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ABSTRACT A computational 3D image generation using a single view with multi-color filter aper-
ture (MCA) and multi-plane representation is a cost-effective approach and most useful when there is no
option to acquire either stereo or multi-views with orientation at all. Although this approach generates 3D
perception image that includes multiple objects with both similar and dissimilar colors having occluded by
each other, it may be insufficient for virtual/augmented reality applications due to inaccurate depth. In this
article, we obtain a more accurate geometric depth estimation by formulating a suitable relationship between
inter-objects depth of the 3D scene in the depth-of-field (DoF) zone and its corresponding inter-image plane
depths of a 3D perception image in depth-of-focus (DoFo) zone of a given camera under shallow DoF zone
constraint. But, this shallow depth zone is configured to be dependent only on the focal distance between the
lens and object while the remaining parameters such as aperture diameter, focal length, and sensor sensitivity
are held at constant values. All-in-focus 3D perception image is synthesized frommulti-plane images (MPIs)
by utilizing the inter-image plane depths computed from the disparities caused across the boundaries and
its smooth surface from image textures inside the respective boundaries of the 2D MCA image. The 2.1D
sketch is used as a semantic segmentation technique to determine the number of objects in the 3D scene as
one in-focus region and the rest as out-of-focus regions due to the circle of confusions (CoCs) on the fixed
image sensor plane. The same enables both ordering of the image regions and identifying occlusion wherever
applicable. An accurate depth 3D image is synthesized, replacing accurate inter-depths in place of inter-depth
between MPIs used for 3D perception image. In the end, the paper summarizes few experimental validations
for the proposed approach with some salient examples having depth gaps between 0.5cm to 10.5cm.

INDEX TERMS 2D object plane, 2D image sensor plane, 2.1D Sketch, 3D perception image, 3D virtual
object, accurate depth, computational 3D imaging, depth of field, depth of focus, disparity, multi-color filter
aperture (MCA), multi-region image (MRI), multi-plane image (MPI).

I. INTRODUCTION
All in-focus 3D image generation having accurate depths is
an essential need in many computer vision-based applications
for getting crucial details regarding the 3D scene. In this
article, we mean all-in-focus image as approximately com-
putable such that every pixel in this image is in focus. Creat-
ing a virtual 3D object or 3D image synthesis is essential for
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any virtual/mixed reality applications, especially for medical
diagnosis and surgical training appliances. Any conventional
optical imaging camera system that is used for visible light
intensity imaging, a real-world 3D scene or 3D object typi-
cally comprises of three intrinsic components, namely, (i) 3D
object space, (ii) image space, and (iii) optical imaging sys-
tem [1]. Among the various known optical imaging systems
that use various ranges of electromagnetic rays, we consider
only visible spectral light rays based on the photographic
system. Moreover, the optical image sensors used in the
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image space in most digital imaging systems would be either
CMOS or CCD sensors, which are typically 2D in nature
for capturing the image of any 3D object, which may be
due to a low-cost compulsion. The method of recovering
the depth information to represent a 3D image needs some
tricky ways to project the irradiant rays emitted from the
scene/object surface onto the 2D sensor plane. To date, most
of the approaches suggested are based on either single view,
stereo-view or multi-views [1], [2] for generating 3D per-
ception qualitatively for the real 3D world scene from the
irradiant optical stimulations (mathematically it would be of
one to many mapping), [3], which we term as ‘‘3D perception
image’’. Among those approaches that produce 3D percep-
tion image, single view image-based 3D image generation is
a most challenging one though it is advantageous because
of two reasons, namely, (i) it involves less optics with an
extensive computational complexity and (ii) it is helpful in
some scenarios where stereo or multi-view imaging is not
possible. The generation of a 3D image from a single-view 2D
image is an active area of research due to the following rea-
sons, namely, (i) suitable imaging can be readily obtained by
a commercially available and affordable camera with either
minor modifications or plug-in attachments in contrast to the
devices that involve time-of-flight [4] structured illumination
[5] or stereo camera [5], etc., (ii) unlike the conventional
camera, computational camera composes of both geometri-
cal imaging optics having built-in image processing/analysis
functionality with computational resources [6], (iii) espe-
cially, in medical imaging applications, all focused images
would give good clarity in identifying pathological symp-
toms. In any imaging system, exposure parameters, namely
shutter speed and aperture size, either one or both of them
may be used to get the desired amount of light radiation
onto the sensor. Further, the sensitivity of the sensor also
plays a crucial role. However, the camera is designed and

FIGURE 1. Red, green and blue filters arrangement as aperture.

developed based on the desired sensor and lens, resulting in
fixed sensor and lens characteristics. Moreover, in conven-
tional cameras, flexibility lies only in aperture and shutter
speed. The flexibility in the camera system is achieved in
many ways by the aperture used in the camera, viz, (i) radius
of the aperture or size of the aperture [1], (ii) multiple aper-
tures (e.g. color filter aperture) [7]–[9] (iii) sparse aperture
(e.g. color-coded apertures) [10], (iv) offset aperture [11]
and (v) differential aperture photometry [12]. In recent days,
computational photography systems are gaining more impor-
tance over traditional photography because it comprises not

