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ABSTRACT Community search is a fundamental problem in graph analysis. In many applications, network
nodes have specific properties that are essential for making sense of communities. In these networks,
attributes are associated with nodes to capture their properties. The community influence is a key property of
the community that can be employed to sort the communities in a network based on the relevance/importance
of certain attributes. Unfortunately, most of the previously introduced community search algorithms over
attributed networks neglected the community influence. In this paper, we study the influential attributed
community search problem. Different factors for measuring the influence are discussed. Also, different
Influential Attributed Community (InfACom) algorithms based on the concept of k-clique are proposed.
Two techniques are presented one for sequential implementation with three variations and one for parallel
implementation. In addition, we propose efficient algorithms for maintaining the proposed algorithms on
dynamic graphs. The proposed algorithms are evaluated on different real datasets. The experimental results
show that the summarization technique reduces the size of the graph by approximately half. In addition,
it shows that the proposed algorithms EnhancedExact and Approximate outperform the state-of-the-art
approaches Incremental Time efficient (Inc − T ), Incremental Space efficient (Inc − S), Exact , and
2-Approximation (AppInc) in both efficiency and effectiveness. For theEnhancedExact algorithm, the results
show that the efficiency is at least 7 times faster than the Inc− S algorithm, at least 4.5 times faster than the
Inc− T algorithm, and 2 times faster than the AppInc algorithm. For the Approximate algorithm, the results
show that its efficiency is at least 10 times faster than the Inc− S algorithm, at least 6.4 times faster than the
Inc− T algorithm, and 3 times faster than the AppInc algorithm. Finally, the results show that the proposed
algorithms retrieve cohesive communities with a smaller diameter than all the state-of-the-art approaches.

INDEX TERMS Community search, k-clique percolation community, summary graph, node attribute,
keyword search.

I. INTRODUCTION
In recent years, due to the excessive use of numerous real
networks such as social networks, a large amount of complex
data has been generated. For example, Facebook Friendship
Network has more than 2.74 billion monthly active users
worldwide [16]. As of the first quarter of 2019, Twitter has
more than 330 million monthly active users [12]. Due to
this extraordinary rise in the volume of data, it is crucial to
design a method to efficiently detect hidden patterns among
the group of users. Graph data models played a critical role
in big data analysis in recent years [5]. In real-world applica-
tions, graphs are used to represent different types of entities.
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These entities generally have attributes that are important
for understanding the community using graphs. For example,
a node on an academic collaboration network like DBLP
indicates an author and the edge between the two authors
indicates a collaboration relationship. Nodes can also have
attributes that represent their area of expertise. These net-
works can be modeled using attributed graphs [48] where the
attributes associated with the node capture its properties.

A community can be defined as a set of vertices (nodes)
which probably share common features, where the nodes in
the same communities have a dense connection with each
other than that of different communities [20], [24]. The task
of finding communities can be divided into twomajor classes:
community detection, and community search. Community
detection methods usually use global criteria to detect all the
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communities from an entire graph, where the focus is more
on quality (e.g., cohesiveness) than efficiency. [7], [19], [20],
[28], [40], [41], [44], [45]. Community search is a funda-
mental problem in graph analysis [2]. Community search is a
query-dependent variant from the community detection prob-
lem. In community search, communities are defined based on
query conditions, and community search solutions aim to find
communities efficiently in an online manner [42]. Different
types of cohesive subgraphs are used as building blocks for
communities in graph such as k-core [10], [17], [18], [31],
[39], [46], k-truss [1], [23], [25]–[27], [36], [47], and clique
or quasi-clique [13], [43].

In all previous studies on community detection and com-
munity search, a community is defined as a densely connected
subgraph. This ignores another important aspect, namely
the ‘‘influence’’ of a community. Community influence can
be defined as a key community property that can be used
to classify communities in the network based on the rele-
vance/importance of certain attributes. Recently, detecting
influential communities was studied. It was first introduced
by Li et al. in [34] later it was investigated in [3], [6], [8],
[32], [35]. The common goal of finding influential commu-
nities is to find a closely connected group of users (vertices)
who have some dominance over other users in the graph in a
particular domain. Previous attempts have defined the influ-
ence of the community as the minimum weight of its nodes,
where the weight denotes the influence (importance) of the
node. Traditional community search research that considered
attributed graph have the following drawbacks:

1) Require an input query vertex, and then find a group of
neighboring vertices whose attributes have high simi-
larity with the query vertex attributes. A major limita-
tion of such community search techniques is that the
user needs to define the query vertex which might not
be possible or suitable in many application domains.

2) Another type of community search solution finding
cohesive communities having close similarity with
query attributes. However, they do not consider the
influence of the community.

3) The other type of community search solutions only
work on non-attributed graphs and considers the influ-
ence of the community as the minimum weight of its
nodes, where the weight denotes the influence (impor-
tance) of the node. However, this assumption ignores
the relationship between nodes. Also, it fails to express
the actual influence of the nodes in a community with
respect to its associated attributes.

4) Effective storage utilization is another challenge
that faces the problem of community detection/
search. Existing models require maintaining the orig-
inal graph and/or its index. Yet such information is
considerably huge to keep in memory.

To fill the above research drawbacks, we propose a new com-
munity search approach called Top-r Influential Attributed
communities (InfACom) in large networks. The main con-
tributions of the paper are the following:

1) Proposing a new influence measure for a community
that considers the attribute weight (the influence value
of the node in this attribute), the attribute connectivity
(the degree of connectivity between nodes of the same
attribute), and the relationships between nodes.

2) Proposing a new approach for graph summarization to
improve memory usage.

3) Proposing different community search algorithms that
retrieve the influential communities.

4) Proposing efficient algorithms for managing dynamic
networks.

5) Designing a parallel approach that decomposes the
original graph into different subgraphs and allows
searching for the influencing communities in parallel
on these subgraphs.

6) Conducting experiments on real datasets to evaluate the
proposed algorithms. The experimental results show
that the proposed algorithms are highly efficient and
effective in retrieving influential communities com-
pared to the state-of-art approaches.

The rest of this paper is organized as follows: Section II
presents the needed preliminaries and some related defi-
nitions. Section III presents related work. Section IV dis-
cusses the influence calculation in attributed community.
In Section V, we discuss different influential attributed com-
munity techniques. In Section VI, we explain the summary
graph update algorithms. Our experimental results are pre-
sented in Section VII. Finally, Section IX gives a summary,
critique of the findings, and proposes directions for future
work.

II. PRELIMINARIES
In this section, we present preliminaries and some related def-
initions that will be used in the rest of this paper. Section II-A
presents some graph concepts. Graph summarization concept
is discussed in Section II-B.

A. BASIC GRAPH CONCEPTS
We consider an undirected, unweighted graph G = (V ,E),
where V represents the set of nodes (also called vertices) and
E represents the set of edges in G. We denote the number
of nodes and number of edges of graph G by n and m
respectively, i.e., n = |V | and m = |E|. For each node
u ∈ V , we use N (u) to denote the set of neighbors of u in
G, i.e., N (u) = v|(u, v) ∈ E . The degree of a node u ∈ V ,
denoted by d(u), is the number of neighbors of u in G,
i.e., d(u) = |N (u)|. Given a set of node Vs in G, the node-
induced subgraph by Vs, denoted by GVs = (Vs,Es), is a
subgraph of G, such that GVs = (Vs, (u, v) ∈ E|u, v ∈ Vs).
A graph G is complete if and only if its vertices are pairwise
adjacent, i.e. ∀vi, vj ∈ V , (vi, vj) ∈ E and i 6= j. The density
of the complete graph is 1.
Definition 2.1 (Graph Density): The density of the

graph is a measurement of the number of connections
between nodes compared to the number of possible connec-
tions between the nodes. [13]. The density of an undirected
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graph is calculated as,

Density =
2m

n(n− 1)
(1)

In this paper, we aim to find the influential communities in
an attributed graph.
Definition 2.2 (Attributed Graph): An attributed

graph is a 3-tuple G = (V ,A,E), where V is the set of
vertices, E is the set of edges such that eij is an edge between
nodes vi, vj, and A = a1, . . . , an is a set of attributes
associated with V . Such that for each u ∈ V , there is an
attribute vector A(u) = (a1(u), . . . , an(u)) is associated with
u, where al(u) is the attribute value of u on the ith attribute
ai(1 ≤ i ≤ n).

