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ABSTRACT In recent works, the statistical information of the channel traffic has been increasingly
exploited to make effective decisions in spectrum sharing systems. However, these statistics cannot be
obtained perfectly under (realistic) Imperfect Spectrum Sensing (ISS). Therefore, in this work we study
comprehensively the approaches in the literature that correct the estimation of the channel traffic statistics
under ISS, namely the closed-form expression approach and the algorithmic reconstruction approach. Then,
we introduce a novel approach named Traffic Learning as a Deep Learning (DL) approach for providing
accurate estimation of the channel traffic statistics under ISS. For this novel approach, deep neural networks
using Multilayer Perceptron (MLP) models are found for the estimation of several statistical metrics.
In addition, we show that utilising effective features from spectrum sensing observations can lead to a
considerable improvement in statistics estimation for each, mean, variance, minimum and distribution of
the channel traffic under ISS, outperforming the existing approaches in the literature, which are based on
either closed-form expressions or reconstruction algorithms.

INDEX TERMS Spectrum sharing, dynamic spectrum access, cognitive radio, channel traffic statistics,
spectrum sensing, machine learning, deep learning.

I. INTRODUCTION
The advancement of Deep Learning (DL) in computer vision,
speech recognition and natural language processing domains
has inspired a large community of experts in the commu-
nications field to exploit the potential of this technology
for solving a wide range of problems in communication
systems. Such problems are either difficult to represent with
tractable mathematical models or impractical to be solved
by following the classical methods and algorithms. In this
context, there has been an increasing interest in exploiting
DL in wireless communications, in particular, Spectrum
Sharing (SS) systems. This is due to the demonstrated
improvements that DL has brought to several applications
of SS such as spectrum management, spectrum sensing,
spectrum prediction, network security and so on. These
applications are crucial for the ongoing deployment of 5G
technology, including but not limited to, 5G New Radio
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Unlicensed (NR-U) [1], unlicensed LTE [2] and License
Assisted Access (LAA) [3].

In recent works, the statistical information of the channel
traffic has increasingly been exploited as input features to
the neural network of DL models. These statistical features
can make significant improvement in the performance of DL
for solving particular problems in SS systems. For instance,
in [4] traffic statistics (mean, variance and kurtosis) have been
exploited as features for a neural network to recognise user-
level applications such as YouTubeTM and WhatsAppTM.
On the other hand, in [5] the accuracy of spectrum
sensing in cognitive radio has remarkably been enhanced by
exploiting traffic statistics as input features to a DL model
used to sense the spectrum. Moreover, [6] has employed
the historical samples of the channel traffic statistics to
train a DL to predict the future channel occupancy ratio.
Obtaining accurate statistical information of the channel
traffic can also find a wide range of applications in enhancing
the performance of cooperative spectrum sensing systems
operating under realistic environmental conditions [7]–[10]
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as well as in cognitive radio for Vehicular Ad Hoc Network
(VANET) [11].

From the above discussion, it is evident that traffic
statistics play an effective role in the performance of various
applications in SS systems which apply DL technique. The
majority of these works, however, assume perfect estimation
of these statistics, such that they can smoothly be exploited
in DL models. In practice, however, these statistics can be
corrupted due to signal detection errors as discussed in [12].
Inaccurate traffic statistics, consequently, can worsen the
training process of a DL model and thus provide inaccurate
results. Therefore, in order to exploit channel traffic statistics
in SS systems it is essential to estimate these statistics
accurately especially under a realistic, imperfect spectrum
sensing (ISS), scenario.

In the literature, the estimated traffic statistics under ISS
have been corrected through two approaches: 1) reconstruc-
tion algorithms [13]–[15], where the observed idle/busy
periods under ISS of the channel traffic are reconstructed to
provide accurate statistics. 2) closed-form expressions [12],
[16]–[18], where mathematical expressions are derived for
the original statistics as a function of their corresponding
statistics observed under ISS, probability of sensing error
and sensing period. Reconstruction methods can provide
some accuracy improvements but are typically based on
heuristic algorithms and therefore sub-optimal. Although
closed-form expressions would be themost attractive solution
to correct the estimation of traffic statistics under ISS,
it is challenging sometimes to find these expressions for
higher statistical moments such as variance, skewness and
kurtosis under ISS (whereas the mean, duty cycle and
distribution have been found in [12]). In addition, although
these expressions provide accurate estimations, they may
still show some considerable estimation errors when a
short sensing period Ts is employed [12, Section VIII].
In some cases, closed-form expressions are known or can be
obtained but they are unable to lead to accurate estimations
of the true traffic statistics under ISS, like for example
the minimum period as analysed in [13]. In this work,
therefore, we consider a DL approach to provide an accurate
estimation of the channel traffic statistics under ISS and
evaluate the performance of such approach with respect
to the previous approaches, showing that the DL approach
proposed in this work can provide significant performance
improvements.

The contribution of this work can be highlighted as
follows:
• We propose Traffic Learning (TL) as a DL approach to
learn from the channel traffic under realistic ISS sce-
nario in order to provide accurate statistical information
about channel traffic activity in SS systems.

• Deep Neural Networks (NNs), namely Multilayer per-
ceptron (MLP) models, are found to provide accurate
estimation for the moments of the channel traffic
statistics (mean, variance and minimum period) based
on the observations of ISS.

