feature importance for the predicted bankruptcy proba-
bilities. We believe this result will be useful in practice. For
example, if credit rating results are an important factor in
decidingwhether to approve a loan, the observed values of the
important features will be used as the basis for fair treatment
of loan eligibility requirements.

Even though we did not seriously get into the regression
model, it is a fundamental component of the proposed model.
Instead of a linear regression model, we can employ a linear
neural network to take advantage of the expressive power
of a neural network. However, this may cause slow train-
ing and high computational cost since one needs to train
a linear model for each data point. To address this issue,
one can consider a recently proposed non-iterative training
algorithm. Neural Network with Random Weights (NNRW)
is an algorithm for training a neural network in a non-iterative
way that results in much faster training. We think NNRW
can be combined with our method to build a scalable model
for bankruptcy prediction with model-agnostic explanations.
We leave this as a future work. We refer to the readers two
review papers regarding NNRW [36], [37]. Moreover, instead
of sampling from the entire dataset when constructing linear
regression models, we could use Kullback-Leibler random
sample partition [38] to improve performance and solve the
memory constraints of big data analysis.

When a model is applied to two data points x1 and x2, there
are two cases in which an equity controversy arises. First,
there is a case in which x1 and x2 are not similar but their
predicted probabilities f (x1) and f (x2) are, and second, there
is a case in which x1 and x2 are similar but their predicted
probabilities f (x1) and f (x2) are somewhat different. For the
first case, by comparing the values of the important features
selected in the corresponding segment, including f (x1) and
f (x2), it would be possible to analyze which factor drives
the difference between f (x1) and f (x2). For the second case,
it will be possible to analyze the important features common
to the segment containing f (x1), the segment containing f (x2),
and the other features separately. To summarize, it can be
stated that a model with high consistency in the selection of
important features is highly likely to be applied to areas where
bankruptcy prediction is used.

Douzone Bizon ERP service data are managed for the
filing of tax returns or checking the internal business status
of a company, and not for credit rating purposes. These
include data on small corporations or private enterprises that
are difficult to apply by credit rating companies that target
corporations with significant assets or sales. Moreover, prior
researches related to bankruptcy prediction of these type of
companies have been also insufficient. The advantage of
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TABLE 4. ROC-AUC scores of random forest.

FIGURE 10. Global-importance comparison for random forest models. The graphs on the left are model-global-importance measured on the training set,
and graphs on the right are LIME-global-importance measured on the test set. In each histogram on the left side, the top-10 features with the highest
model-global-importance are listed. In each histogram on the right side, the top-10 features with the highest LIME-global-importance are listed.

using a machine learning methodology is that it is possible
to construct a bankruptcy prediction model with high accu-
racy even for new observation data. As the amount of data
increases, there is an increasingly higher demand for apply-
ing machine learning methodology to bankruptcy prediction
because there is a high possibility that the assumptions in
the existing economic analysis model are not satisfied or it
will be difficult to establish a new analysis model. By con-
trast, credit rating regulatory systems such as Equal Credit
Opportunity Act, Fair Credit Reporting ACT, or European
General Data Protection Regulation require the provision of
appropriate information on credit rating standards. In this
paper, we empirically showed that a model with a relatively
high consistency in the selection of feature importance can be
chosen by applying the LIME method to black-box models
such as XGB and LightGBM. We expect that our research
give some useful insights in selecting a reliable and explain-
able machine learning models for bankruptcy prediction.

Moreover, we believe that corporate governance indicators
in relation to ESG(Environment, Social and Governance),
corporate governance indicators have become very important
features in the financial industry. In the previous work of
Liang et al. [39], the authors assert that the effect of the
corporate governance indicators on bankruptcy prediction
varies from country to country. Hence, it is verymeaningful to
conduct related research on Korean companies. For instance,

Kim [40], recently, finds the evidence from Korea using a
panel dataset for the period of 1991-2001 that largest share-
holder ownership (i.e., ownership concentration) is likely
to act as a corporate governance mechanism in reducing
bankruptcy risk. Since the dataset we have experimented on
does not have any corporate governance indicator feature,
we decide to leave further analysis on the combined dataset
of financial ratios and corporate governance indicators as a
future work.

APPENDIX
A. EXPERIMENTS ON RANDOM FOREST MODELS
We present extra experiments on Random Forest model [41].
The classification results of random forest model on each
training dataset using a 5-fold cross validation are given
in Table 4. Like XGB and LightGBM models, the perfor-
mances of random forest model in each fold were similar.
Hence, we fixed one fold and trained our models on that fold
to compare its ability to select the feature importance using
the LIME approach to measuring the feature importance.