In practice, the graphs are continuously evolving. Thus
attributes and edges of graphs are frequently updated.
Definition 2.3 (Dynamic Graph): Is a graph that is

subject to a series of updates such as inserting or deleting
graph edges or vertices, or changing attributes associated
with nodes.
Definition 2.4 (A Community): Is a set of vertices

(nodes) which probably share common features, where the
nodes in the same community have dense connections with
each other than that of different communities [24], [30].

Different types of cohesive subgraphs are used as build-
ing blocks for communities in graph such as k-core
[17], [18], [46], k-truss [1], [23], [25], [26], [36], [47], and
clique or quasi-clique [13], [43], In this paper, we consider
the k-clique community as it has the most cohesive structure.
A k-clique is a complete subgraph of k nodes, which has
a minimum diameter of 1 and a maximum density of 1.
Furthermore, k-clique has the following properties: (1) each
node has at least (k-1) neighbors; (2) After removing edges
less than (k-2), the graph remains connected; (3) Each pair of
nodes has at least (k -2) neighbors. Therefore, the k-clique is
a subgraph of (k- 1)-core, and (k- 2)-truss, indicating that it
has the strongest cohesiveness.
Definition 2.5 (k-Clique): A k-clique is a complete

subgraph of k vertices, where each pair of vertices is adja-
cent. A k-clique is the densest graph among all k-node
graphs [13], [38].

In many applications, communities can overlap each other,
such as studying cancer-related proteins in protein interaction
networks [29], and the evaluation of stock correlations [21].
Definition 2.6 (k-Clique Adjacency): Given

2 cliques Ci and Cj in G, Ci and Cj are adjacent if they share
(k-1) nodes, i.e., |Ci

⋂
Cj| = (k − 1) [13], [38].

Definition 2.7 (k-Clique Adjacency Graph):
Given an undirected graph G and an integer k , the k-clique
adjacency graph of G denoted by GC = (VC , EC ) such that
each node vi ∈ VC is a k-clique in G and there is an edge
e(vi, vj) if the corresponding k-cliques Ci and Cj in G are
adjacent [13], [38].
Definition 2.8 (k-Clique Component): Given the

k-clique adjacency graph GC , the k-clique component is the

series of k-cliques C1, . . . ,Cn such that Ci and Ci+1 are
adjacent for 1 ≤ i ≤ n [13], [38].
We consider the k-clique components as the influ-

ential communities, where the influence of the community
inf (H ) is measured using Equation 4 (see Section IV). k is
termed as cohesion factor.
Definition 2.9 (k-Influential Community):

Let G = (V ,A,E) an undirected, attributed graph and an
input k, the k-influential community is an induced subgraph
H of G that satisfies the following:
• Connectivity: H is a connected graph; there is a path
between pair of vertices.

• Structure Cohesiveness: H is a dense subgraph (k-clique
component).

• Maximal Structure: H is a maximal induced subgraph,
where there is no other induced subgraph H ′ such
that (1) H ′ satisfies connectivity and cohesiveness con-
straints, (2) H ′ contains H , and (3) inf (H ′) = inf (H ).

Now, we define the top-r k-Influential attributed commu-
nities (InfACom) as follows:
Definition 2.10 (InfACom Search Problem): Given

an undirected, attributed graph G = (V ,A,E), and two
parameters k and r, where k represents structure cohesiveness
(i.e., its vertices are tightly connected) and r be a positive
integer specifying the number of top communities to be
returned. Then, InfACom finds the top-r influential commu-
nities {H1,H2, . . . . . . . . . ,Hr} with highest influence score
with respect to some attribute ai in A.
Example 2.11: Consider an attributed graph of researchers,

as shown in Figure 1, where nodes represent authors who
published papers in research fields related to ‘‘Artificial
Intelligence (AI)’’, and ‘‘Database (DB)’’. A Ph.D. student
may be interested in finding the influential community who
are working in ‘‘DB’’. The community [v1, v2, v3, v7, v8] is
returned as a top-2 influential community with k = 4 (see
Section V for the influential calculations) since the members
of the community have influence in ‘‘DB’’, the community is
dense and also contains highly influential members.

FIGURE 1. An attributed graph G.

B. GRAPH SUMMARIZATION
At the current growth rate of data volume, it is very impracti-
cal to store, process, analyze, and visualize these large graphs.
Therefore, in order to make graph data management, process-
ing, and visualization tractable, summarization techniques
are becoming increasingly important. Graph summarization
techniques aim for reducing the size of the graph, then it
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can be loaded into the memory to improve the performance
of analytics algorithms. In addition, many graph algorithms
that are complex or expensive to run on larger graphs can
be efficiently executed on summary graphs. one of the key
challenges of graph summarization is that it can have a serious
impact on the amount of ‘‘useful information’’ represented
by the graph. Several techniques [37] have been introduced
to summarize graphs such as grouping-based, bit-based com-
pression, simplification-based, and influence-based methods.
Grouping-based methods aggregate nodes into supernodes
connected by superedges according to the structural char-
acteristics and attributes of the nodes. Grouped nodes are
close to each other in structure and have similar attributes.
Some methods use existing clustering techniques to find and
assign clusters to supernodes. Others use an application-
dependent optimization function to create the supernodes and
superedges. Bit compression is a common technique for data
mining. Such a method aims to minimize the number of
bits required to describe a particular graph. Simplification-
based methods simplify the original graph by deleting less
important nodes or edges, which in turn produces a sparse
graph. The summary graph consists of a subset of the original
nodes and/or edges. Several algorithms can be based on sim-
plified summaries, such as sampling and sketching. Finally,
influence-based summarization methods for labeled graphs
are currently scarce. These methods leverage both structural
and node attribute similarities to summarize the influence or
diffusion process in large networks.

III. RELATED WORK
This paper classifies the related work into the following three
main categories: community search, attributed community
search, and influential community search.

A. COMMUNITY SEARCH
Community search aims to find the community that contains a
specific query node. Mining cohesive subgraphs is one of the
most fundamental graph problems which aims to find groups
of well-connected nodes. A variety of models have been
proposed such as quasi-cliques, k-core, and k-truss [2], [14],
[23], [26]. All these approaches focus only on the commu-
nity structure while ignoring node attributes as well as com-
munity influence. In [2], an indexing approach is proposed
for solving the Minimum-Core community search. First,
an index is constructed to hold the structural information of
all k-cores and then develop a heuristic strategy to connect
all query nodes into a candidate community and refine it.
This approach contains two main steps: preprocessing and
query processing. In the preprocessing step, a Shell-Index is
constructed to precompute and store some useful information
for query processing. In the query processing step, the proper
information is retrieved from the index and processed to
obtain the answer to the query. Cui et al. [14] proposed
a local-search algorithm to improve the efficiency of the
global-core algorithm. This algorithm iteratively expands
the neighbors of a single query vertex, until a subgraph

containing the optimal solution is constructed. Then, this
subgraph is used as a reduced version of the input graph to
find the best solution. In [23], a novel Triangle Connectivity
Preserving (TCP) Index was designed to find all overlapping
communities of a given query vertex. However, they ignore
the diameter of the resulting community. Finally, the problem
of closest community search was studied in [26] based on k-
truss and graph diameter (measure closeness of the nodes).
The proposed community model requires that all query nodes
are connected in this community.