TABLE 1. List of acronyms and abbreviations.

• The estimation of channel traffic distribution can then
be achieved in two stages, first by classifying the
distribution type of the actual channel traffic into one of
a possible set of candidate distributions using a deep NN
model, second finding the parameters of the classified
distribution using the Method of Moments (MoM) tech-
nique [19] based on the previously obtained statistical
parameters (mean, variance and minimum period).

• Finally, the performance of the proposed DL approach to
estimate channel traffic statistics under ISS is validated
numerically and compared with the previous approaches
in the literature namely, algorithmic and closed-form
expression methods. The obtained results show that the
proposed approach outperforms the previous approaches
with remarkable accuracy improvement, providing
accurate channel traffic statistics under ISS.

The remainder of this work is organised as follows. First,
Section II formulates the problem of channel traffic statistics
estimation and introduces the system model considered in
this work. Then Sections III and IV respectively discuss the
algorithmic and closed-form expression approaches consid-
ered in the literature to correct the estimation of the channel
traffic statistics. Section V proposes the novel DL approach
for channel traffic statistics estimation under ISS. The NN
models for the estimation of the traffic mean, variance
and minimum period are discussed in Section VI, while
the NN model for the classification and estimation of the
traffic distribution is given in Section VII. The performance
improvements of the proposed approach are demonstrated in
Section VIII. Finally, Section IX concludes the paper. A list
of acronyms and abbreviations used throughout the paper is
given in Table 1.
Notation: Subscript i denotes the state of the channel to

which a symbol belongs (i = 0 for idle and i = 1 for busy
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FIGURE 1. Channel traffic statistics estimation in spectrum sharing system.

state). For periods of type i, Ti represents the period length;
µi,mi, and vi represent their sample minimum, sample mean
and sample variance, respectively; F(Ti;µi, λi, αi) denotes
their cumulative distribution functionwith location parameter
µi, scale parameter λi and shape parameter αi. The true
value of parameter is denoted as xi and its accented versions
x̂i, x̆i, x̃i represent the corresponding PSS observation, ISS
observation and final estimation, respectively. E(·) and V(·)
denote expected value and variance, respectively. The non-
linear activation function of a NN is denoted by σ (·) and the
loss function by L(·, ·). R represents the set of real numbers
and ‖ · ‖2 denotes the 2-norm.

II. PROBLEM FORMULATION AND SYSTEM MODEL
We consider the channel traffic in a particular frequency
channel as shown in Fig. 1. This traffic is generated by
the activity of the licensed users within their allocated
frequency channel. Channel traffic can be represented as a
sequence of idle/busy periods in the time-domain, hence,
the duration of these periods can be modelled to follow a
particular distribution. In the literature, and based on the
practical measurements and observations, these periods are
best described as Generalised Pareto (GP) distribution [20].
In this work, however, the distribution of channel traffic
will be considered unknown to the SS system. In such
system we assume to have a single unlicensed user, which
monitors the activity of the channel traffic to find and exploit
any opportunistic unoccupied duration in the frequency
channel without causing harmful interference to the licensed
users. This monitoring mechanism is achieved by performing
periodic spectrum sensing at the unlicensed user. There
have been significant research efforts in the last few years
to develop high accuracy methods/algorithms for spectrum
sensing, where the simplest and widely known method is
Energy Detection (ED) [21]. Despite its variant forms and
accuracy, spectrum sensing objective and output is the same,
which is to provide binary decisions on the state of the
channel, H0 for idle and H1 for busy state. These sensing
decisions can then be exploited to compute the durations of
the idle T0 and busy T1 periods of the channel traffic which
in turn are used to calculate channel traffic statistics.

Under high SNR conditions Perfect Spectrum Sens-
ing (PSS) can be achieved. In practice, however, spectrum
sensing is imperfect due to the presence of sensing errors
caused by the wireless channel impairments and low SNR
conditions, thus Imperfect Spectrum Sensing (ISS) is a
more realistic scenario. Sensing errors occur as false alarms,
when an idle state of the channel is sensed as busy,
and missed-detections, when a busy state is sensed as an
idle. These sensing errors can be represented as indepen-
dent and identically distributed (i.i.d.) random variables
with Pfa and Pmd probabilities, respectively, which is a
common modelling approach in the literature. Unfortu-
nately under ISS, the presence of sensing errors corrupts
the calculation of the idle/busy periods of the channel
traffic such that they are observed as shorter fragments
(T̆0/T̆1) of the original periods (T0/T1). These fragments,
as a result, provide significantly corrupted channel traffic
statistics.

As it was highlighted in the previous section, there are
two approaches in the literature to correct the estimation
of the channel traffic statistics under ISS, namely recon-
struction algorithms [13]–[15] and closed-form expressions
[12], [16]–[18]. The target of the first approach is to infer
the position of potential sensing errors in the sequence of
idle/busy periods observed under ISS and correct them in
order to reconstruct the likely original sequence of idle/busy
periods to provide accurate statistics. The second approach,
on the other hand, derives mathematical expressions that
can provide accurate estimation for the original traffic
statistics from the ones observed under ISS. In this paper
we propose a new approach based on Deep Learning (DL)
to provide accurate statistical information of channel traffic
under ISS, which will be compared with respect to the
previous approaches. Therefore, we can illustrate these three
approaches as shown in Fig. 1, which will be discussed in the
next sections.