only optics and electronics to capture the image but also
software-based computational manipulation to improve the
imaging capability [13]. These manipulations may involve
to compute attributes, such as shape, position, resolution,
structure, unfocused pixel value or pixel regions, variation
of aperture, and control the amount of incoming light, etc.
It is important to distinguish between 3D perception scene
image and the more precise 3D virtual scene or image. In a
3D perception image, the depths between the various portions
of the image pertaining to their corresponding features are
proportional to give a feel for the 3D environment. However,
in the 3D precise image, the depths mentioned above are of a
more accurate estimate, which depicts the real measurement
of the scenes as required for auto maneuvering of robots or
vehicles. This article will extend the computational 3D per-
ception imaging system comprising a camera, multi-color fil-
ter aperture (MCA), and computation of depth by disparities
among various boundaries identified using a 2.1D sketch for
the single image [14]. In this article, we adapt computational
photography techniques to generate a 3D image from a single
RGB image acquired from a conventional digital camera with
add-on MCA using red, green, and blue filters. We pro-
pose to obtain multi-plane images (MPIs) that attributes to
all-in-focus image regions based on geometric optics princi-
ple as shown in Fig. 1 with associated inter-depths between
them by suitable computational processes. Ultimately, we aim
to deduce the quantitative model utilizing associated cam-
era parameters to arrive at the depth parameter using the
acquired 2D RGB image. In this research effort, we develop
a quantitative model for the computational imaging system
suggested in [14] that employs both depth cues from MCA
[8] and composition of a 3D image using MPIs by using
multi-region image (MRI) decomposition of the acquired
image using a 2.1D sketch [15] as semantic segmentation.
The primary goal here is to arrive at better accurate 3D images
or 3D virtual objects in terms of associated geometrical and
intrinsic camera parameters. In brief, the method relates accu-
rate inter-image depth in multiple object layers in DoF and
its corresponding inter-image depths in MPIs in the DoFo
region. However, inter-depths for the decomposed MPIs are
associated with disparity parameters using MCA 2D image
and 2.1D sketch. Ultimately, it leads to an affordable device
due to minor optics modification as MCA with red, green,
and blue filters arrangement shown in Fig. 1 embedded in
CANON 50mm f1.8 II lens to the readily available CANON
70D DSLR camera.

In summary, our contributions are:
1) Deduction of explicit relation between inter-depth

associated with MPIs of 3D perception image with
inter-objects depth of real-world 3D scene with a shal-
low DoF constraint.

2) Generation ofmore accurate geometric depth 3D image
from a single 2D RGB image as three steps, namely,
(i) Generation of 3D perception image as a set of
MPIs, using inter-image planes depth and image sur-
face, (ii) The set of MPIs are obtained by multi-regions
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due to varying CoCs as a consequence of shallow
DoF determined using 2.1D sketch as semantic image
segmentation, inter-image plane depths from the dis-
parities across the boundaries caused due to MCA
and smooth surface by adjusting the image textures
from respective regions of acquired 2D MCA image,
and iii) Final more accurate depth 3D image is obtained
from 3D perception image by realigning with their
inter-objects depth.

Section 2 reviews the relevant depth estimation usingMCA
and associated image representation for view synthesis by
several researchers along with limitations. Motivation for this
project is highlighted in section 3. Section 4 explains the geo-
metric 3D perception of the image from a multi-plane image
based on ordered multi-region image and inter-depth estima-
tion. Section 5 describes a 3D accurate depth image or virtual
object from MPIs based on a newly deduced relationship
between the inter-depth of the perception image and its 3D
accurate depth image or virtual scene. Section 6 demonstrates
the experimental simulation to validate the above developed
3D image, Section 7 gives the concluding remarks with the
future scope of research.

II. RELATED RESEARCH WORKS
Although substantial research has been carried out on
the depth estimation and reconstruction of 3D perception
image (typically termed as all-in-focus image) using MCA,
we notice that hardly any discussion is carried out on pre-
cise depth. As mentioned earlier, our main aim involves 3D
imaging using a single image with a conventional camera
withmore accurate depth based on cues associated withMCA
and DoF. Some crucial computer vision applications such
as robotic, medical diagnosis, and surgery planning need
more exact shape, size, and volume-based object recognition.
Particularly in the now being considered technique, this boils
down to establish an exclusive relationship between percep-
tion depth image and actual depth of the object in the 3D
scene. Hence, our review is centered around depth estimation
using both DoF and MCA to arrive at all-in-focus image
synthesis.

A. REVIEW ON DEPTH ESTIMATION FROM
DISPARITY USING MCA
Jaehyun Im et al. [15] have suggested an optically modified
color-filter aperture (CFA) for tracking objects with both
depth and position expressed in color shifts by assuming
there would be color discontinuities when there are two
different objects in the scene that are located at different
depths. The phase correlation is employed in the adaptive
mean shift algorithm for real-time implementation of the
CFA approach. However, in this method, occlusion handling
entirely depends on empirical threshold selections based on
pixels, and the method does not assure to take care of the
multiple objects with the same color at different positions
along the optical axis. Yosuke Bando et al. [8] proposed the
improved depth estimation and usage of matte to distinguish

between foreground and background using color misalign-
ment utilizing several image-editing techniques. More cru-
cially, the disparities increase when the lens is focused nearer,
wherein inter-depths between any two objects in the scene
may not be consistently the same. It is noted that the better
inter-depth results, when objects are at 50cm to 250cm, and if
the distance between object and camera is about twice as far
away from the background. Further, performance degrades
for smaller color misalignment and the objects with the same
color. On the other hand, the restriction of a distinct colored
object limits the practical utility of this approach.

The color-coded aperture (CCA) based method by Ivan
Panchenko et al. [16] needs calibration to arrive at better
results for different coded aperture designs and is based on
the calibration and the effective focal length. The demerits of
CCA are its limited field of view (FOV) [17], and are claimed
to perform better than pinhole collimators only with a very
localized point source.

The incorporation of light efficient CCA was designed and
calibrated in skillful ways by Vladimir Paramonov et al. [18]
to arrive at depth resolution in millimeters for a given image
frame. Moreover, their contribution demonstrates DSLR,
smart-phone, and compact camera to real-time 3D scene
generation and depth-based image effects. But, this resolu-
tion is applicable at the center of the acquired image only.
Unfortunately, both of these methods exploit GeForce GTX
780 hardware GPGPU for handling computation intensive-
ness. There is no assurance to guarantee inter-depth for
the objects with the same color and textures in the image.
But, the accuracy of CCA method depends on many fac-
tors such as working range, stronger texture information
for depth extraction, lower accuracy in strongly defocused
areas, and image restoration to get a sharp image. A single
MCA camera-based methodology suggested by Seungwon
Lee et al. [19] and modified multi-focusing image misalign-
ment by Sangjin Kim et al. [19] to track the object upon
exploiting sparsely extracting edges due to red, green, and
blue color shifting vectors at each channel assures good
estimate of depth only in the central region of the image.
However, both of these methods assure good depth only at
the center of the image without any mention of occlusion
handling issues. Recently, we have proposed a novel method
of generating a 3D image from a single 2D RGB image for a
scene utilizing the depth from disparity based on MCA that
handles multiple objects in the scene both with occlusions
and with the same colors at different depths along the optical
axis. It utilizes a 2.1D sketch instead of image matte on the
MCA images to determine the L number of image regions
corresponding to L objects in the given scene. The MRIs
obtained using a 2.1D sketch are based on: one in-focus and
(L − 1) out-of-focus regions with varying blurriness as a nat-
ural consequence of differing CoCs. This blurriness is due to
objects lying at different distances in DoF regions. Synthesis
of 3D perception image as MPIs corresponding to MRIs at
different inter-depths are obtained using inter-image region
disparities. [14].
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Although the previously discussed algorithms deal with
various aspects of how to arrive at 3D perception image
having all-in-focus image surface with proportional depth
information, acceptable in some computer vision applica-
tions, may not be adequate in some applications such as
robotic environment, auto-driving, and some mixed reality
medical diagnostic studies. Again, we note that they exploit
only image-side information to arrive at 3D perception image
that does not use many camera parameters, lays the founda-
tion for our motivation discussed in the following subsection.