B. ATTRIBUTED COMMUNITY SEARCH
Community search over attributed graphs problem has
attracted much attention in recent years [9], [11], [17],
[18], [25], [46], [49]. The community search problem for a
profiled graph was investigated in [9]. The profiled graph is
an attributed graph in which each vertex is associated with a
set of labels arranged hierarchically called a P-tree. A Core
Profiled tree (CP-tree) index was constructed by considering
both the graph vertices and P-trees of a profiled graph. Each
CP-tree node corresponds to a label and stores the k-cores
sharing this label. The keyword search-based method was
proposed in [11] to generate a community with a structure
and attribute cohesiveness. First, the influential attributes are
derived according to the probability of occurrence of each
pair of attributes type-value to all nodes and edges. The
Attribute Index Structure was created according to all the
attribute information on nodes. The attributes are classified
into separate groups based on the attribute similarity between
the nodes, and their degree structure. Based on this index a
method for determining the community of nodes in an online
manner was created. In [17] the problem of finding a spatial-
aware community (SAC) was studied. SAC is a community
with high structure cohesiveness and spatial cohesiveness.
Given a query vertex q, the goal is to find a SAC containing
q in the smallest minimum covering circle MCC (smallest
radius) and all vertices of SAC satisfy the minimum degree
metric which is a metric used to measure the structure cohe-
siveness. The authors proposed exact solutions for finding
a SAC that contains q as well as approximation algorithms
to compute a SAC for large datasets. In [18], the attributed
community query (ACQ) problem was investigated, which
returns an attributed community (AC) in an attributed graph.
A tree-based index was developed to enable efficient AC
search. The index is a compressed tree that is built based on
the key observation whose cores are nested. The nodes of the
tree are further augmented by inverted lists. This index was
created using two approaches (top-down, and bottom-up).
The problem of finding connected and close k-truss sub-
graphs containing query nodes was investigated in [25] over
attributed graphs, with the largest attribute relevance score.
First, an attribute score function satisfying the desirable
properties of a good attributed community was introduced.
Then, an efficient greedy algorithmic framework was devel-
oped to find the community containing given query nodes
according to the given query attributes based on the maximal
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(k, d)-truss. Finally, an index was built to maintain k-truss
structure and attribute information to efficiently answer the
given query. The problem of finding (k, r)-core was investi-
gated in [46], which intends to find cohesive subgraphs on
social networks considering both user engagement and sim-
ilarity perspectives. Several novel pruning techniques were
proposed to enumerate the maximal (k, r) efficiently. Finally,
the problem of geo-social group search based on spatial con-
tainment was investigated in [49]. Given a set of spatial query
points and a social network, the query is to find a minimum
group of users whose members satisfy a certain social rela-
tionship and whose associated regions can jointly cover all
the query points. A novel Social-aware R-tree (SaR-tree) was
designed where each entry maintains some aggregate social
relation information for the users covered by this entry.

C. INFLUENTIAL COMMUNITY SEARCH
Influential community search aims to discover a closely
connected group of nodes (vertices) that have some domi-
nance over other nodes in the graph in a specific domain
[3], [33], [34]. In [3] an instance-optimal algorithm was pro-
posed to compute the top-k influential communities without
using indexes. In [32], a new community model was pro-
posed that reveals the communities with the highest outer
influences. Also, a tree-based index structure and differ-
ent algorithms were developed to improve search perfor-
mance. In [33], a new skyline community model is proposed
that detects communities in a multi-valued network, where
each node is associated with d numerical attributes. Finally,
Li et al. [34] proposed a new community model based on
the concept of k-core, called the k-Influential community.
This model considered the importance of nodes. To find
the k-Influential community, the key idea of the proposed
solution is to build an index that combines the importance of
nodes and the k-core structure. Also, an index-based online
query processing algorithm was introduced to quickly iden-
tify the k-Influential community that contains query nodes.

IV. INFLUENCE CALCULATION IN ATTRIBUTED
COMMUNITY
As discussed in previous sections, the current attempts in
graph influence calculations do not explain the reasoning
behind associating an influence value. In this section, we dis-
cuss the main factors that affect the influence value of a
community.

For the following discussion, let G = (V ,A,E) be an
attributed graph, where vi is associated with a set of attributes
denoted by avi . In this paper, we consider attributes represent-
ing sets of interesting topics of nodes. For example, attribute-
set {DB, AI} associated with node vi expresses that vi is
interested in topics DB and AI.

A vertex weighted Gw is an undirected graph such that
for each vertex vi ∈ V there exists a vector of weights
[a1wia2wi . . . . . . anwi ] such that ajwi is the weight of attribute

aj ∈ A for a node vi such that ajwi is calculated using Eq.2.

ajwi = α +
|V ′|
|N (vi)|

+ γ
|V ′′|
|VNN |

(2)

where,

α =

{
1 aj ∈ viA
0 Otherwise

N (vi) represents the set of direct neighbors of vi. V ′ repre-
sents the set of direct neighbors of vi that contains the attribute
aj, V ′ = {v′ ∈ V : (v′, vi) ∈ E, aj ∈ v′A},
VNN represents the set of the next neighbors of vi, VNN =
{vNN ∈ V : (vNN , vk ), (vk , vi) ∈ E}
V ′′ represents the set of next neighbors of vi that contains

the attribute aj, V ′′ = {v′′ ∈ V : (v′′, vk ), (vk , vi) ∈
E|aj ∈ v′′A}, and γ is a tuning parameter. In the general case,
the value of γ can be tuned depending on the number of hops
of interest. For the rest of the paper, we assume that γ = 0.5 to
reflect two hops influence.

The influence value of a community is measured based on
the following factors:

1) The Average Weight of an Attribute: Given a subgraph
G(V ,A,E) and an attribute aj, the average weight of
this attribute in G is given by

avg(ajG) =

∑
ajwi
|V |

∀i ∈ V (3)

Consider graph G in Figure 2. Since node v1 has the
largest number of direct neighbors and next neighbors
that contain the topic ‘‘DB’’ thus it has more influence
on ‘‘DB’’ than other nodes in the graph.

FIGURE 2. Graph G represents the role of neighbors.

2) The Strength of the Relationship Between Nodes: The
authors in [26], [45] explained an undesirable phe-
nomenon called the ‘‘free-rider effect’’: the detected
community contains irrelevant nodes. To avoid this
phenomenon, the diameter Diam(C), an important
feature of a community, is taken into consideration
[15], [26] to measure the closeness of the nodes. The
diameter of graph G is the shortest path between the
farthest 2 nodes in G.

3) The Effective Density of the Attributed Community:
Given the fact that a node can exist in more than one
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community (also known as community overlap), com-
puting the contribution of the attribute in an overlap-
ping community is a crucial measure to determine the
effective density of the community.
The density of a community represents the degree of
connectivity among the community nodes. The density
of a graph G = (V ,E) is measured by 2|E|

|V |(|V |−1) .
Having an attributed community, the effective density
of the attributed community is a measure of the connec-
tivity among the nodes having the same attribute among
the attribute list.
To compute the effective density of attributed commu-
nity, we first introduce the following definitions:
Definition 4.1 (Effective Node): An effective
node veff is the node that has a set of attributes A′ such
that the query attribute aQ ⊆ A′.
Definition 4.2 (Effective Edge): An effective
edge eeff is the edge between 2 effective nodes.
Hence, the effective density

σ (G) =
2|eeff |
|v|(|v| − 1)

.

Given the above measures, the community influence of an
attributed undirected graph G(V,A,E) is given as

inf (G) = σ (G)
(
avg(ajG)

diam(G)

)
(4)

V. INFLUENTIAL ATTRIBUTED COMMUNITY
SEARCH (InfACom)
This section introduces two different techniques for solving
the problem presented in Definition 2.10: Whole InfACom,
and Decomposed InfACom. Whole InfACom deals with the
given graph as one part. Although this approach yields high
accuracy, yet it is time-consuming. On the other hand, decom-
posed InfACom is a parallel technique that first decomposes
the given graph into smaller partitions, and then processes
them in parallel, aggregates results, and finally returns the
final answer (communities).

