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ABSTRACT Recently, with an increase in the number of healthcare devices, studies measuring and
diagnosing electrocardiogram (ECG) signals in daily life are emerging. ECG signal analysis is an essential
study area that can diagnose fatal heart abnormalities in humans at an early stage. Conventional signal
detection uses one reference beat to diagnose ECG signals; thus, the detection rate is different for each
person. In this study, we design a system that can learn a reference beat and diagnose ECG signals in
real-time using hardware accelerators with the approximated template-based ECG diagnosis algorithm
proposed in the previous study. The proposed algorithm can easily perform personalized learning, increasing
the detection rate since it has faster learning time and consumes less memory than the existing algorithm.
The learning data, which occupies a small memory space, enables real-time and simultaneous diagnosis
of several people. We confirmed that the proposed ECG diagnosis algorithm is suitable for hardware
acceleration by accelerating the ECG signal diagnosis and measuring the parallelized result using Alveo
field-programmable gate array (FPGA). The ECG diagnosis algorithm, implemented at the FPGA in real-
time, can flexibly determine reference beats that vary depending on the person and diagnose each person’s
signal. The experimental results showed that the time required to diagnose the ECG signals of five people
containing 1987 beats takes 5.70 s with software and 0.572 s with hardware accelerators, which is 89.96%
shorter than software execution time.

INDEX TERMS Electrocardiogram, Alveo FPGA, large-scaled IoT, hardware acceleration, co-design,
flexible accelerator.

I. INTRODUCTION
Since the average life expectancy has been extended due
to the recent development of medical technology, inter-
est in healthcare devices for managing health is increas-
ing. Recently, studies have been conducted to create a
light-weight wearable system that measures and analyzes
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vital data using embedded devices [1], [2]. The electrocar-
diogram (ECG) signal, one of the vital signals that can be
measured using a healthcare device, is measured by detecting
and amplifying electrical signals generated when the heart
beats. It is the best signal for real-time diagnosis of heart
abnormalities, which are fatal for humans [3]. ECG signals
are sampled at high frequencies above 100 Hz. Abnormal
beat varies rarely, so ECG signal must be measured and
analyzed for a long time, more than several hours. Thus,
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FIGURE 1. Server structures of (a) existing cloud computing method and (b) the proposed hardware and software co-design method for
electrocardiogram signal diagnosis.

to analyze an ECG signal that generates big data, a fast
processing speed and data compression is required [4]. The
existing signal compression studies used various compres-
sion techniques, such as the Fourier transform [5], wavelet
transform [6], [7], Walsh transform [8], and Karhunen-Loeve
transform [9].

Fig. 1 shows the existing server structure and the hard-
ware/software co-designed server structure for ECG signal
diagnosis. Wearable devices that measure ECG signals have
a small memory size, low performance, and a small battery
capacity. Since ECG signal diagnosis requires much compu-
tation, most data are transmitted to a cloud server (Fig. 1(a)).
The server diagnoses the input signal using a reference signal
trained in advance with a large number of ECG signals. Exist-
ing servers for ECG signal diagnosis have several problems,
such as ECG data size, reference signal-training time, and a
unified reference signal. The ECG signal is a fast signal with
a sampling rate of around 300 Hz. In addition, it is common
to take measurements of 30 min or longer when diagnosing
patients using ECG signals. Thus, the reference signal used
for diagnosis is trained by investing a large amount of data
and time. The unified reference signals trained by consuming
many resources are used to diagnose various people. Thus,
the detection rate of abnormal signals varies from person to
person.

We designed a platform that provides personalized diag-
nostic services through software and hardware co-design
(Fig. 1(b)) [10]. Each person’s reference beat is trained by
software receiving different ECG signals. The size of the
ECGdata and the time required for learningwhere reduced by
reducing the data fidelity using the approximation approach
in the learning process. After the learning process, the server
synthesizes and implements a hardware accelerator that can
diagnose the ECG signal on the field-programmable gate
array (FPGA) in real-time using a personalized reference
signal. The proposed platform reduces the amount of data
analyzed during the learning and diagnosing process by
adjusting fidelity, increases the detection rate of ECG signals
different for each person using a reference signal optimized
for individuals, and processes multiple ECG signals at the

same time to implement a diagnostic unit flexibly using an
FPGA [11].