B. REVIEW ON LAYERED REPRESENTATION FOR 3D
PERCEPTION IMAGE
The requirement of more accurate inter-depths between the
objects is essential for geometry-aware manipulation of 3D
virtual objects in most virtual or augmented reality applica-
tions when the 3D scene comprises more than one object.
It is important to note that any 3D object in the 3D scene
possesses non-shape changing attributes such as color, overall
size, orientation, and shape-changing attributes such as the
number of sides (parallel or non-parallel, straight or curved),
vertices, edges, boundaries, etc. Many of the above attributes
may exist in the 3D perception image in general except for
the accurate depth information.

In the literature, we notice that layered depth images (LDI)
representation is used as one of the compact coding repre-
sentations for multi-view synthesis to address occlusion and
hidden information associated with a 3D scene [20]. Vincent
Jantet, et al., [21] suggested an improved virtual synthesis
based on object levels distinction between background and
foreground, using region growing segmentation technique.
But this algorithm is developed for multi-image views.

The multi-plane image (MPI) representation is another
way to synthesize a 3D image that enables to render each
pixel to get scene independent new views with consistent
non-occlusion when multiple objects are involved in the
scene. Each image plane is considered as a RGBA image
belongs to the part of frustumwith apex at lens and positioned
at fixed equally spaced depth obtained as inverse of disparity
[22]–[25], [26], [27]. Recently, we have utilized MPIs as L
number of fronto-parallel planes for synthesizing 3D percep-
tion image corresponding to L number of MRIs, and each
MPIs are positioned in the DoFo zone belonging to image
space with non-uniform interval using respective inter-depths
[14]. But, it lacks the assurance of true depth in the image.
As mentioned earlier, 3D geometric modeling is required for
virtual reality applications for generating required views from
the reference. It implies that inter-depths involved are to be
established based on camera parameters, as indicated in the
previous subsection.

III. MOTIVATION
In this article, before bringing up salient points for quan-
tification of depth in 3D imaging, we distinguish 3D visual
luminance image as: 3D perception image realized with an
illusion of depth to the 2D luminance image, whereas 3D

virtual object or 3D precise synthesized image is realized
with a true depth estimated from realistic parameters to the
2D luminance image. Further, we point out the 3D virtual
object or 3D precisely synthesized image is advantageous in
various real-world applications. We note few relevant points,
which are relevant for our quantified 3D imaging systems
using shallow DoF are listed below:

1) The insufficiency of 3D perception image obtained
intuitively using a central theme for generating an
all-in-focus 3D image from a single image needs to
decompose the given image data as appropriate ordered
multiple layered images. On adapting only image data
as a set of varying blurred or defocus image regions,
we could generate only 3D perception images from the
depth from disparities and decomposed multiple layer
images.

2) Inability in acquiring all-in-focus 2D images or accu-
rate depth-based 3D image corresponding to entire 3D
objects of the scene using a 2D image sensor as there is
no simplistic and cheaper known 3D image sensor other
than costly 3D sensor like time of flight [2], Microsft
Kinet device [28], etc.,

3) Limitations associated with DoF, especially under lim-
ited illumination conditions [1],

4) Technically, deep to shallow DoF zones are para-
metrically controllable by aperture, focal length, and
distance of the object from the objective lens of the
camera [1],

5) The change in aperture radius will not only vary DoF
zone but also FoV [1].

6) Interestingly, for a fixed aperture size or FoV, on one
hand, DoF is directly proportional to object distance
with focal length held constant, and on the other hand,
DoF is inversely proportional to focal length when the
object distance is held constant [1].

7) Very shallow DoF results very small all-in-focus 2D
image [1],

8) DoF is sensitive on digital format size or CoC criterion
for a camera [1],

9) Professional photographers use DoF photography,
which involves controlling deep to shallowDoF for get-
ting creative effects. Especially shallow DoF isolates
the required portion of the image in the larger scene or
FoV, since a shallowDoF zone in the object space leads
to a small all-in-focus region along the optical axis, but
the regions before or after the all-in-focus region along
the optical axis are out-of-focus [1],

10) Changing theDoF by varying focal length is impossible
once the lens is decided for the camera unless it is a
liquid lens, which amounts to the extra cost.

11) The DoFo zone interval in image space is related to the
DoF zone interval in object space and is dependent on
both intrinsic and geometric parameters of the given
camera [1].

12) The concept of exploiting DoF is used in the field
of computer graphics or visual synthesis or virtual
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FIGURE 2. (a) MCA camera set up for varying defocused captured 2D
image and computed 3D perception image as MPIs and transforming to
3D virtual object/ estimated 3D image. (b) 3D perception image as MPIs
(c) 3D Virtual object or estimated 3D image.

reality [20]. But, it is used as a software simulation
for generating 3D perception image to get the feel of
photorealism only.