A. WHOLE InfACom
In this section, we present Whole InfACom a sequential
technique that consists of two main modules: graph summa-
rization module and community search module.

1) GRAPH SUMMARIZATION MODULE
The graph summarization module generates a much com-
pact and informative graph that summarizes the structural
characteristics of the original graph. It summarizes the orig-
inal graph by merging nodes and edges from the original
graph into node groups (supernodes) and group relationships
(superedges), respectively. Using the summary graph, all
structure information, as well as the attribute information, can
be restored.
Definition 5.1 (The Summary Graph): Given an undi-

rected graph G = (V,A,E), the summary graph is denoted
as Gs = (S, Es). Each node of the summary graph, called

a supernode, is a complete component in G. Each supernode
has the following metadata: a) MemberNodes (MNodes): is
the set of nodes in the supernode containing the weights of the
attributes, b) NeighboringNodes (NNodes): is a list that stores
an entry for each node in MNodes along with its neighbors in
G excluding the nodes existing in the MNodes, c) AttList:
which is an inverted list that stores an entry for each
attribute that the supernode has alongside the other nodes
containing it.

The superedge is a weighted edge that represents a relation-
ship between two supernodes. A superedge eij exists between
two supernodes Si and Sj if and only if there exists at least one
edge connecting any node in MNodes of Si with any node in
MNodes of Sj.
There are two main steps for creating the summary graph:

1) Create Supernodes: This step aims to create supern-
odes ofGs where each supernode is a complete compo-
nent that summarizes a large number of nodes from G.
First, the nodewith themaximum degree is determined.
Then, the algorithm checks out the neighbors of this
node for creating a complete graph. The neighbors
are checked one by one according to their degree.
The neighbors with the highest degree are checked
first so that the algorithm can summarize the largest
number of nodes together into one supernode. Once a
complete component is created, a supernode is created
with its metadata. Then, all nodes in MNodes are
marked as visited in G. This operation is repeated
until no unvisited nodes are left in G. While creating
the supernodes, two supplementary data structures are
constructed: 1) NodeList which is a list that stores an
entry for each node in G along with the identifier of the
supernode that contains it, and 2) MapList which is a
list that stores an entry for each attribute in the graph
along with the supernodes containing it as well as the
maximum weight of the attribute in this supernode.

2) Create Superedges: This step creates a superedge by
adding a weighted edge between any two supernodes Si
and Sj, if there are nodes shared between the NNodes
of Si and the MNodes of Sj. The weight represents the
number of shared nodes.

Details are given in Algorithm 1, which is described below.
Algorithm 1 calls two main Procedures: CreateNodes

that is responsible for creating supernodes and Connect
Nodes that is responsible for creating superedges.
CreateNodes first calls FullComponent that is respon-
sible for generating a fully connected component (step 6).
First, it finds the unvisited node u with the highest degree in
the graph G and saves it in an empty set S. Then, it finds all
its unvisited neighbors UN. Each node vi of UN is checked
that it is connected to the nodes stored in S. If yes, vi is
saved in S. Once the condition fails, FullComponent
returns MNodes with the maximal full component that
contains u. Then, NNodes and AttList are generated
with the neighbors and attributes of all nodes in MNodes,
respectively (steps 7-8). Si is created with its metadata and
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the supplementary lists (NodeList and MapList) are updated.
Also, Si is added to Gs (steps 9-11). Finally, all nodes in
MNodes are marked as visited. This operation is repeated
until no unvisited nodes are left in G.

The process of creating superedges is detailed in
ConnectNodes procedure. It iterates for all supernodes
that are created from the previous step to add edges to
their neighbors. Using the NNodes of Si and NodeList,
the superedge can be created (steps 2-3).

Procedure CreateNodes(G)

1 Let Gs be empty graph
2 adj = adjlist(G)
3 set i = 0
4 while len(G.UnvisitedNodes) > 0 do
5 i = 0
6 MNodes = FullComponent()
7 NNodes = Neighbors(MNodes)
8 AttList = Attributes(MNodes)
9 Si = CreateNode(NNode, MNode, AttList)
10 UpdateSupList(NodeList, MaoList)
11 AddNode(Gs, Si)
12 Mark(MNodes)
13 i = i + 1

14 return Gs

Procedure ConnectNodes(Gs)

1 forall Si in Gs do
2 forall k in Si.NNodes do
3 AddEdge(Si, Gs.nodes(Nodelist[K]))

4 return Gs

Algorithm 1 Create Summary Graph
Input : Original graph G.
Output: Summary graph Gs.

1 Let Gs be an empty graph.
2 Gs = CreateNodes(G)
3 Gs = ConnectNodes(Gs)
4 return Gs

2) COMMUNITY SEARCH MODULE
This section shows the community search module that
leverages the notion of community influence defined in
Section IV. Different search algorithms are proposed to
identify the top-r k-influential attributed communities. This
section first presents the basic exact algorithmBasicExact
which traces each supernode for all possible solutions
(k-cliques, adjacent k-cliques, and k-clique components).
This is time-consuming for large graphs. So, a more

efficient algorithm is presented called EnhancedExact
that ignores some of the irrelevant results. Inspired by
EnhancedExact, an approximate search algorithm is
proposed.

a: BASIC EXACT ALGORITHM
The main idea of the basic exact algorithm is to find all possi-
ble communities with the required attributes. Then, it returns
the most influential communities according to Eq. 4. The
basic exact search algorithm consists of three main steps:

1) Find All k-Clique Components That Contain the
Required Attributes: First, MapList is used to retrieve
all supernodes that contain the required attributes. The
supernodes can be considered as seed nodes for cre-
ating communities. Each supernode and its neighbors
are checked. The Attlist of each supernode is used to
identify the subgraph H of the nodes that contain the
required attributes. Then, construct an adjacent graph
of H and retrieve all communities. In the case no
solution is found, nodes that do not have any of the
required attributes can be added to H and the test is
repeated.

2) Calculate the Influence of Each Community: Eq.(4) is
used to calculate the influence of each community that
resulted from step 1.
For calculating the diameter: it is time-consuming to
calculate the shortest path between all pairs. We can
exploit the adjacency graph properties to minimize the
calculations between pairs: a) the diameter of a single
node returned from the adjacency graph (k-clique),
b) the diameter of 2 adjacent k-cliques is equal to
2 because they share (k-1) nodes, c) for k-clique com-
ponent the shortest path between each node and its
indirect nodes is calculated.

3) Check the Maximal Condition: Check that for each
community C there is no community C ′ such that
C ⊂ C ′, and f (C ′x) >= f (Cx)

Algorithm 2 works as follows: First, it loops on each supern-
ode Si in MapList that contains the required attribute. Then,
finds the subgraph that contains Si and its neighbors which
contains the effective nodes (step 4). The algorithm ignores
irrelevant subgraphs using the condition in step 5. Such that
the size of the inducted subgraph H2 should be at least equal
to the size of the k-clique. The Size(H2) uses the following
equation to determine the size of H2:

Size(H2) =
∑

Sj∈N (Si)

weight(e(Si, Sj))

+

∑
|Si.MNodes|(|Si.MNodes| − 1)/2 (5)

Then, all possible solutions are returned using
FindAllPossible procedure that: first, builds the
adjacency graph (see definition 2.7) steps (3-9). Based
on this adjacency graph the adjacent k-cliques (see
definition 2.6) are generated (step 8). Also, k-clique compo-
nents (see definition 2.8) are generated from the adjacency
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graph (steps 10-11). The influence of each community is
calculated using equation 4. Then, CheckMaximal checks
the maximal condition. Finally, the top-r influential commu-
nities are returned (step 14).