In this study, we designed a signal processing unit to
process ECG data in real-time using an energy-efficient
FPGA accelerator in an Internet of things (IoT) edge server
where large amounts of ECG data are input. We acceler-
ated repetitive computation using hardware and software
co-design platforms [12], [13]. In Section II, we introduced
the related ECG signal study and linear approximation (LA)
study applied in this study. Section III introduces the approxi-
mated template-based classification proposed in the previous
study [14], [15]. The algorithm uses less memory space and
has a faster processing speed compared to existing stud-
ies in the process of learning and diagnosing ECG signals.
Section IV describes the design of the accelerated ECG signal
diagnosis using FPGA. In Section V, experiments using the
MIT-BIH arrhythmia database are conducted. In addition,
the results of ECG diagnosis using only the processor and the
signal processing unit synthesized in the FPGA are presented.
Finally, Section VI presents the conclusion.

II. RELATED RESEARCH WORK
The ECGmonitoring study focused on heart rhythm detection
and normal/abnormal signal classification in real-time. The
ECG classification can be divided into feature-based and
shape-based classifications [16]–[19]. The ECG signal data
show a small number of irregular, abnormal beats between
most of the periodic normal beats. Normal signals have
similar feature values and shapes. If the feature-based and
shape-based similarities are low compared to the normal sig-
nal, it is classified as an abnormal beat. Fig. 2 shows the fea-
ture values used for ECG signal analysis. The feature-based
classification gathers fiducial points where an ECG signal is
changed and classifies the signal using amplitude and time
difference. The fiducial points can be detected with high
reliability using the Pan-Tompkins algorithm [20]. However,
a small error cannot be obtained using the potential difference
based on the feature-based classification since the feature
points are different for each ECG signal. The shape-based
classification compares the shape of ECG signals with the
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FIGURE 2. Fiducial points and features of electrocardiogram signal.

FIGURE 3. Flowchart of (a) the template cluster generation algorithm and
(b) electrocardiogram diagnosis algorithm.

normal signal template. However, the shape-based classifica-
tion requires much data, time, and memory to determine a
normal ECG signal template.

We improved the accuracy using feature-based and shape-
based classification by comparing amplitude and angular
errors, respectively. The existing template-based classifica-
tion, which selects only one normal beat template, has a
problem in that a normal beat with slight shape deformation is
over-detected as an abnormal beat: thus, the proposed method
uses template clusters instead of a single template [21],
[22]. Fig. 3 shows the template cluster creation process
for template-based classification and the diagnosing process
using the generated template in the designed platform.

In the learning process, the sampled ECG signal is
pre-processed using noise filtering and R-peak value detec-
tion. Then the ECG signal is divided by the average PR
interval size around the R-peak including all fiducial points
in Fig. 2. The separated signals are grouped with similar
signals using the Pearson similarity of the overall shape and

FIGURE 4. Illustration of linear approximation: (a) normal and
(b) abnormal reference templates, and (c) normal and (d) abnormal
template cluster.

PR interval. When all inserted learning ECG signals are
processed, the template with the largest group in the template
cluster is selected as the reference template. Since the signal
that occurs most frequently in the ECG signal is normal,
templates with high similarity to the reference template are
stored in a normal template cluster, and templates with a
low similarity are stored in an abnormal template cluster
(Fig. 3(a)).

The template cluster stored after the learning process is
synthesized in the hardware on the FPGA using the diag-
nosing algorithm after performing an approximation pro-
cess. As shown in Fig. 3(b), the ECG raw data transmitted
to the diagnosis process is pre-processed by sampling and
R-peak value detection. The synthesized hardware examines
the similarity between the pre-processed data and the nor-
mal/abnormal template and diagnoses it as normal or abnor-
mal according to its similarity to the clusters.

A template consists of one ECG signal sampled around the
R-peak. The number of templates constituting the template
cluster and sampling rate of the ECG signal is directly pro-
portional to thememory size occupied by the template cluster.
We adopted the LA to simplify templates [23]–[25]. Figs. 4(a)
and (b) show the normal and abnormal reference templates
with sampled data and LA. The LA has been proposed to
express fiducial points of ECG signal with a small number
of vertices. This approach, which converts the data stored
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by time into event-driven data, reduces the memory required
to express one template and determines abnormal beats by
emphasizing the feature values consisting of fiducial points.

When the number of vertices expressed using LA
increases, the ECG signal is accurately expressed, leading
to high fidelity. When the number of vertices decreases,
the fidelity is low. However, when the fidelity is low,
the amount of data that require memory space decreases,
and the computational increases. The accuracy of ECG diag-
nosis is decreased. We improved the accuracy of the diag-
nosis at low fidelity using template clusters. Figs. 4(c) and
(d) show LAs of normal and abnormal template cluster data,
respectively. Errors similar to the reference signal can easily
be obtained using clusters, such as P wave abnormality.