III. CLOSED-FORM EXPRESSION APPROACH
This approach formulates the problem of estimating a
statistical parameter of the channel traffic under ISS in a
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closed-form expression, based on which a method can be
derived to improve the accuracy of estimation. Consider
the idle/busy periods Ti (where i = 0 for idle state and
i = 1 for busy state) shown in Fig. 2. These periods are
observed as T̂i under PSS and T̆i under ISS. As it can noticed,
the observations under PSS (i.e., without sensing errors)
provide a reasonable degree of accuracy for the original
periods Ti (where the accuracy is only affected by the time
resolution of the sensing period Ts [16]). On the other hand,
the observed periods under ISS are significantly corrupted
since sensing errors divide the observations of the original
periods into shorter fragments T̆i. As a result, the estimation
of the channel traffic statistics based on the observed periods
T̆i under ISS is highly inaccurate with respect to the original
statistics of Ti periods. The work in [12] formulated and
provided closed-form expressions for some of the statistical
parameters (e.g., mean, duty cycle and distribution) observed
under ISS as a function of the original ones. For example,
the mean E(T̆i) of the observed periods under ISS is found
in closed-form expression as a function of the original mean
E(Ti), probabilities of sensing error Pfa and Pmd , and sensing
period Ts as [12]:

E(T̆i) =
E(Ti)− (−1)i E(T0)Pfa + (−1)i E(T1)Pmd
1+

(
E(T0)
Ts
− 2

)
P̀fa +

(
E(T1)
Ts
− 2

)
P̀md

(1)

where P̀fa and P̀md are defined in equations (13) and
(14) of [12]. The original mean can then be estimated by
solving (1) for E(Ti) (2), as shown at the bottom of the
page. This method, in general, provides accurate estimation,
however, some considerable error might still exist when
short sensing period Ts is employed as explained in [12,
Section VIII-B]. Therefore, we will use this method for
comparison with other approaches in Section VIII. Note that
the estimation of higher moments statistics (e.g., variance)
under ISS is challenging to find in closed form expressions.
Therefore, other approaches might be considered for such
statistics.

IV. ALGORITHMIC RECONSTRUCTION APPROACH
In this approach reconstruction algorithm is used to correct
the estimation of channel traffic statistics under ISS. Simple
reconstruction algorithmswere first proposed in [13] and then
developed in [14], [15]. Therefore, we consider the latest
reconstruction algorithm in the literature given by [15] and
illustrated here in Algorithm 1. This algorithm reconstructs
the periods in an iteration process and in each iteration
the shortest periods will be reconstructed as (T̆i,n−1 =
T̆i,n−1 + T̆i,n + T̆i,n+1), where n denotes the sequence of the
periods, then the mean of the reconstructed periods will be

FIGURE 2. The observed idle/busy periods (a) under Perfect Spectrum
Sensing (PSS), (b) under Imperfect Spectrum Sensing (ISS) [13].

Algorithm 1 Reconstruction Algorithm [15]

Input: (T̆i) The observed periods under ISS
Output: (T̄i) The reconstructed periods
1: Calculate the mean (m̆i) of the periods under ISS
2: Estimate the mean (mi) of the periods using (2)
3: k = 0
4: T̄i = T̆i
5: while m̆i < mi do
6: k = k + 1
7: for each T̆i,n = kTs do
8: T̄i,n−1 = T̆i,n−1 + T̆i,n + T̆i,n+1
9: end for

10: m̆i = E(T̄i) Calculate the mean of the
reconstructed periods

11: end while
12: return (T̄i)

calculated. This iteration will continue until the mean of the
reconstructed periods reaches the value of the mean estimated
using (2), i.e., this algorithm exploits the mean expression
obtained from the previous approach as an indicator to
determine when the periods are correctly reconstructed,
however once the process is finished, other statistics (not only
the mean) can also be estimated. Therefore, this algorithm
will be used to compare the performance of the estimation
of channel traffic statistics under ISS with respect to other
approaches in Section VIII.

V. DEEP LEARNING APPROACH
In this section we propose a novel approach for the estimation
of the channel traffic statistics under ISS based on DL

E(Ti) ≈ E(T̃i) =

(
E(T̆i)(1− P1−imd P

i
fa)− E(T̆1−i)P1−imd P

i
fa

) (
1− 2P̀fa − 2P̀md

)
(
1− Pfa −

P̀fa
Ts
E(T̆0)

)(
1− Pmd −

P̀md
Ts

E(T̆1)
)
−

(
P̀fa
Ts
E(T̆1)− Pfa

)(
P̀md
Ts

E(T̆0)− Pmd
) (2)
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technique. The DL model in this work aims to provide an
accurate estimation for the original statistical parameters of
the channel traffic based on their corresponding (inaccurate)
statistics observed under ISS. It is widely known that DL
can solve various problems through formulating them as
either classification or regression problems. The estimation
of the statistical parameters mean, variance and minimum
period is considered as a regression problem, while the
estimation of the channel traffic distribution is solved by
first classifying the type of the distribution, then finding
its parameters. The estimation of these statistics can be
solved using Multilayer Perceptron (MLP) fully-connected
feedforward Neural Network (NN) [22].