Procedure FindALLPossible(H, k)

1 R1 = {} R2 = {} R3 = {}
2 R1 = FindCliques(H, k) // see Definition 2.5
3 AdjGraph = Graph()
4 AdjGraph.AddNodes(R1)
5 for C1 in R1 do
6 for C2 in FindAdjCliques(C1) do
7 if |C1.intersection(C2) >= (k-1)| then
8 R2.ADD(C1, C2)
9 AdjGraph.AddEdge(C1, C2)

10 for Component in ConnectedComponents(AdjGraph)
do

11 R3.Add(Component)

12 Result.ADD(R1, R2, R3)
13 return Result

Algorithm 2 Basic Exact Query Processing
Input : r, K, Key, Gs
Output: Top-r K-Influential Communities.

1 Result =
2 forall Si in MapList(Key) do
3 H1 = Graph(Si, Neighbors(Si))
4 H2 = Graph(H1, key)
5 if Size(H2) ≥ k(k − 1)/2 then
6 R = FindALLPossible(H2, k) Result.ADD(R)
7 end
8 if Result.ISEmpty() then
9 R = FindALLPossible(H1, k)
10 Result.ADD(R)
11 end
12 CheckMaximal(Result)
13 end
14 return Top-r(Result)

Example 5.2: Given an undirected graph G in Figure 1
with attributes [DB, AI]. The query is to find top-2 DB com-
munities with k = 4. Following Eq.2 to calculate the weight
of each attribute associated with each node: The weights of
attributes associated with V1: The weight of DB = (1) +
(4/4) + (0.5 ∗ 0) = 2, and the weight of AI = (0) +
(1/4) + (0.5 ∗ 1) = 0.75. The vector of weights associated
with V1 = [2, 0.75]. Both V2 and V3 are the same as V1.
The weights of attributes associated with V4 = [1, 1.75].
Also, V5 and V6 are the same as V4. The weights of attributes
associated with node V7 = [2, 1]. The weights of attributes
associatedwith nodeV8 = [2, 1.5]. Then, followAlgorithm 1

FIGURE 3. The summary graph, MapList, and NodeList of original graph G.

to create the summary graph Gs shown in Figure 3(a).
This summary graph contains 2 supernodes S0, S1, where
S0 = {V1,V2,V3,V7}, and S1 = {V4,V5,V6,V8}. The
weight of the edge between the two supernodes E0,1 = 6,
where the number of neighbors = 6. Figures 3(b) and 3(c)
show the MapList and the NodeList of Gs. The top-2
4-influential communities is {V7, V1, V2, V3, V8}.

b: ENHANCEDEXACT ALGORITHM
Algorithm 2 requires exploring all possible communities in G
that satisfy the query conditions which is a time-consuming
operation. The EnhancedExact algorithm aims to reduce
required steps using some verification rules. Therefore,
a large sum of computation can be cut off during the veri-
fication. More specifically, there is no need to find all pos-
sible cases of adjacent k-cliques nor k-clique components to
discover the required influential communities. Only commu-
nities with a high influence value should be detected. The
EnhancedExact algorithm can be summarized as follow:

1) Find all possible k-cliques from each supernode stored
in the MapList of the required attributes.

2) Store the lists of cliques into a cliques container (linked
list) where each node in the linked list contains a
list of cliques resulted from a specific supernode. The
linked list is sorted according to the influence value
of the maximum k-clique in each node of the linked
list.

3) In order to obtain the adjacent cliques that repre-
sent communities from each list in the container, only
the adjacent cliques that contain at least one clique
with an influence value greater than the influence
values in the next items of the container need to be
tested.

4) The same for testing k-clique components: only the
series of adjacency k-cliques that contains at least one
greater k-clique needs to be tested.

Details are given in Algorithm 3. First, it finds all list
of k-cliques by invoking FindCliques (step 2) in the
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Procedure HigherInfCliques(C1, C2)

1 HCLiques = []
2 for h in C1 do
3 if inf(h > inf(C2[0]) then
4 HCLiques.Add(h)
5 else
6 break

7 return HCLiques

Container list where each element in the Container
is a list of cliques corresponding to a supernode in the
MapList. Then, for each element i in the Container,
it finds the k- cliques that have a higher influence value
than cliques in the next element in the container by invoking
HigherInfCliques (step 4) and adding communities in
the result set from AdjComm that have influence value>
the minimum influence value in maxcliques (step 6) and
removing them from AdjComm. It checks the possible adja-
cent k-cliques and k-clique components in the list i that may
have influence > the higher influence value in each list in
the rest of the container (steps 9-43). First, it checks if the
clique with the minimum influence value in i has an influence
value greater than the maximum influence value of cliques
in j, it creates an adjacency graph with all cliques in i and
returns the adjacent k-cliques and k-clique components from
the graph (steps 12-26). Otherwise, it creates an adjacency
graph with only cliques in i that have influence value> the
clique with the maximum influence value in j and returns the
adjacent k-cliques and k-clique components from the graph
(steps 29-42).

c: APPROXIMATE SEARCH ALGORITHM
Recall that in Algorithm 3 the most time-consuming step is
to generate all k-cliques. Thus to reduce the time overhead,
the approximate algorithm is proposed. Instead of finding
all possible k-cliques from the beginning, the approximate
algorithm finds the k-cliques from the stored supernodes
one by one until the required number of communities is
reached. It tests the supernodes according to the weights
stored in the MapList. Given the aforementioned Eq.2 in
which weight is calculated, the effect of the node, its neigh-
bors, and the next neighbors are considered. Consequently,
there is a high possibility that the supernode with the
largest weight to return communities with high influence
value.

First, it finds the k-cliques that can be reached from the
first supernode Si stored in the MapList. Then, it finds the
k-cliques for the second supernode Sj stored in the MapList
and stores the k-cliques MaxCliques resulted from Si and
have influence value greater than the cliques resulted from Sj.
Then, it finds the adjacent k-cliques and k-clique components
that contain any clique in MaxCliques. This operation is
repeated until finding the top-r solutions.

Algorithm 3 EnhancedExact Query Processing
Algorithm

Input : r, K, Key, Gs
Output: Top-r K-Influential Communities.

1 Result = {}; AdjComm = {}
2 CliqueContainer = FindCliques(MapList[Key])
3 for i = 0 to |CliqueContainer| do
4 maxcliques = HigherInfCliques(CliqueContainer[i],

CliqueContainer[i + 1])
5 Result.Add(maxcliques)
6 Result.Add(MaxComm(AdjComm,

min(maxcliques)))
7 if |Result| ≥ r then
8 return Result
9 end

10 for j = i + 1 to |CliqueContainer| do
11 AdjGraph = Graph() R1 = {} R2 = {}
12 if MinInf(CliqueContainer[i]) >

MaxInf(CliqueContainer[j]) then
13 AdjGraph.AddNodes(CliqueContainer[i])
14 for C1 in CliqueContainer[i] do
15 for C2 in FindAdjCliques(C1) do
16 if |C1.intersection(C2) >= (k-1)|

then
17 R1.AddCompInf(C1, C2)
18 AdjGraph.AddEdge(C1, C2)
19 end
20 end
21 end
22 for Component in

ConnectedComponents(AdjGraph) do
23 R2.AddCompInf(Component)
24 end
25 AdjComm.Add(R1)
26 AdjComm.Add(R2)
27 break
28 else
29 HInfCliques = HigherInfCliques

(CliqueContainer[i], CliqueContainer[j])
30 for C1 in HInfCliques do
31 for C2 in CliqueContainer[j] do
32 if C1 share n − 1 nodes with C2

then
33 AdjGraph.Add(C1, C2)
34 R1.AddCompInf(C1, C2)
35 end
36 end
37 end
38 for Component in

ConnectedComponents(AdjGraph) do
39 R2.AddCompInf(Component)
40 end
41 AdjComm.Add(R1, R2)
42 end
43 end
44 end
45 return Result
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FIGURE 4. Decomposed InfACom technique.

B. DECOMPOSED InfACom
Decomposed InfACom is a parallel technique that employs
a graph partitioning technique to improve the performance
of the graph summarization module as well as the com-
munity search module introduced by the Whole InfACom
technique. Figure 4 gives the Decomposed InfACom tech-
nique depicting graph management component (GC), query
processing component (QP), updatemanager (UM), andwork
manager (WM).