The above-enlisted issues and properties have motivated us
to arrive at an affordable 3D image generation system. That
would find applications for 3D imaging for biological surface
tissues, collision-free autonomous driving, and maneuvering
industrial robotics, where the objects that need to be imaged
are always very close to the camera lens. This small focal
distance (object to lens distance) is an obvious consequence
of wide-angle aperture, and FoV [1]. A shallow DoF is a
direct consequence of focal distance, which corresponds to
a small DoFo leading to a smaller in-focus image region,
and many image regions are out-of-focus, causing blurriness
due to CoCs [1]. These factors prompted us to derive virtual
positions formultiple image sensor planes as consequences of
disparities caused due to blurriness on the fixed image sensor
in the pre-configured camera setup to the acquired small
in-focus region and remaining out-of-focus regions during
single image acquisition of the scene. In this article, among
the many interpretations for the 3D image corresponding to
a 3D scene in nature, our focus is on geometrical aspects
restricted either as a 3D perception image, and actual 3D
image from a single image. The perception 3D image referred
to the image of a scene that represents the geometrical envi-
ronment displayable as an all-in-focus image with qualitative
depth information, whereas a precise 3D image as a virtual
object would be able to project with more realistic depth
information.

IV. GEOMETRIC 3D PERCEPTION IMAGE FROM
MULTI-PLANE IMAGE
In our previous work, we had considered single 3D scene
image representation as a composition of multi-plane images
from 2D multi-region images by exploiting the objects with
varying amounts of blurriness, lying at a varying depth, that
enables us to arrive at perception depth [19].

A. DECOMPOSITION OF MULTIPLE IMAGE REGIONS AND
COMPUTATION OF INTER-DEPTHS
Typically, any given scene comprises multiple objects with
the same color or different colors at varying depths, either
with and without overlaps. These objects would result in
varying blurriness in a captured 2D image due to DoF config-
urations. The first step is to decompose the given 2D image
into various image regions corresponding to the L number
of objects in the scene. The decomposition into multiple
image regions with boundaries is obtained based on one
in-focus region and (L − 1) out-of-focus regions. For any
camera setup shown in Fig. 2, in the captured 2DRGB image,
focussed portion or object in the scene results in a region with
no blurriness, and the remaining (L − 1) regions correspond-
ing to those objects yields varying blurriness that depends on
other positions in 3D scene project on 2D sensor plane due
to varied CoCs as consequences of DoF [1]. The second step
is to obtain the disparities along the boundaries, which are of
the above spaces are dependent on four parameters, namely
(1) focal length, (2) sensor sensitivity, (3) aperture type with
size, and (4) camera focus distance. In any camera system,
with a decided sensor type and lens, once manufactured,
makes those parameters constant. It is flexibly easy to select
either shallow or deep focus region-range from adjusting da
compared with focus distance. Further, for a specific object
in a 3D scene, we suggest configuring da with a suitable
value such that we obtain an appropriate FoV with shallow
DoF that results in a small focussed image on the sensor
plane and remaining objects located at different distances on
the optical axis behind it generates differing defocus image
regions due to CoCs. Indirectly, we presume that the acquired
single image consists of L number of MRIs for the objects in
the 3D scene. Since our intention is to tackle the occlusion
aware decomposition of single image into MRIs, associated
with varying amount of defocus, 2.1D sketch formulated by
either Nitzburg and Mumford [15] or a 2.5D sketch David
Marr [29] can be used, which enables to generate the 3D
scene representation.

Especially in this article, we consider a 2.1D sketch
since it segments the image regions that handle occlu-
sion explicitly to decide the partial ordering of regions by
indicating their ordering. This method exploits depth cues
from edges, curves, cusps, crack tips, and T−junctions.
Further, we solve energy minimization problem [30] using
DIvided RECTangle (DIRECT) search-based deterministic
global optimization method [31], [32] that slices the given
single 2D image into a set of MRIs with ordered top to
bottom layers. This is based on similarly clustered gray
levels and/or colors apart from distinguishing their over-
laps or occlusions. Also, it gives information about the
total number of different regions/patches present in a given
2D image.

Any given 2D image is described with domain D, where
D = ((i, j) , 0 ≤ i ≤ (M − 1) , 0 ≤ j ≤ (N − 1)) and on
adopting principle of 2.1D sketch as described by Nitzburg
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and Mumford [15], we arrive at L number of MRIs as

D =
(L−1)⋃
l=0

R′l, whereR
′
l =

⋃
l<k,Rl<Rk

Rl (1)

where < denotes partial ordering includes occlusion.

B. REVISITING THE PERCEPTION 3D IMAGE FROM MPI
We recall from our earlier research work the all-in-focus
image as 3D perception image represented as L number of
fronto-parallel MPIs, and its inter-plane depths is given by:

1d0l =
δl × dls
(da + δl)

, l = 1, 2, 3 · · · , (L − 1) (2)

In natural scenario, these partial or full occlusions between
the objects lying in a 3D scene may not be very well ordered
but these occlusions are caused due to the objects at different
heights and locations other than focus distance in the 3D
scene. Further, as per geometric optics, shallow DoF would
result in shift varying blurred regions across the captured
single image. In our previous research, we are inspired to use
2.1D sketch since it enables occlusion aware image segmenta-
tion for decomposing the single image into MRIs, and allow-
ing to take into account the partial occlusion of the farther
object by those with nearer ones [1]. Briefly, the salient steps
for perception 3D image generation algorithm is enumerated
as below:

1) Identify various image regions using salient bound-
aries based on the change in disparities and obtain
inter-depths between the regions using (2).

2) Order the MRIs from foreground to background layers
using depth cues as per 2.1D sketch.

3) Generate 3D image as a composition of L fronto-
parallel MPIs as a part of a frustum with a reference to
the image sensor planes as shown in Fig. 2(b) (shown in
dotted box as MPI frustum), each at the distance1d0l ,
l = 0, 1, · · · , (L − 1) and its smooth surface of l thMPI
as g (i, j) ∈ Rl +1dl .

The 3D perception image obtained above can be expressed
as:

g (i, j) ∈ D =
(L−1)⊕
i=0

(
g (i, j) ∈ R′l

)
+ (1d0l)

D =
(L−1)⋃
l=0

R′l &
(L−1)⋂
i=0

R′l = ∅ (3)

where D and
⊕

denotes domain of the given image and
compositing operation, respectively.