AnMLPwith L (dense) layers maps the input layer x to the
output layer y through one or more hidden layers in between.
This mapping function can be written as y = f (x; θ ), where θ
denotes theNN parameters given by theweightsW and biases
b. Each layer of the NN consists of one or more neurons n,
hence the output of the `-th layer can be written as [23]:

f`(x`−1; θ`) = σ` (W`x`−1 + b`) , ` = 1, · · · ,L (3)

where W` ∈ Rn`×n`−1 is the weight matrix, b` ∈ Rn`

is the bias vector (note that n` denotes the number of
neurons at the `-th layer), and σ`(·) represents the non-
linear activation function which can be given by, e.g., ReLU,
sigmoid, softmax, etc. The output of the `-th layer f`(x`−1; θ`)
is based on the input x`−1 from the previous layer and the
parameter θ` = {W`, b`} at the `-th layer. In general, a NN is
trained based on a labelled training dataset, which is an input-
output (x, y) vector pairs of data. In our scenario, the input
vector is the observations of a statistical parameter s̆ under
ISS (e.g., mean, variance, etc.) and the output vector is the
corresponding original statistical parameter s. Therefore, this
input-output (s̆, s) dataset is used to train a NN to find θ∗ that
minimises the loss function L(s̆, s):

θ∗ = argmin
θ

L(s̆, s) (4)

For example, Mean Squared Error (MSE) loss function
can be used as ‖s − f (s̆; θ)‖2 to find θ that minimises the
error. By selecting the appropriate hyper-parameters of the
NN (e.g., number of layers, neurons, loss function) along
with the useful input features, a DL model can be achieved to
provide an accurate estimation for the statistical parameters
of the channel traffic under ISS as it will be discussed next.

VI. MEAN, VARIANCE, AND MINIMUM ESTIMATION
BASED ON DL
Let us first consider the estimation of the original mean
mi of the idle/busy periods (where i can be 0 referring to
idle periods, or 1 referring to busy periods). A DL model
using MLP NN is built to find the accurate estimation of
the mean of the channel traffic from the corresponding mean
observed under ISS. Therefore, the inaccurate means m̆0 and
m̆1 of the idle/busy periods observed under ISS are used as
inputs to the DL model to provide the accurate estimation

FIGURE 3. Deep Learning model for mean of periods estimation
under ISS.

FIGURE 4. Deep Learning model for variance of periods estimation
under ISS.

of the mean period m̃i (where m̃i ≈ mi). Since under ISS
the presence of sensing errors corrupts the observation of
the idle/busy periods as discussed in Section II, the mean
of these periods would be significantly inaccurate depending
on the probabilities of sensing error (i.e., Pfa and Pmd ).
These probabilities can be pre-defined based on the employed
sensing algorithm at the end terminal [12]. Therefore, Pfa
and Pmd can also be exploited as input features to the DL
model along with m̆0 and m̆1 observed under ISS. Pfa and
Pmd can assist a NN to learn from how these features affect
the observation of m̆0 and m̆1 under ISS, which in turn will
help predicting the actual mean value at the output as shown
in Fig 3. Note that when Pfa = Pmd = 0, the observed
mean will be equal to the original one [16]. A similar concept
can also be applied to find a DL model for estimating higher
statistical moments under ISS. In this work, we consider
the second moment (variance vi) of the idle/busy periods,
which can similarly be found as shown in Fig 4. As it can
be noticed, the observed statistics of both idle and busy
periods are always considered as input features because they
both are affected by false alarms and missed detections as
it can be observed from (2) and therefore considering only
the observed statistics for the same type of periods being
estimated (idle or busy) would not provide complete input
information.

On the other hand, the accurate estimation of the minimum
periodµi of the channel traffic under ISS is more challenging
to find compared to the previous statistical parameters. This is
because for any non-zero probability of sensing error (Pfa >
0 and Pmd > 0) the observed minimum period µ̆i under ISS
is always equal to the duration of a single sensing error, which
is same as the duration of the sensing period Ts (i.e., µ̆i 6= µi
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FIGURE 5. Deep Learning model for minimum of periods estimation
under ISS.

and µ̆i = Ts, ∀Pfa,Pmd > 0) [13]. Therefore, a NN cannot
learn anything from the observed minimum idle/busy periods
µ̆0/µ̆1 under ISS (unlike the previous statistical parameters)
since they are always equal to the sensing period Ts, no matter
how high or low the probability of sensing error is. In order
to utilise a feature that can help a NN to predict the actual
minimum period µi from the observations of the ISS, it is
useful to look at the distribution of the observed periods
under ISS. The observed periods under ISS have a discrete
distribution with a bin size of Ts and starting at Ts as well.
This distribution is distorted by the presence of sensing errors,
however, it forms a distinguished pattern corresponding to a
particular combination of probabilities of sensing error (Pfa
and Pmd ). A NN can be trained to learn from these patterns
of the observed distributions under ISS in order to locate the
actual minimum period. As a result, it is found that by using
the first h-th histogram bins of the observed periods under ISS
along with the probabilities of sensing error (Pfa and Pmd ) it
is possible to train a NN to provide an accurate estimation
for the actual minimum period under ISS. The MLP NN
in Fig. 5 shows an example of using 100 histogram bins of
the observed periods under ISS as input features along with
Pfa and Pmd , where h1 refers to the number of the observed
periods under ISS within the first bin, while h2 refers to the
number of the observed periods under ISS within the second
bin and so on. The number of bins was selected here after
conducting several evaluations on the estimation accuracy
of the minimum period under ISS while considering several
scenarios of probabilities of sensing errors (Pfa and Pmd ), for
which 100 binswere found to be sufficient to provide accurate
results under any scenario of sensing errors. The output of
this NN provides the accurate estimation µ̃i for the actual
minimum period µi (where µ̃i ≈ µi).