III. APPROXIMATED TEMPLATE-BASED CLASSIFICATION
A. PRE-PROCESSING
The input signal is pre-processed by noise filtering, R-peak
detection, signal division, and offset removal. The ECG sig-
nal, an electrical signal generated by the heart-beat, contains
various noises [26]. Noise is generated from the electromag-
netic field of the power line, the activity of themuscles around
the heart, and the movement of a person. Power and muscle
noises are high frequencies above 50 Hz, and the noise caused
by human movement is mostly low frequencies around 1 Hz;
thus, noises can be removed using a bandpass filter [27].

Finding an R-peak point with the highest electrical poten-
tial in the ECG signal is relatively easier than with other
fiducial points. Among various methods for finding R-peak,
we adopted the Pan-Tompkins method, which achieved
99.3% accuracy in finding QRS complex in the standard 24 h
of MIT-BIH database. The adopted method finds the R-peaks
of each beat of data and average RR interval information. The
sampled ECG signal is separated into individual data pieces.
Each data piece has the size of the RR interval centered on
the R-peak, including P wave, QRS complex, and T wave
(Fig. 2).

B. LEARNING TEMPLATE CLUSTERS
Unlike the existing method where a reference normal signal
is given, in this study, a reference normal signal is obtained
using template clusters [28]–[30]. The template-learning
algorithm is divided into three steps: cluster and template
initialization, template update, and normal reference template
selection and cluster separation. Alg. 1 represents the algo-
rithm for initializing and updating the template cluster. Each
template consists of weights and shape data. In the template
initialization step, a new template is created. The first input
ECG signal is inserted into the created template, and the
weight is set to 1.

In the template update step, the data piece is compared with
all generated templates. The Pearson correlation coefficient,
expressed by (1), represents a linear distribution between the

Algorithm 1 Update template cluster

1 Goal: Update template
2 S i: ith input beat

3 M : maximum similarity
4 p: most similar template’s number

5 PRR: Pearson similarity of RR interval
6 PP: Pearson similarity of P wave

7 Pt : threshold for template update

8 T i: ith template in cluster
9 T iw: weight of i

th template
10 N : number of template in cluster

11 % Initialize cluster
12 T 1

= S1

13 T 1
w = 1

14 N = 1

15 % Find most similar template
16 foreach j from 1 to N do
17 Calculate PRR and PP between S i and T j

18 Map PRR’s range and PP’s range from 0 to 1
19 if PRR + PP > M then
20 M = PRR + PP
21 p = j

22 % Update cluster
23 ifM > Pt then
24 %Weighted mean update
25 T p = (T pw × T p + S i)/(T

p
w + 1)

26 T pw = T pw + 1

27 else
28 % Add new template
29 N = N + 1
30 TN = S i

31 TNw = 1

two signals as a value between −1 and 1.

ρ(X ,Y ) =
1

N − 1

N∑
i=1

(Xi − µX )
σX

·
(Yi − µY )

σY
(1)

The Pearson similarity 1 means a perfect positive linear
correlation, 0 means no linear correlation, and −1 means
perfect negative linear correlation. The similarity between
template and signal is analyzed using the Pearson similarity
of the P wave and RR interval.

Each input signal (Si) selects the template with the highest
similarity among all created templates. When the highest
similarity exceeds the template update threshold, template
data (Cp

T ) is updated as the weightedmean value shown in (2).

Cp
T =

Cp
w × C

p
T + Si

Cp
w + 1

(2)
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FIGURE 5. Composition of the cost matrix for dynamic programming.

The template’s weight (Cp
w) indicates the number of

appeared data similar to the template. When the template is
updated, the larger the weight, the less the data changes. After
the data update, the template’s weight is increased by 1. If the
similarity does not exceed the threshold, it means that there
is no similar template. Thus, a new template is created in the
cluster.

The templates of the created cluster are sorted in the order
of the largest weight. Each template is classified into a nor-
mal template and abnormal template clusters by comparing
the Pearson similarity with the reference normal template
with the largest weight.With these normal/abnormal template
groups, we can prevent overdetection of a normal beat with
slight shape deformation as an abnormal beat.