C. LIMITATION IN THE 3D PERCEPTION IMAGE
The above obtained inter-image depths from the boundaries
of decomposed multiple image region and synthesizing 3D
perception image may not assure the accurate depth, which is
one of the vital requirements for the all-in-focus 3D image or
virtual 3D object. Essentially, a virtual 3D object is nothing

but a 3D model of the realistic scene object. Indeed 3D
image generation with accurate inter-image region depth is
crucial for applications like biomedical, industrial robotics,
and auto-driving vehicle maneuvering. It is easy to infer
that the perception depth is not scale-invariant. For example,
in robotic navigation or AR/VR application, there is a need to
generate a 3D image scene that should be photo-realistic and
deformable. We address this in the next section by relating
the perception depth to the actual depth.

V. IMPROVED DEPTH 3D IMAGE OR VIRTUAL 3D OBJECT
USING GEOMETRIC OPTICS
In the previous section, although the 3D perception image
uses blur caused due to the DoF phenomenon, the sharpness
in the image space is not a specific point, but the acceptable
area caused due to CoC with no noticeable distortions. This
fact implies that there must exist a relationship between the
object space and image space for any camera in terms of
specific parameters due to the following characteristics:

1) For a given FoV, the distant DoF (termed as far DoF)
zone maps to the nearest DoFo (termed as near DoFo)
zone for the camera and vice versa. The other points in
the DoF zone starting from far point to near, will map
in reverse order in DoFo zone. These DoF and DoFo
zones are also subsets of object and image spaces,
respectively. In this space, there would be negligibly
noticeable degradation or blurriness in the image, if an
image is focused well.

2) For a specific FoV of the camera and a 3D object
placed in the DoF space, the irradiant rays originated
from the points on various virtual planes in DoF zone
form the least CoC or most focused image points
at specific DoFo space points if the sensor plane is
positioned at those locations along optical axis. But,
it forms non-focused image points or larger CoC in
any other location beyond or before this location (refer
Fig. 3(a) and 3(b)).

Briefly, the far-field and near-field 3D scene points in
object space forms a near focus and far focus image points in
the image space, as shown in Fig. 3(a) and 3(b), respectively.
The actual positions of the above spaces are dependent on
four parameters, namely (1) focal length, f (2) sensor sensi-
tivity, (3) aperture type with diameter, da, and (4) focus dis-
tance from the camera. In any camera system, rigid lens and
sensor parameters would get frozen to constant value while
manufacturing. Among the latter two parameters, we can
consider the choice for shallow or deep DoF using camera
to object distance, whereas aperture type and diameter da are
pre-configured since we are using MCA.

On noting the above pre-configurations of many param-
eters, for shallow DoF range, the relationship is deduced
for inter-depths between objects in the 3D scene as
computed inter-depths between corresponding two MPIs
for non-transparent and non-speculative 3D objects at the
stationary position while imaging for optical setup shown
in Fig. 3(b). These configurations in the imaging optics yield
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the following characteristics when we look at both object
space to image space together.

1) There exists a specific point on the DoFo zone in image
space along the optical axis where the image sensor
could be positioned to get a focused image points cor-
responding to a specific object surface belonging to the
3D scene in the DoF zone of the object space of the
camera.

2) In any conventional camera, the 2D sensor is fixed at
a distance dls from lens to capture the focus image
region for a specific shallow surface of the object in
the 3D scene and many out-of-focus image regions due
to varying size CoCs proportional to the points lying
on the optical axis in DoF zone with reference to the
focused surface for remaining objects in the 3D scene.

3) Though the width of the DoF space and DoFo space are
not equal, and apart from being distributed unequally,
for the above specific conditions in the camera setup,
it is possible to know the corresponding far and near
field points in DoF space to near and far focus points
in DoFo space.

A. ALL-IN-FOCUS IMAGE AS MULTI-PLANE IMAGES
In Fig. 3(a) and (b), we have shown only l = 3 num-
ber of planes for the sake of clarity, but we could have
L number of virtual sensor planes which correspond to
L number of MRIs. For the sake of generality, let us
assume S0,S1, · · · ,S(L−2),S(L−1) be the virtual image
sensor planes belong to the image space pertaining to a
specific camera setup. Furthermore, we interpret these planes
are specific planes of frustum whose base is fixed sensor
plane S0 and the apex is at the lens. From the geometric
optics principle, we know that the focussed image region
on a fixed plane S0 is due to the object in the 3D scene
at the focal distance from the lens that belongs to DoF
zone in the object space. The objects before and after focal
distance form defocused image regions on S0. Obviously,
the (L − 1) number of objects which are at different dis-
tances from the camera lens would create a corresponding
(L − 1) number of defocused image regions on S0 depend-
ing on the area of respective CoCs. At the same time,
every l th MRIs would have resulted in the in-focus image if
there is a virtual image sensor plane Sl in the image space
of the camera whose inter-depth as 1d0l with respect to
the S0.

B. MULTI-PLANE OBJECTS AS 3D SCENE
In this subsection, we denote any 3D scene comprising of
many objects that need to be imaged could be represented
as slices of multi-plane objects as layered DoF as described
by David C Schedl and Michael Wimmer [20], [33]. This is
also in a similar line to the 3D image as multi-plane images
discussed in the previous subsection IV(B). However, this
could be viewed in two ways, as one being multi-plane object
layers as a part of the frustum in the object space that is

intended to yield in-focus image region in DoFo space and
arranging planes towards far focus point of DoF zone, and
the other being multi-plane object layers as part of a frustum
with referencing to the object plane which is intended to yield
in-focus image in DoFo and arranging planes towards near
focus point in DoF region. In both cases, the 3D scene is
viewed as L number of slices as multi-plane scenes belonging
to part of frustum coinciding with DoF with inter-object
depths as1D0l, l = 1, 2, · · · , (L − 1) as shown in Fig. 2(c).
Essentially, we use this fact to deduce the accurate rela-
tionship between inter-depths in the scene and 3D images
represented as MPIs.