1) GRAPH MANAGEMENT COMPONENT (GC)
This section discusses the main components of the GC:
graph decomposition module and graph summarization
module.

a: GRAPH DECOMPOSITION MODULE
It is a use of the method in reference [4] with no modi-
fication. Given a large graph, it is a challenge to employ
the summarization module introduced by Whole InfACom.
There is a need to decompose the original graph into relevant

groups of nodes such that the summarization algorithm
(Algorithm 1) can be executed for each partition in parallel.
The original graph can be decomposed using the Louvain
heuristic method in [4] which is an algorithm for detecting
communities in networks. It maximizes a modularity score
for each community, where the modularity quantifies the
quality of an assignment of nodes to communities by eval-
uating how much more densely connected the nodes within
a community are, compared to how connected they would
be in a random network. The main idea in [4] includes two
basic steps: 1) modularity optimization: is a greedy assign-
ment of nodes to communities, 2) community aggregation:
is the definition of a new coarse-grained network, based on
the communities found in the first step. These two steps
are repeated until no further modularity-increasing reassign-
ments of communities are possible.

For the initial step of [4], assume that each node of the
network belongs to a different community. Then, iterate
through each node in the network and remove it from its
current community and replace it in the community of one of
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FIGURE 5. The graph decomposition.

its neighbors. Then, compute the modularity change for each
of the node’s neighbors. The node moves into the community
where the results in maximal modularity change. If none of
these modularity changes are positive, the node stays in its
current community. This process is repeated for all nodes
until no community assignment changes. In the community
aggregation step of the algorithm, a new network is created
which its nodes will be the communities resulting from the
modularity optimization step.

Applying the algorithm in [4] on the given network decom-
posed it into different partitions. Nevertheless, there is a need
to keep the relationship between these partitions in order to
find communities that are distributed across different parti-
tions. So, the proposed algorithm introduces the definition
of boundary nodes as nodes that have neighbors in different
partitions. Let node i in partition Pi be a boundary node that
has neighbors in partition Pj. The proposed algorithm creates
a dummy node for node i in partition Pj.
Example 5.3: Given the original graph G in Figure 5(a).

After applying Algorithm in [4], we can get two partitions
G1 = (v5, v6, v7, v8) and G2 = (v1, v2, v3, v4) as shown in
Figure 5(b). However, Figure 5(c) shows the partitions after
applying the dummy nodes v1 and v7.

b: GRAPH SUMMARIZATION MODULE
This module is responsible for summarizing each sub-
graph generated from the graph decomposition module in a
different thread. This operation can be done by customiz-
ing Algorithm 1. In creating supernodes: the graph summa-
rization module ignores the dummy nodes in establishing
the MNodes list of the supernodes. The dummy nodes are
essential in creating NNodes set. Each subgraph has its
MapList data structure that maintains attributes along with
supernodes that contain each attribute.

2) QUERY PROCESSING COMPONENT (QP)
The Query Processing Component (QP): Is responsible for
retrieving the required communities based on the created

summary graphs. QP contains both the subgraph generator
and the community search module. The subgraph generator
has 2 main tasks: 1) generates the subgraphs that contain the
required attributes in each summary graph, and 2) generates
the distributed subgraphs that contain the required attributes
in different summary graphs using the dummy nodes. It works
as follows: First, for each supernode Si in MapList that
contains the required attributes, the subgraph generator finds
all neighbors of Si. In the case of Si containing dummy
nodes, the subgraph generator tries to find all neighbors of
Si in different summary graphs. Then, the subgraph of Si
and its neighbors is used as input for the community search
module. The community search module is responsible for
finding the influential communities in the subgraphs returned
by the subgraph generator. The BasicExact, EnhancedExact,
or Approximate algorithm is executed on these subgraphs in
different threads.

3) UPDATE MANAGER AND WORK MANAGER (WM)
a: UPDATE MANAGER
In practice, the graphs are continuously evolving. Thus
attributes and edges of graphs are often frequently updated.
When the graph is updated, the summary graph also needs
to be updated. A straightforward method for handling the
dynamic graph is to rebuild the summary graph from scratch
when an update is made. However, this method is very
inefficient, especially when the updates are very frequent.
To alleviate this issue, the update manager is responsible for
dynamically maintaining the summary graph efficiently with-
out rebuilding it from scratch. The description is mentioned
in detail in Section VI.

b: THE WORK MANAGER (WM)
WM communicates with both the GC and the QP. First, WM
maintains a thread pool such that the summarization mod-
ule can be executed for different subgraphs result from the
decomposition module in different threads. Also, WM opens
different threads for the community creation module to exe-
cute different summary graphs. Once the execution of the
summarization module or the communities creation module
in any thread is finished, WM returns that thread to the thread
pool so that it can be used to handle another request. Main-
taining a thread pool permits fast request handling without
the overhead of thread creation. WM oversees the execution
of all requests until their end.

VI. INFLUENTIAL ATTRIBUTED COMMUNITY (InfACom)
IN DYNAMIC NETWORKS
In this section, we consider the problem ofmanaging dynamic
networks where edges and/or attributes could be inserted or
deleted. Section VI-A presents how to handle edge insertion.
Section VI-B discusses how to handle edge deletion. Finally,
section VI-C shows how to handle attribute updates.
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FIGURE 6. Original graph G.

A. HANDLING EDGE INSERTION
Each node in the original graph exists in only one supern-
ode in the summary graph. As explained in Section V-A1,
a supernode has three components MNodes, NNodes; for a
list of its neighbors, and the third component AttList; the
third component the AttList, where each attribute has a list
of nodes containing the attribute. The insertion of an edge
between node vi and vj triggers updates in these components.
The attributes weight associated with vi, vj, and their neigh-

bors will be affected according to the use of Eq. 2 that depends
on the direct neighbors and next neighbors of each node. Also,
the NNodes of vi and vj will be updated by adding vj to the
neighbors of vj and vice versa.
To reflect the edge insertion on the summary graph,

the supernodes that contain vi and vj will be changed as well
as the supernodes that contain the neighbors of vi and vj. The
steps of an edge insertion can be summarized as follow:

1) Determine the supernodes Si and Sj that contain vi
and vj using the NodeList.

2) Update the NNodes of both Si and Sj by adding vj to
the neighbors of vi and vice versa.

3) Update the attributes weight associated with vi and vj.
4) Update attributes weight of the neighbors of vi and vj.

First, use the NNodes sets of vi and vj to deter-
mine their neighbors. Then, use NodeList to determine
the supernodes of these neighbors. Finally, update the
attributes weight using Eq. 2.

5) Add superedge between Si and Sj and update the edge
weight.

Example 6.1 shows how the edge insertion between 2 nodes
will affect the attribute weights associated with these 2 nodes
as well as the neighbors of them.
Example 6.1: Figure 6 shows the original graphG. Adding

the edge (vi, vj) will affect the attributes weight of the nodes
vi and vj as well as v2 and v6. Regarding vi, all attributes
associated with it will be affected by the nodes vj (the neigh-
bor of vj), and v6 (the next neighbor). Regarding vj, all
attributes associated with it will be affected by the nodes vi
(the neighbor of vi), and v2 (the next neighbor). Regarding
v2, all attributes associated with it will be affected by the
nodes vj (the next neighbor). Regarding v6, all attributes
associated with it will be affected by the nodes v6 (the next
neighbor).
Merging Two Supernodes: The insert of an edge may trig-

ger the request of merging two different supernodes Si and Sj
into one. This can be done when the merge of Si and Sj forms

a clique (all nodes in MNodes of Si are connected to all nodes
MNodes of Sj).
The size of the clique is measured by n(n − 1)/2 where n

is the number of nodes. To ensure that the merge of Si and Sj
became a clique, its size should be n(n− 1)/2. The merge is
done if Eq.(6) is satisfied:

[Size(Si)+ Size(Sj)]+Weight(Edge(Si, Sj)) =
n(n− 1)

2
(6)

where, n = |Si.MNodes| + |Sj.MNodes|, and Size(Si) =
|Si.MNodes| ∗ (|Si.MNodes| − 1)/2 (because Si is a clique).
Example 6.2: Figure 7 shows the merge case. The original

graph G is shown in Figure 7(a), and the summary graph of
G is shown in Figure 7(b) where the nodes S0 = {v1, v2,
v3, v7}, S1 = {v8}. Assume that an edge e(v7, v8) will be
added to G. After inserting the edge, we find that every node
in S0 is connected to every node in S1. In this case, S0 and S1
should be merged into one supernode.