C. LINEAR APPROXIMATION
A cluster consisting of several templates requires many mem-
ory spaces. If one ECG signal consisting of 300-number
of 32-bit samples and 20 templates is stored in the cluster,
it requires 24 KB of memory. We adopted an LA of each
template to reduce memory for the cluster and overall exe-
cution time. The proposed approximation method simplifies
the template with N fiducial points.

Fig. 5 shows the behavior of a conventional LA. The cost
matrix Ck (i, j) represents the minimum cost between the ith

and the jth point with k number of vertices. The cost matrix
C0 representing the minimum cost without vertex is called the
base matrix. The existing LA requires memory of O(L2N ) to
find the minimum path from 1 to L using N vertices. With the
top-down recursive approach, each cost matrix Ck (i, j) can be
calculated as (3).

Ck (i, j) = min
vk∈[1,··· ,L]

(Ck−1(i, vk )+ C0(vk , j))) (3)

where vk denotes the position of the k th vertex. We reduced
the memory usage of the LA using the ECG signal char-
acteristics (Fig. 6). The ECG signal approximation error is
the same, even when the signal is reversed. Thus, the cost
matrix has a symmetry characteristic. The vertices selected
using LA have a monotone characteristic, because the ECG
signal data is sampled over time. In addition, the internal
vertices of the ECG signal start at the first sample and end at
the last sample. Thus, only the first row of the cost matrix is
used for LA.

FIGURE 6. Reduced matrices memory usage by applying the monotone
characteristic.

FIGURE 7. Minimized base matrix and column-wise operation.

The LA converts an ECG signal over time into an ECG
signal according to an event. Thus, the compressed ECG data
consists of time information and signal data of the vertex.
In the LA process, we limit the maximum distance between
vertices to Nbit to reduce the signal distortion and ensure
that the entire signal is evenly compressed. Fig. 7 shows the
memory space used for the base and the cost matrices when
the maximum distance between vertices is Nbit . The cost
matrix needs the value of the previous column to obtain the
current column’s value.

The X and Y arrays in Fig. 7 are one-dimensional (1D)
arrays with a size of Nbit . The cost matrix element C(i, j) can
be calculated as the smallest value among the sum of each
element of the X array, having values from C0(i − Nbit , j)
to C0(i − 1, j), and the Y array, having values from C(i −
Nbit , j − 1) to C(i − 1, j − 1). In this calculation process,
we expressed the base matrix as two Nbit -sized arrays instead
of L × L-sized array. The first array is the basematrix column
array used to calculate the cost matrix, represented as the
X array. The second array is the first column of the base
matrix used to compute the first row of the cost matrix. Alg. 2
represents the template cluster learning process used. The
C0 represents the base matrix required to calculate the cost
matrix, denoted by X array, and the CT represents the first
column vector of the base matrix.

D. BEAT DIAGNOSIS
The normal/abnormal cluster is a set of templates having
an event fiducial point optimized for a person through the
ECG signal-learning process. The input ECG signal to be
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Algorithm 2 Learning Template Cluster

1 Goal: Calculate C(N ,L)
2 L: length of the signal
3 Nbit : maximum distance of vertices
4 N : number of vertices in the signal

5 C : cost matrix of size N × L
6 C1: base matrix of Nbit size column vector
7 CT : temporary row vector

8 R: Range of vk
9 E(i, j): linear approximation error from i to j

10 % Calculate the CT
11 foreach j from 1 to Nbit do
12 CT (j− 2) = E(1, j)

13 % Calculate the cost matrix
14 foreach j from 2 to L − 1 do
15 % Update the base matrix for jth column of cost

matrix
16 foreach i from max(0, j− Nbit ) to j− 1 do
17 C1(i− (j− Nbit )) = E(i, j)

18 % Calculate jth column of cost matrix
19 foreach d from max(0, j− L + N − 2) to

min(N − 1, j− 2) do
20 if d is 0 then
21 R = [max(1, j− Nbit ), · · · , j− 1]
22 C(0, j) =

min
vk∈R
{CT (vk − 1)+ C0(vk − j+ Nbit + 1)}

23 else
24 R = [max(d + 0, j− Nbit ), · · · , j− 1]
25 C(d, j) =

min
vk∈R
{C(d − 2, vk )+ C0(vk − j+ Nbit + 1)}

26 % Update base matrix for L th column of cost matrix
27 foreach i from max(0,L − Nbit ) to L − 1 do
28 C1(i− (L − Nbit )) = f (i,L)