A. RAW DATASET CONSTRUCTION AND PREPROCESSING
In this work, data are obtained and prepared in two
stages, in the first stage raw datasets are generated using
MATLAB, then in the second stage the generated datasets
are preprocessed using Python to train, validate and test the
proposed DL model. Dataset generation using MATLAB can
be achieved as follows:

1) First, a channel traffic is modelled by generating a large
sequence of idle/busy periods (T0/T1) in a frequency

channel drawn from a particular distribution such as GP
distribution (which is one of the best representations of
the channel traffic [20]).

2) Then spectrum sensing can be applied with periodic
sensing period Ts, where Ts should be smaller than the
minimum period of the channel idle/busy periods (i.e.,
Ts < µi). In this work we consider to use a short Ts = 1
t.u. (time unit) when the minimum period µi = 10
t.u. (i.e., 10% of the minimum period). This is to show
how the estimation methods perform under the worse
scenario of using such short sensing period since higher
sensing periods (e.g., 90%) can provide more accurate
estimations for traffic statistics under ISS [13].

3) Spectrum sensing is configured based on the selected
probabilities of sensing error (i.e., Pfa and Pmd ), based
on which a sensing threshold is adjusted to decide
whether the channel is idle H0 or busy H1. Sensing
decisions are then used to calculate the duration of the
idle/busy periods (T̆0/T̆1) observed under ISS.

4) The statistical parameters such as mean m̆0/m̆1, vari-
ance v̆0/v̆1 or histogram {h1, . . . , h100} can then be
calculated from (T̆0/T̆1) periods observed under ISS in
step 3. These statistics are saved into a .mat file along
with the configured Pfa and Pmd to represent the input
vector (features). On the other hand, the corresponding
original statistics m0/m1 for mean, v0/v1 for variance
or µ0/µ1 for minimum of the idle/busy periods (T0/T1)
generated in step 1 are also saved into the same .mat
file to represent the output vector (labels).

The obtained features and labels in .mat file are then used
to construct the required dataset for DL, 60% of which is
for training, 20% is for validation and the remaining 20%
is for testing as shown in Figs. 6 and 7. These raw datasets
require some preprocessing before using them for DL training
or testing. Python is used here, which offers numerous tools
and advanced DL libraries (e.g., TensorFlow [24], Keras [25]
and PyTorch [26]) that facilitate not only the preprocessing
of the datasets, but also building, training and testing of the
DL model. Therefore, the obtained dataset in .mat file is
imported to Python for preprocessing, where the features and
labels are extracted and stored into separate arrays. Since
these data can hold any real values, it is a common practice
to scale and normalise these values before learning from
them. The preprocessing.Normalization() func-
tion from Keras library is used, which normalises its inputs
into a distribution centred around zero with unit standard
deviation. This is accomplished by applying the following
normalisation relationship (input − mean)/

√
variance to the

input dataset.

B. TRAINING, VALIDATING, AND TESTING THE DL MODEL
After preprocessing the datasets, they are ready to train,
validate and test a DLmodel. AnMLPNNhas been examined
using several hyper-parameter settings to build the required
DL model for channel traffic statistics estimation under ISS.
As shown in Fig. 8, different number of hidden layers {1,
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FIGURE 6. Datasets construction of DL for channel traffic mean and variance estimation.

FIGURE 7. Datasets construction of DL for channel traffic minimum estimation.

FIGURE 8. Training and validation accuracy of the MLP NN for the
estimation of the mean, variance and minimum period.

TABLE 2. MLP NN model used for mean, variance and minimum period
estimation under ISS.

2, 3 and 4} and neurons {16, 32, 64 and 128} are used to
examine the accuracy of training based on Mean Absolute
Error (MAE) loss function. It is found that a NNwith 3 hidden
layers can reach the same accuracy as a higher number
of layers after 100 epochs of training. In the same way,
64 neurons per hidden layer can provide the same accuracy
as a higher number of neurons after 100 epochs of training.

As a result, the MLP NN shown in Table 2 is considered in
this work to provide the accurate estimation of the channel
traffic statistics under ISS. The output of this model would
be either the accurate estimation of the mean m̃i, variance ṽi
or minimum period µ̃i when the input is the corresponding
ISS mean m̆i, variance v̆i, or histogram bins {h1, . . . , h100},
respectively. ThisMLPNNmodel is trained based on the 60%
of the preprocessed features and labels, while 20% of which
is used to validate the training process. This validation is
important to make sure that the NN can generalise to new data
and avoid the overfitting problem. ReLU activation function
is selected at each hidden layer, and Adam optimiser is used
with learning rate 0.001. After training and validating the DL
model, it can now be tested based on the remaining 20% of
the dataset to evaluate its estimation performance. Although
the testing dataset has both features and labels, only features
are fed to the NN to predict the accurate channel traffic
statistics, while labels are used to quantify the accuracy of
the estimation provided by the NN, which will be shown in
the simulation results.