FIGURE 7. Merging two supernodes.

Algorithm 4 illustrates the details of inserting an edge
e(vi, vj). First, it determines the supernodes that contain vi,
and vj and obtains Si, Sj (steps 1-2). If Eq.(6) is satisfied then
Merge is triggered tomerge Si, and Sj into one supernode and
removes Sj from the summary graph as well as updates the
NodeList data structure. Otherwise, it updates the neighbor
sets of Si, Sj to append vj, vi (steps 6-7). Next, Calweight
updates the edge weight between Si, and Sj by adding 1 that
is resulted from the new edge. Finally, UpdateNeighbors
is triggered to update superedges (step 9).

ProcedureMerge(Gs, Si, Sj)

1 ExtendNodes(Si, Sj)
2 ExtendNeighbors(Si, Sj)
3 AttList(Si, Sj)
4 UpdateNeighbors(Si)
5 Remove(Sj)
6 UpdateNodeList()

B. HANDLING EDGE DELETION
Similar to the edge insertion, removing an edge between vi
and vj triggers the updates to the summary graph. This section
discusses different cases for removing an edge.
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Algorithm 4Maintain Edge Insertion
Input : Gs, vi, vj, NodeList
Output: Gs

1 Let Si = NodeList[vi]
2 Let Sj = NodeList[vj]
3 Gs[Si.NNodes][vi].add(vj)
4 Gs[Sj.NNodes][vj].add(vi)
5 UpdateAttWeight()
6 UpdateSuperEdgeWeight(Si, Sj)
7 if Eq.(6) then
8 Merge(Gs, Si, Sj)
9 end
10 return Gs

Case 1: Removing an edge between two nodes that coex-
ist in the same supernode. This case requires splitting the
supernode into two different supernodes because the nodes in
MNodes list now do not form a clique. Each new supernode
should contain a fully connected component.

Consider the original graph G in Figure 7(a), and its sum-
mary in Figure 7(b). If an edge e(V1, V2) is deleted. First,
a new node SN is created with node V1. Then, the meta-
data of SN (NNodes, Attlist) is added. Add the neighbors
of V1 which are {V3, V11} to SN .NNodes. Also, the AttList
with ‘DB’ attribute is created and calculate the weight
using Eq. 2. Next, V1 is removed from the MNodes of the
supernode S0.
Case 2: Removing an edge between two nodes existing

in different supernodes. Suppose that an edge e(vi, vj) is
removed from the original graph and Si contains vi, Sj con-
tains vj. In this case, vi will be removed from the NNodes
of Sj as well as vj will be removed from the NNodes of Si.
Finally, the superedge between Si and Si will be maintained
(deleted if there is no link between them otherwise subtract 1
from the weight).

For both cases 1 and 2, the weight of the attributes asso-
ciated with vi and vj as well as their neighbors should be
maintained.

Algorithm 5 illustrates the details of removing an edge
e(vi, vj). Case 1 is illustrated in (steps 4-10). First, a new
supernode SN is created (step 4). Then, node vi is inserted
in SN and the metadata of SN is created (steps 7-8).
Such that the NNodes of SN is set to the neighbors of
vi in Sj as well as the NNodes of Sj except vi. Next,
SN is added to the summary graph (step 9) and vi is
removed from Si. Finally, UpdateNeighbors maintains
the superedges of the neighbors of SN , and Si(step 10).
Case 2: is illustrated in (steps 12-14). Such that vi, vj are
removed from theMNodes of Sj, and Si (steps 12-13). Finally,
UpdateNeighbors updates the supernodes between Sj,
and Si and their neighbors by subtracting 1 from edge
weight.

Algorithm 5Maintain Edge Deletion
Input : Gs, vi, vj, NodeList
Output: Gs

1 Let Si = NodeList[vi]
2 Let Sj = NodeList[vj]
3 if Si = Sj then
4 Let SN is a new supernode.
5 SN .MNodes = vi
6 Remove(Si, vi)
7 SN .NNodes = Si.NNodes[vi]
8 SN .AttList = GetAttList(Si, vi)
9 UpdateATTWeight()
10 Gs.AddNode(SN )
11 UpdateNeighbors(Gs, Si, SN )
12 else
13 Si.NNodes[vi].Remove(vj)
14 Sj.NNodes[vj].Remove(vi)
15 UpdateATTWeight()
16 UpdateNeighbors(Gs, Si, Sj)
17 end
18 return Gs

C. HANDLING ATTRIBUTE UPDATE
This section discusses how to handle removing and inserting
an attribute ai associated with a specific node vi. In the case
of inserting an attribute, the change mainly occurs to the
attribute weights of vi as well as the neighbors and next
neighbors of vi that contain ai. Also, the Maplist should be
updated by adding the supernode Si that contains vi to the
entry of ai.
The weight of ai associated with vi is maintained by

adding 1 (the value of α in Eq. 2). Then, the change in weight
of ai associated with the neighbors of vi that contain ai is
affected by only one extra node. It can be updated by adding
1w1 where

1w1 = 1/(|deg(n)|), ∀n ∈ neighbors(Vi)

Finally, for the next neighbors of vi that contain ai, those
nodes are also affected by only one extra node which is not a
direct neighbor. It can be updated by adding 1w2 where

1w2 = 0.5/(|n′|)

where n’ is the set of next neighbors of n.

Procedure AddAtrr(Gs, vi, att, NodeList, MapList)

1 Let Si = NodeList[vi]
2 Si.AttList.add(att, vi)
3 UpdateAttWeight()
4 MapList[att].add(Si)

Removing an attribute is handled as insertion but the
attribute weight associated by the neighbors of vi is updated
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FIGURE 8. The summary graphs size for different datasets.

FIGURE 9. The summary graphs construction time for different datasets.

by subtracting1w1 and update the attribute weight of the next
neighbors of vi by subtracting 1w2.
AddAtrr Procedure gives the details of insert a new

attribute for a node vi. First, it obtains the supernode of vi and
stores it in Si. Then, update the AttList of Si by adding vi
to att step (3). UpdateAttWeight Procedure updates the
attribute weight using1w1 and1w2. Finally, Maplist should
bemaintained by removing Si from the att entry (step 5). Also,
RemoveAtrr Procedure shows the details of removing an
attribute from the node vi.

ProcedureRemoveAtrr(Gs, vi, att, NodeList,MapList)

1 Let Si = NodeList[vi]
2 Si.AttList.remove(att, vi)
3 UpdateAttWeight()
4 MapList[att].remove(Si)

VII. EXPERIMENTAL RESULTS
This section presents the experimental results that measure
the efficiency of our proposed implementations. The pro-
posed algorithms are implemented in Python and all experi-
ments are conducted onWindows 10 with Intel(R) Core(TM)
i7 CPU and a 16GB RAM. In all experiments, the summary
graph is resident in memory.

TABLE 1. Datasets description.

A. DATASETS
Experimental studies are conducted on real datasets
in Table 1. The first dataset is the protein-protein
interaction (PPI) network Krogan related to the yeast sac-
charomyces cerevisiae [22]. Cora and Citeseer datasets are
downloaded from (https://linqs.soe.ucsc.edu/data). All other
datasets are downloaded from (https://snap.stanford.edu/
data).