29 % Finish to calculate the cost matrix
30 R = [max(d + 0),L − Nbit , · · · ,L − 1]
31 C(N ,L) = min

vk∈R
{C(N − 2, vk )+ C0(vk − (L − Nbit ))}

diagnosed is classified by the error value with the nor-
mal/abnormal cluster. Fig. 8 shows the normal/abnormal
ECG signal and the data sampled by the reference normal
template. First, the input ECG signal is cut around the R-peak.
The cut signal is sampled using time information of the linear
approximated template for comparison. The signal’s error
value is calculated as the sum of squares of the potential
difference and the angular difference between the template
and sampled data. The cluster’s error value is calculated
with the average of the template error values consisting of

FIGURE 8. (a) Normal electrocardiogram signal, (b) the abnormal signal,
and the (c) normal/ (d) abnormal data sampled by the reference normal
template.

FIGURE 9. Order of execution of the algorithm on the co-design platform.

the cluster. If the normal cluster’s error is smaller than the
abnormal cluster’s error, the input ECG signal is diagnosed as
normal. However, if the normal cluster’s error is larger than
the abnormal cluster’s error, it is diagnosed as abnormal.

IV. HARDWARE ACCELERATION USING
FIELD-PROGRAMMABLE GATE ARRAY
A. CO-DESIGN PLATFORM
To diagnose a person’s ECG signal, the proposed algorithm
first learns normal and abnormal beats using individual ECG
data. Through the learning process, the reference normal
signal for diagnosis is optimized for a person, resulting in
high accuracy with a small investment of resources, such
as memory usage and processing time. However, since the
accuracy of diagnosing other people using a reference signal
optimized for a person is lowered, a learning process for
each person’s ECG signal is required before diagnosis. In a
server environment that diagnoses ECG signals frommultiple
people at the same time, the software can operate flexibly, but
it is difficult to execute in parallel. Because each individual’s
ECG signal is different and each beat is independent in the
diagnosis process, the ECG signal is suitable for parallel
computation using hardware accelerator. We used a hardware
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FIGURE 10. Application and hardware development using Vitis platform.

FIGURE 11. Execution flow of the co-design system.

and software co-design to quickly diagnose the ECG signals
of many people, creating an environment that can process
large amounts of ECG data on the server.

For software and hardware co-design, we divided the algo-
rithm into a learning and a diagnosis process. Fig. 9 shows
the order in which each algorithm operates in a co-designed
platform. If the target is a person without learning data,
the algorithm learns a reference signal for diagnosis by
receiving ECG data for about 30 min. When the reference
signal is learned, data is received from the sensor, and diag-
nosis is started. At the diagnosis process, the received data
is pre-processed to remove noise and is divided into one
interval centered on the R-peak. When the interval data is
ready, the FPGA binary is implemented through a command.
The reference signals are delivered to the kernel in the form
of a clustered matrix. Then, the pre-processed data is sent to
the kernel in the form of an ECG matrix. The transmitted
data is analyzed by hardware and diagnosed as normal and
abnormal.

We used a hardware accelerator so that the algorithm
consisting of the learning and diagnosis process can execute
the data quickly. The learning process of finding a reference
signal by receiving data from a sensor is a time consuming
process. If all operations of the algorithm are performed
in the hardware, the processing speed will be fast. Hard-
ware consumes large power instead of fast execution time.
For energy-efficient hardware acceleration, it is necessary to
properly distribute execution using software and hardware
acceleration. In ECG signal analysis, which diagnoses a large
amount of data, the learning process takes up a low percentage

FIGURE 12. Architecture of the electrocardiogram diagnosis block.

FIGURE 13. Calculation circuit in the electrocardiogram diagnosis
accelerator: (a) The potential error circuit, (b) the angle error circuit, and
(c) the angle circuit.

of the total execution time because once a reference signal
is found, it is no longer executed. We tried reducing the
execution time and power consumption by executing the
learning process, which occupies a low percentage of the
total execution, as an application algorithm, and the diagnosis
process, which occupies a high percentage of total execution,
as a hardware accelerator.

We co-designed the software and hardware using Xilinx’s
Vitis integrated software platform. The Vitis platform sup-
ports high-level synthesis (HLS), which synthesizes hardware
using high-level languages such as C/C++ or Python. Fig. 10
shows the process of compiling an application program using
GCC and hardware synthesis using the Vitis compiler. Files
written in C/C++ are compiled and linked by GCC to create
a single executable file. Similar to compiling an application,
the Vitis compiler builds a high-level language consisting of
C/C++ and OpenCL into Xilinx FPGA binary file (xclbin).
In the implementation phase, Vitis automatically generates
the connection code between software and hardware.