VII. DISTRIBUTION CLASSIFICATION AND ESTIMATION
BASED ON DL
Having an accurate estimation for the distribution of the
idle/busy period durations completes the whole picture
of learning about the channel traffic activity (i.e., traffic
learning). In the literature, different distribution models
have been considered for the channel traffic. Exponential
(E) distribution, for example, is one of the widely assumed
models for channel traffic as in [27]–[29], which can simplify
the mathematical analysis of the studies. However, field
measurements in [20] have shown that the Generalised
Pareto (GP) distribution is more realistic for channel traffic
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TABLE 3. Considered probability distribution models for idle/busy period durations. Distribution names: E (Exponential), GP (Generalised Pareto), G
(Gamma), and W (Weibull). Distribution parameters: µi (location), λi (scale), and αi (shape). Ti represents the period length. E{·} and V{·} represent the
mean and the variance of the distribution, respectively. γ (·, ·) is the lower incomplete Gamma function [30, 6.5.2] and 0(·) is the (complete) Gamma
function [30, 6.1.1]. (reproduced from [20]).

representation. In this work, however, we investigate the
estimation of the channel traffic distribution under ISS
using a DL approach without making any prior assumption
about the original distribution type of the channel traffic.
In addition, we compare this approach with previous methods
for estimating the distribution under ISS. First, a DL model
is used to classify the distribution type of the channel
traffic based on the ISS observations. After classifying the
distribution type, Method of Moments (MoM) inference
technique [19] can then be used to estimate the distribution
parameters (location µ, scale λ and shape α, if they all exist)
from the sample moments obtained previously (i.e., mean,
variance and minimum).

The classification problem can be solved using an MLP
NN that selects a distribution class at the output based on
the observations of the ISS for the channel traffic. Table 3
is considered for the list of the possible traffic distribution
types that provides accurate representations for the empirical
data [20], from which a NN can select the best match
type for the channel traffic distribution. This list includes
Exponential (E), Generalised Pareto (GP), Gamma (G) and
Weibull (W) distributions (note that other distribution types
can also be added to the list). Therefore, there is no particular
type assumption for the channel traffic distribution (as often
is assumed in the literature) since the list here can easily be
extended to other distribution models. The input of the NN,
as shown in Fig. 9, uses the first h-th histogram bins of the
observed periods under ISS along with the probabilities of
sensing error (Pfa and Pmd ) to predict the best classification
for their distribution (the highest probability at the output).
Note that the input of this NN is similar to the input of the NN
used to find theminimumparameterµ in the previous section,
however, the input here is used to solve a classification
problem rather than a regression problem and as a result the
NN has multiple outputs.

After classifying the distribution type of the channel traffic,
MoM inference technique [19] is considered to estimate
the distribution parameters (location µi, scale λi and shape
αi, if they all exist) from the sample moments obtained
previously (i.e., mean, variance and minimum). The location
parameter µi is the same as the minimum period estimated

FIGURE 9. Deep Learning model for distribution type classification under
ISS.

previously as µ̃i using DL approach, while the scale λi and
shape αi parameters can be found from the mean and variance
of the selected distribution model. Since the moments (mean
and variance) can also be estimated accurately using the
DL approach as discussed before, the scale λi and shape αi
parameters of the selected distribution can therefore be solved
using MoM technique. For example, if the DL model shown
in Fig. 9 classifies (with highest probability) the channel
traffic observations as GP-distributed, their µi, λi and αi
parameters can then be found as [19, ch. 20]:

µi ≈ µ̃i (5a)

λi ≈ λ̃i =
1
2

(
1+

(m̃i − µ̃i)2

ṽi

)
(m̃i − µ̃i) (5b)

αi ≈ α̃i =
1
2

(
1−

(m̃i − µ̃i)2

ṽi

)
(5c)

where µ̃i, m̃i and ṽi are the estimated minimum, mean
and variance of the channel traffic using DL approach,
respectively. Once the distribution parameters are found,
the Cumulative Distribution Function (CDF) of the GP
distribution FGP can then be obtained from:

FGP≈ F̃GP(Ti; µ̃i, λ̃i, α̃i)=1−
[
1+

α̃i(Ti − µ̃i)

λ̃i

]−1/α̃i
(6)

In the same way we can find the expressions for other
channel traffic distributions.

A. RAW DATASET CONSTRUCTION AND PREPROCESSING
As discussed before, distribution estimation is achieved by
first classifying the distribution type using DL model, then
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FIGURE 10. Training and vlaidation accuracy of the MLP NN for
distribution classification.

estimating the distribution function using MoM technique.
To solve the classification problem, datasets are required to
be obtained. These datasets are constructed in the same way
as step 1 to 4 in Section VI-A with some slight differences.
In step 1, channel traffic is modelled 4 times using (E,
GP, G and W) distributions. Then spectrum sensing and
probability of sensing error (Pfa and Pmd ) are configured
in the same way as in step 2 and 3. In step 4, channel
traffic statistics (histogram bins {h1, . . . , h100}) are computed
from the ISS observations. These observations along with the
configured Pfa and Pmd represent the input vector (features)
of the DL model, whereas the output vector (labels) is given
by the classes of the original distribution used to model the
channel traffic in step 1. Since we have 4 distribution classes
(E, GP, G and W), they can be encoded as a one-hot vector
1s ∈ R4 (i.e., 4-dimensional vector, the s-th element of which
is equal to one and zero otherwise [23]). These features and
labels can then be saved into .mat file to be used later for
training and testing.