B. MEMORY SPACE AND TIME COST EVALUATION FOR
SUMMARY GRAPH CONSTRUCTIONS
We build the summary graph for different datasets are shown
in Table 1 using both Whole InfACom and Decomposed
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FIGURE 10. Scalability testing for the size of the summary graph.

FIGURE 11. Scalability testing for the time of summary graph construction.

InfACom techniques. The summary graph construction time
is shown in Figure 9. As shown in the result, the time required
to partition the original graph and summarize different parti-
tions in parallel with each other requires a lower time than
dealing with it as a whole in all datasets. We further compare
the number of nodes of the summary graph with the num-
ber of nodes of the original graph. The results are depicted
in Figure 8. Overall the datasets, the number of nodes of the
summary graph is smaller than the number of nodes of the
original graph.

C. SCALABILITY FOR THE SUMMARY GRAPH
In this experiment, we vary the number of nodes in differ-
ent datasets to study the scalability of the summary graph
construction algorithms inWhole InfACom andDecomposed
InfACom. The results are shown in Figure 10. As can be
seen, both InfACom and Decomposed InfACom scale near
linearly in most datasets. Moreover, we can see that Decom-
posed InfACom is faster than the Whole InfACom, which is
consistent with the previous observations. In addition, also
the scalability results for summary graph size are shown
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FIGURE 12. Query processing time vary r.

FIGURE 13. The structure cohesiveness of the retrieved communities with varying k.

in Figure 11. We can see that the summary graph size is
smaller than the original graph size for overall testing cases.

D. QUERY PROCESSING (VARY r)
We vary the parameter r from 20 to 100 and evaluate the
query processing time of the proposed algorithms. The results
are shown in Figure 12. For BasicExact and EnhancedEx-
act, the processing time is high. This is because, for
both BasicExact and EnhancedExact, the dominant cost is
spent on building the k-cliques. The most expensive pro-
cess is FindCliques. In Decomposed InfACom, Find-
Cliques is executed in parallel on different summary graphs.
Thus, BasicExact and EnhancedExact in Decomposed

InfACom outperform BasicExact and EnhancedExact in
Whole InfACom.

For Approximate, when r is small, the processing time
increases slowly. However, when r is large, the processing
time of Approximate increases. The reason is that when r
increases, the size of the finding more k-cliques tends to
increase. We can also note that in Whole InfACom, Approx-
imate outperforms Approximate in Decomposed InfACom.
The reason is that in Whole InfAcom, when the algorithm
stopped when reaches the top-r communities immediately.
However, in Decomposed InfACom, the result set needs to be
maintained from different threads. Hence, the result set may
be filled with communities from the summary graph that does
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FIGURE 14. The structure cohesiveness of the retrieved communities with varying k.

TABLE 2. Dynamic updates.

TABLE 3. Processing time in minutes for exact algorithm using Brightkite
vary (k).

not have more influential communities than another sum-
mary graph. So, the algorithm stops executing for a specific
summary graph once it returns a community with a smaller
influence value than all communities in the result set which
has r communities.

E. DYNAMIC UPDATE
This experiment shows the evaluation of the updating algo-
rithms. For each dataset, we randomly insert 1000 attributes
and after each insertion, the summary graph is updated.
Then, we delete the same 1000 attributes and update the
summary graph after each deletion. Also, the edge insertion/
deletion is evaluated for each dataset. 1000 edges are ran-
domly inserted and after each insertion, the summary graph
is updated. Then, we delete the same 1000 edges and
update the summary graph after each deletion. The average
update time per attribute/edge insertion/deletion is shown
in table 2.

F. COMPARISON WITH STATE-OF-THE-ART
To ensure the accuracy and efficiency of the proposed
algorithms, we compared the performance of the proposed
algorithms with the approaches presented in [17], [18] as
the state-of-the-art approaches as they find the community
related to a query vertex in an attributed graph.

We customized the proposed algorithms, EnhancedExact ,
and Approximate algorithms to make them comparable to
both Exact , and AppInc in [17], Inc−S, and Inc−T in [18] by
searching for the most influential community associated with

FIGURE 15. The most influential DM communities for ‘‘Wei Wang’’ with
different k.

FIGURE 16. The most influential communities for different research areas
with k = 6.

a specific query vertex (node). We chose 120 query vertices
at random with core numbers of 20 or more. A meaningful
community containing the query vertex is ensured by such
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FIGURE 17. The most influential for multiple attributes communities with
k = 6.

FIGURE 18. The most IR influential communities with different k.

a core number constraint. Each data point represents the
average result for these 120 queries.

The structure cohesiveness of the retrieved communities is
shown in Figure 13. We use popular structural cohesiveness
metrics diameter, and density to measure the quality of these
communities. Figure 13 shows that the density and the diame-
ter of the retrieved communities of both EnhancedExact , and
Approximate are equal to 1 for all values of k. As the most

FIGURE 19. Different three database communities for both ‘Wei Wang’
and ‘Philip S. Yu’ with k = 8.

influential communities of these algorithms are k-cliques. For
other algorithms, the density increases with the increase in the
value of k and the diameter decreases with the increase in the
value of k.

Figure 14 shows the query processing times of all algo-
rithms. EnhancedExact , and Approximate algorithms outper-
form AppInc, IncT , and IncS. Table 3 shows the processing
time in minutes for executingthe Exact algorithm. The result
shows that the proposed approaches are faster compared to
the Exact algorithm.

VIII. CASE STUDIES
We use a topic-coauthor dataset extracted from (http://
arnetminer.org) which consists of 8 topics (Data Mining,
Web Services, Bayesian Networks, Web Mining, Semantic
Web, Machine Learning, Database Systems, and Information
Retrieval). The dataset has 5114 nodes and edges. Due to
the properties of this dataset, the influence values of the
communities are almost identical. So, the results are ranked
using the average weight associated with the dataset.

A. RESULTS FOR RESEARCH AREAS FOR A SPECIFIC
AUTHOR WITH DIFFERENT k
Finding meaningful communities that a query vertex belongs
to. As we can answer the query ‘‘Find the most influential
communities of a specific author’’. Figure 15 shows the most
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influential DataMining community that containing the author
‘‘Wei Wang’’ with different k.

B. RESULTS FOR DIFFERENT RESEARCH AREAS
Finding meaningful communities for a research area. As we
can answer the query ‘‘Find the most influential communities
of a specific research area’’. Figure 16 shows the most influ-
ential community for different research areas with k = 6.

C. RESULTS FOR MULTIPLE RESEARCH AREAS
Figure 17 shows different communities for multiple research
areas with k = 6.

D. RESULTS FOR RESEARCH AREAS WITH DIFFERENT k
Finding meaningful communities for a research area. As we
can answer the query ‘‘Find the most influential communities
of a specific research area’’. Figure 18 shows the most influ-
ential Information Retrieval community with different k.

E. RESULTS FOR MULTIPLE AUTHORS
Find different communities that contain different authors.
Figure 19 shows different three database communities that
contain both {‘Wei Wang’, ‘Philip S. Yu’} with k = 8.

IX. CONCLUSION AND FUTURE WORK
The problem of community search over very large graphs
is fundamental problem in graph analysis. However certain
applications require finding the top-r influential communities
in the network. This paper discusses different factors that
affect the influence of the community. Based on these fac-
tors, different Influential Attributed Community (InfACom)
implementations based on the concept of k-clique are intro-
duced. Two techniques are presented one for sequential
implementation with three variations and one for parallel
implementation. We further proposed efficient algorithms
for maintaining the InfACom on dynamic graphs. Finally,
we present experimental results that show the efficiency of
the proposed implementations. For future work, we will study
how to use graph pattern matching techniques in identifying
influential communities. Also, isomorphism algorithms will
be extended to solve the problem. Finally, multi-machine
parallelization will be used for enhancing the processing of
the proposed implementations.
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