The host application consists of an algorithm that per-
forms computing operations and an OpenCL API that com-
municates with the hardware. The OpenCL API abstracts
hardware-specific Xilinx runtime (XRT) functions so that
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the application can be developed independently of the tar-
get hardware. Fig. 11 shows the behavior of hardware and
software executed on the Vitis platform. The application first
sets the hardware target and environments available in the
execution environment. When the hardware target setting is
completed, select the kernel FPGA binary to be executed,
set the memory space for data transmission/reception with
the hardware, and set the context queue for command deliv-
ery. After all settings, data necessary for the operation are
transferred to global memory using the algorithm, and the
hardware kernel is executed. When the kernel is executed,
the FPGA binary file is implemented at the reconfigurable
region. Then, the hardware reads data at the global memory,
processes it, and writes the result to global memory according
to the internal operation. After the kernel execution, the pro-
cessor receives the result written from the kernel into the
global memory and executes the rest of the algorithm.

B. ECG DIAGNOSIS HARDWARE
Alg. 3 represents an ECG diagnosis application using
the Vitis platform. When the application starts, it trains the
normal cluster ClN and the abnormal cluster ClA with the
set of learning data. When the cluster training is complete,
the application starts preparing for using the hardware accel-
erator. It finds the hardware that can be used in the server
environment and configures the hardware. After configur-
ing the hardware, context and command queues are created
to transfer data and commands from the application to the
hardware. By preparing the binary code of pre-synthesized
hardware and configuring the kernel arguments, which is a
communication port between the application and hardware,
the preparation for using the hardware in the application is
completed. In the diagnosis process, the input ECG signal is
processed as an ECG matrix and transferred to the hardware.
The trained normal and abnormal clusters are transferred to
the hardware kernel along with the ECGmatrix and executed,
respectively. The execution results are stored in an array of
normal/abnormal cluster error values. The normal/abnormal
diagnosis of each ECG beat is determined by the smaller error
value.

Alg. 4 represents the hardware accelerator running in the
application. The hardware kernel, which is written in C++
and Vitis HLS syntax, is synthesized into hardware binary
code using Vitis HLS. All operations inside the accelerator
are executed in parallel by hardware. In the application,
the data to be provided to the hardware is inserted into the
global memory, and the address and size of the data are
passed through arguments. The hardware reads the cluster
and ECGmatrices stored in the global memory in the internal
memory. Beat data is stored in each row of the ECG matrix,
and an approximated template is stored in each row of the
cluster matrix. The hardware calculates the sum of the square
value of potential and angular errors between one beat and a
template data and then calculates the average value. Finally,
the hardware returns the error value for each beat. Since this
study focused on accelerating the ECG signal using hardware,

Algorithm 3 Application for Electrocardiogram (ECG)
Diagnosis

1 Goal: Normal/abnormal diagnosis of data
2 ClN : normal cluster
3 ClA: abnormal cluster
4 ErrN : set of error value from normal cluster
5 ErrA: set of error value from abnormal cluster
6 B: beats processed into an ECG matrix

7 % Training ECG signal
8 (ClN ,ClA) = get_cluster(learning data)

9 % Set server’s hardware
10 Get hardware configurations
11 Create context and command queue
12 Load binaries to FPGA
13 Set kernel arguments

14 % Diagnosing
15 ErrN = Launch the kernel (ClN ,B)
16 ErrA = Launch the kernel (ClA,B)
17 foreach data in B do
18 if ErrNi < ErrAi then
19 ith beat is Normal

20 else
21 ith beat is Abnormal

Algorithm 4 Error Value Calculation Hardware

1 Goal: Calculate the error value Ei of each beat
2 Cl: cluster matrix of reference signals
3 Bi: ith beat signal inside the ECG matrix
4 Ei: ith beat’s error value
5 N : number of templates in cluster

6 Vi: ith beat’s sum of squares of potential error
7 Ai: ith beat’s sum of squares of angular error

8 %Memory burst read
9 Cl ← Cluster matrix
10 B← ECG matrix

11 % Calculate potential and angular error
12 foreach Bi do
13 Vi = get_sum_of_square_verr(Cl, Bi)
14 Ai = get_sum_of_square_aerr(Cl, Bi)

15 %Memory burst write
16 (Vi + Ai)/N → Ei

the amplitude and angular errors are measured using a simple
sum of squares operation.