The intersection ratio between Model-Global-Importance
and LIME-Global-Importance ranged from 50% to 60%,
as shown in Figure 10. Hence, this also indicates a high
correlation between two metrics and the scalability of LIME
is additionally supported by this experiment. Even though
the prediction scores of Random Forest models were slightly
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FIGURE 11. Important feature selection ratio for random forest models: (a) corporation data and (b) private enterprise data.

lower than those of XGB and LightGBM, there was no
significant difference in terms of LIME in calculating the
global feature importance. However, it has been found that the
LightGBM model is more suitable than the Random Forest
model for consistently calculating the feature importance for
predicted bankruptcy probabilities as shown in Figure 11.
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[14] M. Ziȩba, S. K. Tomczak, and J. M. Tomczak, ‘‘Ensemble boosted trees
with synthetic features generation in application to bankruptcy prediction,’’
Expert Syst. Appl., vol. 58, pp. 93–101, Oct. 2016.

[15] F. Barboza, H. Kimura, and E. Altman, ‘‘Machine learning models
and bankruptcy prediction,’’ Expert Syst. Appl., vol. 83, pp. 405–417,
Oct. 2017.

[16] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 785–794, doi: 10.1145/2939672.2939785.

[17] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
‘‘LightGBM: A highly efficient gradient boosting decision tree,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2017, pp. 3146–3154.

[18] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, ‘‘A unified
view of gradient-based attribution methods for deep neural networks,’’
in Proc. NIPS Workshop Interpreting (NIPS). Zürich, Switzerland:
ETH Zürich, 2017. [Online]. Available: https://scholar.google.co.kr/
scholar?start=10&hl=en&as_sdt=0,5&cluster=7129422820232184089

[19] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
‘‘Explaining explanations: An overview of interpretability of machine
learning,’’ in Proc. IEEE 5th Int. Conf. Data Sci. Adv. Analytics (DSAA),
Oct. 2018, pp. 80–89.

[20] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, ‘‘Machine learning
interpretability: A survey on methods and metrics,’’ Electronics, vol. 8,
no. 8, p. 832, Jul. 2019.

[21] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should I trust you?’:
Explaining the predictions of any classifier,’’ in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2016, pp. 1135–1144.

[22] J. Nam, ‘‘The determinant of corporate bankruptcy and its prediction
model: Before and after IMF,’’ J. Money Finance, vol. 12, pp. 77–107,
Feb. 1998.

[23] M. Kim, J. Kim, and K. Park, ‘‘A study on financial characteristic of
delisting companies by Kosdaq,’’ Rev. Accounting Policy Stud., vol. 16,
pp. 125–142, Mar. 2011.

[24] Y. I. Bae, S. H. Song, S. K. Hong, and S. Y. Yu, ‘‘The comparative analysis
of financial factors that influence on corporate’s survival and bankruptcy:
Before and after foreign exchange crisis in Korea,’’ IE Interfaces, vol. 21,
no. 4, pp. 385–393, 2008.

[25] J. Park and S. Ahn, ‘‘Corporate bankruptcy prediction using financial
ratios: Focused on the Korean manufacturing companies audited by exter-
nal auditors,’’ Korean Bus. Rev., vol. 43, no. 3, pp. 639–669, 2014.

[26] M. E. Zmijewski, ‘‘Methodological issues related to the estimation
of financial distress prediction models,’’ J. Accounting Res., vol. 22,
pp. 59–82, Jan. 1984.

[27] H. W. Jun, Y. H. Chung, and D. H. Shin, ‘‘A study on the failure prediction
model of delisting firms,’’ Korea Int. Accounting Rev., vol. 38, no. 8,
pp. 331–632, 2011.

[28] I. Lee, ‘‘An evaluation of bankruptcy prediction models using accounting
and market information in Korea,’’ Asian Rev. Financial Res., vol. 28,
pp. 625–665, Aug. 2015.

[29] S. Hong and J. Kang, ‘‘The analysis of bankruptcy prediction model,’’
J. Finance Banking, vol. 5, pp. 83–110, Sep. 1999.

124898 VOLUME 9, 2021

http://dx.doi.org/10.2307/2978933
http://dx.doi.org/10.1145/2939672.2939785


M. S. Park et al.: Explainability of Machine Learning Models for Bankruptcy Prediction

[30] C. Kook, G. Hong, and W. Jeong, ‘‘A comparative study on the per-
formance of credit evaluation models,’’ J. Money Finance, vol. 11,
pp. 67–104, Jul. 2006.