However, preprocessing is required to be performed first
on the produced dataset. Therefore, the obtained dataset in
.mat file is imported to Python for preprocessing. Similar
to section VI-A, preprocessing.Normalization()
function fromKeras library is used to normalise these datasets
in order to be used for training and testing.

B. TRAINING, VALIDATING, AND TESTING THE DL MODEL
After preprocessing the dataset, it can now be used to train,
validate and test a DL model. An MLP NN with several
settings has been examined to build the requiredDLmodel for
classifying channel traffic distribution under ISS. As shown
in Fig. 10, different number of hidden layers {1, 2, and 3}
and neurons {16, 32, 64 and 128} are used to examine the
accuracy of training based on Categorical Cross-Entropy loss
function. It is found that a NN with 2 hidden layers can
reach the same accuracy as a higher number of layers when
100 Epochs is used. In the same way, 64 neurons per hidden
layer can provide the same accuracy as a higher number of
neurons when 100 Epochs are used. As a result, an MLP

TABLE 4. MLP NN model used for distribution classification under ISS.

NN shown in Table 4 is considered to provide accurate
classification for the type of the channel traffic distribution
under ISS. The output layer of this model has 4 neurons
referring to the corresponding classes (E, GP, G and W).
Therefore, by using Softmax activation function at this layer,
the output of these 4 neurons will represent a probability
of the corresponding distribution class. Hence, the output
with the highest probability will indicate the best distribution
class match for the observed channel traffic under ISS. After
preprocessing the features and labels in the .mat file, 60%
of these data is used to train this MLP NN model, while 20%
is used to validate the training process. After training and
validating the DL model, it can now be tested based on the
remaining 20% of the dataset to evaluate its classification
performance. Although testing dataset has both features and
labels, only features are fed to the NN to classify channel
traffic distribution, while labels are used to quantify the
accuracy of the classification provided by the NN, which will
be shown in the simulation results.

VIII. RESULTS
A. MEAN, VARIANCE, AND MINIMUM PERIOD
ESTIMATION OF THE CHANNEL TRAFFIC UNDER ISS
In order to evaluate the estimation performance of the DL
model proposed in Section VI to estimate the mean, variance
and minimum period of the channel traffic under ISS, a large
dataset is produced to train the DL model such that it can
generalise a problem, i.e., to provide accurate estimation for
the channel traffic statistics even when new data are observed
under ISS. This can be achieved by repeating steps 1 to 4 in
Section VI-A several times to remodel the original channel
traffic to cover a wide variety of traffic statistics, and for each
traffic model spectrum sensing is applied and configured in
step 3 using different combinations of Pfa and Pmd ranging
from low (0.01) to high (0.1) probability of error. In the
estimation of mean, for example, channel traffic in step 1 can
be modelled repeatedly to have random mean values as mi ∼
U(10, 200) t.u., and for each traffic mean spectrum sensing
is applied using several combinations of Pfa ∼ U(0.01, 0.1)
and Pmd ∼ U(0.01, 0.1) to observe the original mean under
different scenarios of ISS. Similar procedures can also be
followed to obtain the datasets for variance and minimum
period statistics.

Then 60% and 20% of such datasets are used to train
and validate the DL model, respectively, as discussed in
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FIGURE 11. Simulation results for traffic mean estimation under ISS using different approaches, when Pfa and Pmd ∼ U(0.01, 0.1),
Ts = 1 t.u.

FIGURE 12. Simulation results for traffic variance estimation under ISS using different approaches, when Pfa and
Pmd ∼ U(0.01, 0.1), Ts = 1 t.u.

FIGURE 13. Simulation results for traffic minimum estimation under ISS using different approaches, when Pfa and
Pmd ∼ U(0.01, 0.1), Ts = 1 t.u.

Section VI-B, while the remaining 20% of the dataset
is used to test the accuracy of the DL model. Fig. 11
shows the accuracy of estimating the mean of the channel
traffic under ISS using different approaches (closed-form
expression, reconstruction algorithm and DL). Each point
in the figure represents the corrected estimation of the
traffic mean observed under ISS for a particular Pfa and
Pmd ∼ U(0.01, 0.1). As it can be noticed, DL approach
outperforms the previous approaches for providing accurate
estimation, in which all the points are distributed closely

around the straight line that corresponds to the original mean
value. It is worth mentioning that, the selected reconstruction
algorithm in this work performs better than the closed-from
expression because the algorithm itself exploits the closed-
from expression to improve the estimation of the mean.
It can also be noticed that, as the mean value increases the
estimation performance degrades for all approaches. This is
due to the fact that the longer the periods the higher the
number of sensing errors occur within those periods, thus less
accurate estimation can be achieved. In Fig. 12 and 13, on the
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TABLE 5. Average error for statistics estimation using different
approaches.