Fig. 12 shows the architecture of the ECG diagnosis accel-
erator configured in the FPGA. The accelerator stores a nor-
mal cluster consisting of an N number of templates and an
abnormal cluster consisting of an M number of templates.
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FIGURE 14. Execution of the proposed electrocardiogram diagnosis system for IoT environment.

Each template is wired up to the angle error and potential
error calculators. The ECG beat data stored in the ECGmatrix
is inserted into the accelerator. The input data is wired up
to each calculator, and the calculated errors are summed to
obtain average values. The diagnosis result is obtained by
comparing the average error value of the normal cluster with
that of the abnormal cluster.

Fig. 13 shows the calculation circuit inside the accelerator
block. The potential error circuit is obtained by subtracting
the potential value of the template and data, while the angular
error is obtained by subtracting the template and data’s angle.
The data inserted into the angle calculator consists of N ver-
tices. The included angle of each vertex is calculated using the
law of cosines with the previous and next vertices. When data
is input to the angle calculator, each vertex’s angle is output.

To process ECG signal input from many sensors in an
IoT environment, we proposed real-time hardware acceler-
ation (Fig. 14). Target people who have signed up for the
first time send ECG data signals for learning to the system.
The individual normal/abnormal templates are converted into
template clusters and stored in the cluster matrix. Each signal
transmitted from the sensors is stored in the ECGmatrix after
pre-processing and is diagnosed in real-time at the FPGA.
The entire system speeds up the computation using hardware
and process data of multiple people in parallel.

V. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
For the experiment of the proposed algorithm, a Xilinx Alveo
U200 FPGA accelerator card and two Intel Xeon Bronze
3204 processors are configured in the server (Fig. 15). Xeon
processor consisting of six threads has a maximum clock
speed of 1.9 GHz and a memory read speed of 2133 MHz.
The Alveo U200 card based on Xilinx’s UltraScale archi-
tecture consists of 892,000 number of lookup tables (LUTs)
and 100 MHz clock sources. It has an 18.6 tera operation
per second computation speed at INT8 precision.

For the proposed method’s performance evaluation,
MIT-BIH ADB, a representative arrhythmia database, was

FIGURE 15. Server environment for abnormal electrocardiogram
diagnosis using Alveo U200.

used [31]. Each record of theMIT-BIHADB is a 30-min ECG
signal sampled at 360 Hz. We diagnosed five different data,
including 1987 beats, to simulate the diagnosis of large-scale
data. Each person’s data is stored as a cluster for diagnosis
through the learning process. The diagnostic process was
conducted with execution using only software and hardware
acceleration.

Fig. 16 shows a timeline trace of a hardware-accelerated
application running on the server. In the process of (1),
the application creates each cluster by training on the ECG
data of five people. In the process of (2), the kernel is con-
figured and the binary is implemented in the actual FPGA.
Fig. 16 (b) shows an enlarged part of the kernel timeline
in (a). The application delivers data to the kernel through a
queue, executes the kernel to process the data, and receives
the execution result. Inside the designed kernel, the ECG data
of five people are simultaneously diagnosed through parallel
processing.

B. EXECUTION TIME
We executes five people’s ECG signal diagnosis for four
times. Fig. 17(a) shows the total execution time using the
software and hardware accelerators when the data of five
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FIGURE 16. Timeline trace of (a) co-design platform execution and
(b) kernel execution using Alveo U200.

FIGURE 17. (a) Total execution time using software and hardware and
(b) execution time for each beat of data.

people with 1987 ECG beats were diagnosed. Fig. 17(b)
shows the execution time when diagnosing an ECG beat.
On average, diagnosing one ECG signal using the software at
the server takes 0.573 ms, and diagnosing five people’s ECG

FIGURE 18. Total execution time according to the amount of hardware
running concurrently.

FIGURE 19. Number of used lookup tables according to the amount of
hardware running concurrently.

FIGURE 20. Total power consumption according to the amount of
hardware running concurrently.

signal takes 5.7 s. With the hardware acceleration, it takes
0.290 ms on average to diagnose an ECG signal because the
iterative computation of the diagnostic algorithm is quickly
processed by pipelining. The hardware that simultaneously
diagnoses five people’s ECG signal takes 0.572 s, an 89.96%
reduction compared to the software execution.