C. RELATIONSHIP BETWEEN INTER-IMAGE PLANES
DEPTH IN DoFo AND INTER-OBJECTS DEPTH IN DoF
Due to the geometric optics principle in any camera system,
for a specific object position in FoV and camera con-
figurations, back and front DoF regions in object space
form the corresponding front and back DoFo regions in
the image space, respectively. To arrive at L objects cor-
responding to L MPIs, we consider DoF virtual planes as
Pl, l = 0, 1, 2, · · · , (L − 2) , (L − 1) along the optical axis,
respectively, belonging to the back DoF zone of the object
space. When a camera is focused on the object, the selected
virtual object planes form corresponding virtual image
planes Sl, l = (L − 1) , (L − 2) , · · · , 2, 1, 0, which are
not only reverse ordered but also located at non-equidistant
intervals.

As per [32], 3D image is generated using fusion of focused
multiple layer image planes at points S0, S1, · · · , S(L−1)
on DoFo space in correspondence to the DoF planes
P0,P1, · · · ,P(L−1) in DoF space along optical axis, respec-
tively. 3D perception image seems to be blind for parameters
related to camera, object-image geometric parameters, and
lighting parameters except for the fact that there exist L num-
ber of objects in the 3D scene while imaging is carried out.
It is important to consider the imaging process parameters
for generating a 3D image, which plays a crucial role in
computational photography.

In order to compute a 3D image with more realistic
depth, we consider the object, image, and camera as shown
in Fig. 3(b). For the sake of simplicity, we consider the case
where we position the given 3D scene, in which the top
portion of the 3D scene as C ′ (at object layer P0) yields
an in-focus image region on the fixed image sensor S0 (as
shown in Fig. 3(b)) and bottom portion of the 3D scene is
assumed to be at A′ (at object layer P2), which would form
an in-focus image at virtual plane S2 in front DoFo zone of
image space but captured as defocused image at the image
sensor plane. It amounts to place the 3D object in the back
DoF zone instead of the front DoF region. The irradiant light
ray coming from the point A′ forms a conical bundle at object
plane P0 with sectional diameter δ0. Similarly, the irradiant
light rays reflected from the object top position atC ′ on object
plane P0 would create a sharp image at sensor plane S0 in
image space at point C . Considering similar triangles EA′D
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FIGURE 3. (a) Thin lens model for near focus planes (b) Thin lens model
for far focus planes, (c) Thin lens model for lateral magnification.

and GA′F in Fig. 3(b), we arrive at

Dlo +1D0l

da
=
1D0l

δ0
, where l = 1, 2, 3. (4)

where Dlo is focal distance and 1D0l is inter-object depth
between focused point C ′ and non-focused point A′. Noting
magnification M = δl/δ0, the equation for Dlo from (4), can
be expressed as:

Dlo =
1D0l (Mda − δl)

δl
(5)

The depth estimation using geometric optics with Gaussian
lens equation mentioned as:

1
(Dlo +1D0l)

+
1

dls −1d0l
=

1
f
, (6)

where f represents focal length, distance between far focus
point in DoF space to the lens is (Dlo +1D0l) ( point A′

in Fig. 3(b)) and distance between far focus point in DoFo
space to the sensor as (dls −1d0l) (pointA in Fig. 3(b)). Now,
we recall the simplified relationship for far point A′ using
the intercept theorem by J.N.P. Martel et al. [34] in-terms of

intrinsic and extrinsic parameters as,

1
(Dlo +1D0l)

=
da (dls−f )−f δl

dafdls
. (7)

Further, we would like to mention that in
J.N.P. Martel et al. [34] the real-time depth estimation is car-
ried out by using a focal plane processor array with a tunable
focus lens. Naturally, this method is not directly applicable
to use the conventional camera because it involves changing
both the image sensor and lens. Moreover, the tunable lenses
are unstable in performance. But, our intention here is to esti-
mate the depth using a rigid lens and fixed sensor with simple
camera optics attachment with a computational approach
from disparities. MagnificationM can be represented as:

M =
dls−f
f

, where f represents the focal distance. (8)

Due to above equations, (7) can be re-written as

1D0l =
(dlsda)

(Mda − δl)
− Dlo, (9)

where l = 1, 2, 3 · · · L object layers.
On substituting Dlo from (5) in (9) we arrive at:

1D0l =
(dlsδl)

M (Mda − δl)
(10)

Re-writing δl from (2) in terms of an inter-image layers
depth between image sensor plane to the l th image layer
plane, δl as

δl =
da1d0l

(dls −1d0l)
l = 1, 2, 3 · · · , (L − 1) (11)

and substituting the same in (10), we arrive at a relationship
between inter-objects layer depth between focus layer to
non-focused l th layer as below:

1D0l =
1d0l

M
(
M − (M+1)

dls
1d0l

) . (12)

Alternatively, (12) can be expressed in the form below:

1D0l =
1d0l

M2
(
1− (M+1)

M
1d0l
dls

) . (13)

In the similar lines, we can obtain1D0l for back DoF zone
as:

1D0l =
1d0l

M2
(
1+ (M+1)

M
1d0l
dls

) . (14)

The interesting point regarding the above relationship is
that the inter-depth of the virtual 3D object is expressed
only as image space parameters and magnification of the
camera, where the latter is measured without direct object
space parameters. In Fig. 3(c), based on the geometric optics
principle, we infer that transverse and axial magnifications of
the camera setup will alter not only the size of the image but
also the width of the object layers and corresponding image
layers. Further, we also note that the equidistant points on the
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optical axis in the object space will distribute unequally on
image space along the optical axis. The relationship shown
in (13) is used for obtaining true depth at various points on
the 3D object surface with its corresponding point on the
generated 3D image surface. Note here that the relationship
given in (10) can also be used to identify the inter-depth from
disparity δl itself without generating a 3D image, that helps
in generating virtual objects required for mixed reality appli-
cations. Further, this way of identifying inter-object layer
depth information is helpful in object detection, especially for
industrial robotic and auto vehicle anti-collision applications.
For the sake of simplicity, we have considered geometric
optics with a thin lens camera setup. However, similar rela-
tions could be deduced for thick lens or more than one lens
also though it is not discussed in the current study.