[31] J. Sola and J. Sevilla, ‘‘Importance of input data normalization for the
application of neural networks to complex industrial problems,’’ IEEE
Trans. Nucl. Sci., vol. 44, no. 3, pp. 1464–1468, Jun. 1997.

[32] C. Su, J. Zhan, and K. Sakurai, ‘‘Importance of data standardization
in privacy-preserving K-means clustering,’’ in Database Systems for
Advanced Applications, L. Chen, C. Liu, Q. Liu, and K. Deng, Eds. Berlin,
Germany: Springer, 2009, pp. 276–286.

[33] G. E. Box and D. R. Cox, ‘‘An analysis of transformations,’’ J. Roy. Stat.
Soc., B (Methodol.), vol. 26, no. 2, pp. 211–243, 1964.

[34] J. Snoek, H. Larochelle, and R. P. Adams, ‘‘Practical Bayesian optimiza-
tion of machine learning algorithms,’’ in Proc. Adv. Neural Inf. Process.
Syst., F. Pereira, C. J. C. Burges, L. Bottou, K. Q. Weinberger, Eds.
Red Hook, NY, USA: Curran Associates, 2012, pp. 2951–2959.

[35] R. Kohavi, ‘‘A study of cross-validation and bootstrap for accuracy estima-
tion and model selection,’’ in Proc. IJCAI, vol. 14. Montreal, QC, Canada,
1995, pp. 1137–1145.

[36] W. Cao, X. Wang, Z. Ming, and J. Gao, ‘‘A review on neural networks with
random weights,’’ Neurocomputing, vol. 275, pp. 278–287, Jan. 2018.

[37] X. Wang and W. Cao, ‘‘Non-iterative approaches in training feed-
forward neural networks and their applications,’’ Soft Comput., vol. 23,
pp. 3473–3476, Apr. 2018.

[38] C.Wei, J. Zhang, T. Valiullin,W. Cao, Q.Wang, and H. Long, ‘‘Distributed
and parallel ensemble classification for big data based onKullback–Leibler
random sample partition,’’ in Proc. Int. Conf. Algorithms Archit. Parallel
Process. New York, NY, USA: Springer, 2020, pp. 448–464.

[39] D. Liang, C.-C. Lu, C.-F. Tsai, and G.-A. Shih, ‘‘Financial ratios and cor-
porate governance indicators in bankruptcy prediction: A comprehensive
study,’’ Eur. J. Oper. Res., vol. 252, no. 2, pp. 561–572, Jul. 2016.

[40] J. Kim, ‘‘Determinants of corporate bankruptcy: Evidence from chae-
bol and non-chaebol firms in Korea,’’ Asian Econ. J., vol. 34, no. 3,
pp. 275–300, 2020.

[41] S. Joshi, R. Ramesh, and S. Tahsildar, ‘‘A bankruptcy prediction model
using random forest,’’ in Proc. 2nd Int. Conf. Intell. Comput. Control Syst.
(ICICCS), Jun. 2018, pp. 1–6.

MIN SUE PARK is currently pursuing the Ph.D.
degree with the Department of Mathematics,
POSTECH. His research interests include deep
learning, data analysis, and partial differential
equations.

HWIJAE SON received the Ph.D. degree in math-
ematics from POSTECH, in 2021. He is currently
a Postdoctoral Researcher with the Department
of Mathematics, KAIST. His research interests
include deep learning, data analysis, and partial
differential equations.

CHONGSEOK HYUN received the Ph.D. degree
in financial engineering from Ajou University,
in 2011. He is currently working with BNK Finan-
cial Group Inc. Prior to this, he was a Research
Assistant Professor with Ajou University, from
2010 to 2013, and Korea Housing and Urban
Guarantee Corporation, from 2018 to 2020. His
research interests include risk management and
structured product.

HYUNG JU HWANG received the Ph.D. degree
in mathematics from Brown University, in 2002.
She is currently a Full Professor with the Depart-
ment of Mathematics, POSTECH. Prior to this,
she was a Research Assistant Professor with Duke
University, from 2003 to 2005, and a Postdoctoral
Researcher with Max-Planck Institute, Leipzig,
from 2002 to 2003. She has published more than
65 scientific articles in the fields of applied mathe-
matics and interdisciplinary research. Her research

interests include optimization, deep learning, applied mathematics, partial
differential equations, and data analysis in applied fields.

VOLUME 9, 2021 124899