For more experiments on hardware parallel execution,
we analyzed the execution time and the size of the accelerator
when diagnosing the ECG signals of 10 people. Fig. 18
shows the average execution time according to the type of
accelerator. The accelerator is divided into HW 1 to HW
10 depending on how much data can be simultaneously pro-
cessed in parallel. Using only a processor without an accelera-
tor, represented as SW, takes 11.39 s on average for diagnosis.
The more parallel execution the accelerator supports, the less
execution time it takes.
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C. POWER CONSUMPTION
Fig. 19 shows the number of LUTs required when implement-
ing an accelerator. In principle, the more work the accelerator
executes, the more LUTs it needs. Using the number of
LUTs and the execution time, we estimate the total power
consumption by the method of (4).

E = (PHW ×
nLUTs
N
+ PSW )× t (4)

The Alveo U200 has 892,000 number of LUTs, which
are represented by N , and it consumes 100 W of power on
average (PHW ). The Intel Xeon 3204 processor consumes
85W on average (PSW ). We assumed that average power con-
sumed by the designed hardware accelerator is proportional
to the number of used LUTs, represented by nLUTs. Therefore,
the power consumed by the accelerator per second can be
calculated by multiplying the average power of the hardware
by the ratio of the number of used LUTs to the total. The
total power consumption, denoted by E , can be obtained by
multiplying the execution time by the power consumed by the
accelerator and processor per second.

Fig. 20 shows the power consumption calculated from (4)
using the execution time and the number of LUTs. Diagnos-
ing without an accelerator has high power consumption due
to the slow processing speed, which takes 11.39 s. Although
the accelerator’s instantaneous power consumption is greater
than the processor’s instantaneous power consumption, its
total power consumption is smaller because of the shorter
execution time. As the hardware gets bigger, more beats
can be simultaneously diagnosed, reducing the execution
time and increasing the instantaneous power consumption.
As shown in Fig. 20, as the number of hardware increases,
the total power consumption decreases. However, starting
from HW 9, the instantaneous power consumption is larger
than the reduced execution time, resulting in increased power
consumption. In this experiment with ECG signals of 10 peo-
ple, HW 8, which can diagnose eight beats in parallel, con-
sumes the least power compared to the execution time.

VI. CONCLUSION
This study introduces a hardware acceleration system for
diagnosing ECG signals in real-time in an IoT environment
where a large amount of data is generated. Existing diagnosis
algorithms require a large amount of memory and time to
train a reference signal, which is a standard for diagnosis.
The proposed system uses an approximated template-based
classification to reduce memory usage and time required for
learning and diagnosing. Since the learned approximated ref-
erence signal has low fidelity, the detection rate is improved
by storing multiple reference signals using the template clus-
ter.We focused on acceleration of ECG signal diagnosis using
parallel accelerator. Therefore, experiments were conducted
using basic amplitude and angular difference calculations
rather than algorithms based on precise error detection.

In the diagnostic process, each reference signal is inde-
pendent; thus, it can be simultaneously executed using an

accelerator. We designed a software and hardware co-design
platform that receives data for training, generates template
clusters, and synthesizes accelerator in real-time, using a
diagnostic algorithm. The co-design platform, which imple-
ments hardware at FPGA in real-time, can obtain the flex-
ibility of software execution and high performance of the
hardware. As a result of executing five people’s ECG signals
on the processor and Alveo U200 FPGA, the execution time
using the accelerator is reduced by 89.96% compared with
the execution time using only the processor. As the hard-
ware accelerates more computations, total execution time is
decreased. However, the instantaneous power consumption
is increased. When using hardware that accelerates single
diagnosis, the overall power consumption is reduced by 70%
compared with the power consumption using the processor.
As the size of hardware grows, the instantaneous power
consumption increases, but the reduction in execution time
is limited. Therefore, it is necessary to find appropriate size
of hardware in the acceleration system.

The proposed platform is suitable for a diagnostic sys-
tem using a hardware accelerator since the memory usage
required for diagnosing ECG signals for a person is small.
Besides, the diagnosis of each person’s signal is performed
independently. We designed a large-scale ECG signal diag-
nostic platform using an accelerator that simultaneously diag-
noses the ECG signals of several people. The more people
the accelerator can simultaneously diagnose, the less time
required for diagnosis, thereby increasing the size of the
hardware. In this study, the power consumption, according to
the size of the accelerator, was experimented with. In future
studies, this study will be the basis for designing an efficient
diagnostic system suitable for the situation by adjusting the
size of the accelerator in real time according to the change of
the input ECG signal, the required diagnostic precision, and
the state of the server.
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