D. 3D VIRTUAL OBJECT FROM MULTIPLE PLANE IMAGES
AND IMPROVED INTER-DEPTHS
A 3D topographic surface of a non-transparent and
non-speculative 3D object visible under FoV of any given
camera along its optical axis is defined as a discrete lumi-
nance function represented in the form of a 2D array as below:

G(i,j) = Zi,j (i, j) ∈ D (15)

where Zi,j denotes the maximum topographic value of the
3D object surface with reference to the virtual plane P0 in
the DoF zone of the camera’s object space. The above-said
object surface points on various virtual object layers have
corresponding positions Sl, l = 0, 1, · · · , (L − 1) of the
image sensor planes that would generate in-focus MPI layers
that are formed as out-of-focus image regions, if acquired at
S0. As pointed out earlier, out-of-focus image regions on an
image sensor plane are caused due to the object points lying
on any Pl , the l th object layer that is farther away from the
in-focus object layer P0 and give rise to disparity as δl on the
image sensor plane S0.

E. SYNTHESIS OF VIRTUAL 3D OBJECT FROM 3D
PERCEPTION IMAGE
In this subsection, we utilize multiple planes for the object
representation similar to MPIs as shown in Fig. 2(a) that is
a one-to-one correspondence with the layers of MPI, except
for the fact that inter-object layer as 1D0l instead of 1d0l .
Any 3D virtual object is synthesized in similar lines like
the 3D perception image described in section IV(B) using
the relationship between inter-object layers depths given in
equation (3) as below:

G (i, j) ∈ D =
(L−1)⊕
i=0

(
g (i, j) ∈ R′l

)
+1D0l

D =
(L−1)⋂
l=0

R′l &
(L−1)⋃
i=0

R′l = ∅ (16)

Indirectly, adding1D0l to each pixel in the region enables
to get in-focus image regions from the defocused pixels due

to the effect of shallow DoF. We interpret the above synthe-
sized virtual 3D object or image as nothing but a 3D object
representation expressed with actual depth in similar lines to
3D perception image. Again, this may find advantageous to
surgical devices for probing and dissecting or LASER device
pointing more accurately. The virtual 3D object is helpful
to view using virtual or augmented or mixed reality visual
systems.We believe that it aids inmedical imaging appliances
to analyze the medical practitioner for diagnosis of disease
symptoms.

VI. DISCUSSION ON EXPERIMENTAL EVALUATIONS
FOR 3D IMAGING SYSTEM
In this section we discuss some simulated experimental
results to validate the quantified 3D image generation formu-
lated in previous sections.

A. MCA CAMERA SETUP FOR IMAGE ACQUISITION
The experimental setup is formed using the scheme shown
in Fig. 3(a) and 3(b) with the specifications as the diameter of
the aperture being da = 12mm, three RGB filters arranged as
per Fig. 1, and distance between lens and sensor being dls =
52.63mm for canon 50mm f1.8 II when focused at 100cm.
Hence, we determine the minimum inter-object in DoF range
object space and its shifts in terms of pixels for the camera
(CANON EOS 70D DSLR Camera) for our demonstration
purpose.

B. DATA SET CREATIONS FOR EVALUATIONS
To demonstrate and evaluate the practical performance of the
proposed approach, we need to create relevant image data
set because there seems to be no standard color filter aper-
ture image database. We have created the following sample
MCA 2D RGB images by various arrangements with known
inter-depths between the objects.
• Scene consisting of non-overlapping similar color
objects arranged one behind the other but focal distance
is on one of the intermediate object,

• Scene similar to above objects with different colors,
• Scene with one object overlaps the other with varying
sizes and colors,

• Scene with an object in slant position, overlapped with
its middle portion and visible at both sides,

• Scene with different color and sized objects one behind
the other such that mid portions are occluded.

• Scene with both overlapped and non-overlapped objects.
• Most of the above scene with inter-object depth is main-
tained between 0.5cm to 10.5cm gap.

C. EXPERIMENTAL EVALUATIONS
This subsection describes both qualitative and quantita-
tive results on images with non-trivial scenarios captured
using MCA camera with color filter arrangement shown in
given Fig. 1.

The qualitative evaluations on the depth map for all the
generated data sets are discussed and the results are displayed
in Fig. 4.
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FIGURE 4. Illustration scene images of salient scenarios with overlaps, inclined positioning with respect to the optical axis of the MCA camera, and
various combinations are displayed as rows with its intermediate and final stages results as columns, col (I): MCA images, col (II): 2.1D sketch,
col (III): Depth map, col (IV): scatter map col (V): Accurate inter-depth 3D image plot, col (VI): Runtime in seconds, row (a): MCA image of pots placed one
behind the other with a gap 3cm with no overlap, row (b): MCA image of non-overlapped blue and green blocks with a gap of 3.5cm and orange block
overlapped by blue block at one end and green block at the other end at a gap of 4cm, row (c): Six color blocks one behind other at a gap of 3cm,
row (d): MCA image of four similar color bottles kept at one behind other with a gap 7cm, 9cm, and 8cm, row (e): MCA image of the wooden spatula is
overlapped by a red tomato, orange carrot and, green tomato, which are placed at the gap of 0.5cm, 4cm, 4cm, and 6.2cm, row (f): MCA images of three
different color and size cups overlapping each other placed one behind other at a gap of 6.5cm and 10.5cm row (g): MCA image of a knife in slant
position along the optical axis with one end at 3cm front and the other end at 10cm behind overlapping orange carrot.

1) In col. (II) of all rows, we note that the 2.1D sketch
yields all the regions in the scene image with compar-
atively good accuracy in the boundaries irrespective of
their occlusions, which play a vital role in arriving at
good 3D perception and actual 3D image.

2) Depth maps for MCA images shown in col. (III) of
Fig. 4 is represented in terms of gray levels, where
higher gray value for a region, implies that it is nearer to

the lens. Also, it has a very narrow range of gray levels
since the inter-object depth gap is minimal.

3) In col. (IV) of all rows indicates the scatter map.
Rows (b), (e), (f), and (g) indicates the detection of
the overlaps that exist in the images very accurately,
and the same is utilized to arrive at MPI’s, resulting
in good 3D images in the respective rows shown in
col. (V).
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TABLE 1. Quantitative comparison results reported with actual values between estimated inter-depths of 3D image and their respective ground truth
inter-depth for salient examples for designated objects, A, B, C, D, E, and F present in the scene and its resultant 2D image for respective regions.

TABLE 2. Performance errors between estimated inter-depth in the generated 3D image and true inter-depths in the scene.

4) From col. (IV), we see that the scatter map display
depicts that the proposed algorithm resolves all regions
very well.

5) Col. (VI) displays the running time in seconds to exe-
cute the algorithm for arriving at 3D virtual objects cor-
responding to the acquired 2DMCA image. The quoted
runtime for algorithm is applicable forMATLAB based
implementation that runs on specific hardware and soft-
ware platform, having the Intel R©core i5-4460 CPU @
3.20GHz × 4 with pre-loaded UBUNTU 16.04 LTS
operating system and 8.00GB memory without con-
sidering any effort on many possible optimizations.
There are many scopes for improving the execution
time by adopting optimization of algorithm not only
with respect to hardware and software on any intended
application scenarios but also with the elimination of
redundant computations and memory requirements.

Table 1 presents the quantitative comparisons between
ground truth and estimated values for all the images shown
in Fig. 4. However Table 2. gives absolute and relative depth
errors. The absolute error is expressed as the absolute differ-
ence between the ground truth and estimated depth at image
labels to signify the amount of deviation for obtained depth

at labeled locations. The relative errors expressed as a ratio
between the absolute error and the ground truth depth at
labeled points signify the percentage error with respect to the
ground truth depth. From Table 2, we note that the estimated
inter-depth values are very near to the true values.

We present the detailed performance analysis as below:

1) On referring to row (c), row (e), and row (f), we see the
error in estimating the respective inter-region depth is
significantly less.

2) From row (a), row (c), and row (d), we notice that the
error in estimated inter-depth is lesser when the actual
gap between is less.

3) The estimated inter-depth value seeming to be less
erroneous when the object is near to the focussed object
(refer rows (a), (b), (d), (e), and (f)).

4) From Table 1, we note that the estimated inter-region
depth in perception 3D image is not near-to the ground
truth inter-objects depth. On the other hand, the com-
puted inter-image depth in the 3D image from the
newly derived relationship yields better results.

5) From the results shown in row (a), we could infer that
the error increases as the actual gap between the objects
increases.
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6) As per row (e), the error is less when the gap between
the objects is less, but on the other hand, it also exhibits
the error that is comparatively more for the object
that lies on the near focus side, though the object
gap is same. Similar results are exhibited in rows
(d) through (g).

7) On observing all rows (a) through (g), we infer that
errors are minimal when the object depth is nearer to
the focal distance.

8) The performance accuracy is similar in both
rows (c) and (e).

9) From the results depicted in a row (b), we infer that
the estimated depth is the same for objects A and B
with less estimated error than the object C, which is
behind object D. But, we note that it exhibits the slant
orientation as expected.

10) From row (g), the estimated depth between B and C
is comparatively lesser than that of inter-object depth
between A and B since their inter-object is based on
near-focus conditions. A similar characteristic is exhib-
ited in row (c).

11) From Table 2, we observe that errors are less for near
focus compared to far focus depth for all figures in
rows (a) through (g).

12) We notice that in Table 2, for rows (b), (c), and (d) the
errors are less near to the focus region than the errors
away from focus regions.

13) Especially, in rows (a), (c), (d), and (e) with the focus
region from the camera on one of the intermediate
objects in the scene instead of the nearest object to the
lens, error estimation for inter-depth are less for those
objects behind focus object than the objects those in
front of the focussed object. The same trend is true in
the rows (b), (f), and (g), where focal distance is nearer
to lens.

14) In general, the accuracy of the inter-object depth results
are better when the object is focused, and the remain-
ing objects are placed between the focus distance and
distant endpoint in DoF zone of object space.

15) Table 2 shows that the relative depth measured for a
near focus object has an error of 10%, and the percent-
age error increases gradually up to 57% as the objects
are placed laterally away from the focused object.

VII. CONCLUSION AND FUTURE SCOPE
We have presented a novel method of synthesizing a more
accurate geometric depth 3D image from the 3D percep-
tion depth image using the newly formulated inter-depth
relationship. We have derived a specific non-linear depen-
dency between inter-depths of two objects lying in 3D scene
and corresponding inter-depths of two MPIs in image space
parameters under shallow DoF zone constraints. On the basis
of this, a more accurate geometric depth 3D image synthesis
from a single image has arrived as three steps: (i) Generation
of 3D perception image from MPIs using its inter-depths
computed from inter-image region boundaries disparities.

(ii) The single 2D image is decomposed into one in-focus
region and many out-of-focused regions caused due to vary-
ing CoCs using 2.1D sketch as a semantic image segmenta-
tion, and (iii) 3D image is composed by re-aligning the image
surface and corresponding MPIs with accurate respective
inter-depths.

The partial ordering of image regions using the 2.1D sketch
enables us to determine the occlusions among the multiple
objects in the scene better than the alpha-matting. Experi-
ments show that the proposed method gives better results
not only when the scene comprises multiple objects lying at
different depths with dissimilar colors but also objects lying
with the same color. Further, the proposed method has been
demonstrated to yield smaller inter-depths of the order of few
millimeters (range 5mm to 105mm gap between the objects
in the 3D scene), making it quite qualified for real-time
applications.

Few future scopes for research directions are enlisted as
below:

1) Improving the accuracy of depth estimation for the
objects lying on the off-axis with respect to the
camera’s optical axis.

2) Definitely worth making comparative studies between
the suggested approach with plenoptic imaging to
understand the importance of optical lens arrays.

3) The extension of the above-discussed methods for
microscopic 3D image analysis could be interest-
ing for many machine inspection and bio-imaging
applications.

4) Exploration on deep layer network for robust and more
precise 3D image generation using a single image to
arrive at improved performance over the suggested
approach in this article.

5) Exploration on the computation of 3D virtual and 3D
perception images using front DoF and back DoFo
zone is a worthwhile exercise to see the performance
regarding the accuracy in inter-depths.
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