other hand, the DL approach also provides higher accuracy
for the estimation of the variance and minimum period,
respectively. Variance estimation in Fig. 12 is only provided
for DL and reconstruction approaches since, to the best of
the authors’ knowledge, no closed-form expression for such
moment under ISS is available in the literature. In Fig. 13,
on the other hand, even when a closed-form expression is
provided for the estimation of the minimum period under
ISS (which is simply given by µ̆ = Ts [13]), it does not
lead to accurate estimation of the true minimum period.
Similarly, the reconstruction method also fails to provide
accurate estimation for the minimum period under ISS, this
is because even after reconstructing the corrupted idle/busy
periods under ISS there will be still some short periods
which have not been reconstructed properly, thus providing
incorrect minimum period estimation. The distribution of
estimation error for all approaches is also provided (in the
middle plots), where it shows better performance for DL
estimator as it is centred around zero with narrow standard
deviation with respect to other approaches. This performance
improvement can also be observed in the right hand side plots
in terms of the Maximum Absolute Error (MAE) obtained
within a 90% confidence interval. The performance shown
in Figs. 11(a), 12(a) and 13(a) can also be presented in
numerical form as shown in Table 5 by taking the average of
the differences between the original values of these statistics
and their estimations under ISS, for which it can be noticed
that our proposed approach also, in average, provides less
error in the estimation of the original statistics with respect
to the previous approaches.

B. DISTRIBUTION CLASSIFICATION AND ESTIMATION OF
THE CHANNEL TRAFFIC UNDER ISS
As discussed in Section VII, channel traffic distribution is
estimated in two stages, first classifying the distribution
type, second estimating the distribution parameters. To eval-
uate the performance of the DL model used to classify
the distribution of the channel traffic, a large dataset of
4×105 histograms using 100 bins is produced by remodelling
the channel traffic several times using (E, GP, G and
W) distribution models. The corresponding observations
of the channel traffic under ISS using random Pfa and
Pmd ∼ U(0.01, 0.1) are obtained. Similar to the previous
section, 60% and 20% of such dataset are used to train and
validate the DLmodel, respectively, while the remaining 20%
of the dataset is used to test the accuracy of classification.
Fig. 14 shows the accuracy of classifying the distribution
of the observed channel traffic under low (0.01) and high
(0.1) probability of sensing error. Sensing errors can distort

FIGURE 14. Channel traffic distribution classification under ISS when
(a) Pfa = 0.01 and Pmd = 0.01, (b) Pfa = 0.1 and Pmd = 0.1.

the shape of the observed traffic distribution. However, as it
can be seen from the confusion matrix, even under high
probability of sensing error the proposed DL model can
still provide accurate classification for the observed channel
traffic under ISS. To estimate the distribution parameters
(µi, λi and αi), MoM method can be applied according
to the selected distribution type. Since the mean, variance
and minimum period can be estimated accurately using DL
approach as seen from the previous section results, accurate
estimation can also be obtained for (µ̃i, λ̃i and α̃i), based
on which the CDF of the channel traffic F̃(Ti) can then
be found as explained in Section VII. The accuracy of this
estimation can be presented in terms of Kolmogorov-Smirnov
(KS) distance [31], which is defined as themaximum absolute
difference between the estimated CDF F̃(Ti) and the original
CDF F(Ti) of the channel traffic as:

DKS = sup
Ti
|F̃(Ti)− F(Ti)| (7)

where DKS is the KS distance between the estimated
distribution and the original one. Therefore, based on (7),
the accuracy of estimating the distribution of the chan-
nel traffic under ISS is shown in Fig. 15 using DL,
reconstruction algorithm and closed-form expression [12,
eq. (45)] approaches when the original traffic distribution
is drawn from GP with µi = 10 t.u., λi = 3 t.u. and
αi = 0.25 parameters. As it can be appreciated, the proposed
DL approach achieves lower KS distance (i.e., higher
accuracy of estimation) than the previous approaches for
different values of Pfa and Pmd . Since the estimation of the
traffic distribution using DL approach is dependent on the
estimations of the mean, variance and minimum period, its
accuracy changes according to the accuracy of estimating
those moments, which are also obtained using DL approach
for the given Pfa and Pmd . Similar observations can be
obtained as well for the estimation of other types of distri-
butions, showing significant improvement in the distribution
estimation through using the proposed DL approach.

C. COMPUTATIONAL COMPLEXITY
The computational complexity of the different approaches
used to estimate channel traffic statistics under ISS is
an important aspect to investigate. Generally, closed-form
expressions approach tends to be more attractive in terms
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FIGURE 15. KS distance of the channel traffic CDF estimation under ISS.

TABLE 6. Computation time (in seconds) required by each approach to
provide 100 estimations for different statistical metrics.

of the complexity as it provides accurate estimations for the
channel traffic statistics under ISS through using explicit
mathematical equations. However, the accuracy of these
equations tends to degrade as the sensing period Ts decreases,
this is because decreasing the latter causes an increase in
the number of the sensing events within an observed period,
which in turn increases the occurrence of sensing errors as
a result. In addition, regardless of being more attractive,
closed-form expressions can be challenging sometimes to
find for higher statistical parameters under ISS such as
variance, skewness and kurtosis (where this can be noticed
from the results of Fig. 12, the absence of the closed-
from expression approach for variance estimation). The
reconstruction algorithms approach, on the other hand,
is less attractive in terms of the complexity as it performs
heavily computational operations with several iterations
in their algorithms in order to reconstruct the idle/busy
periods corrupted by the sensing errors. In the reconstruction
Algorithm 1, for example, each sensing error needs to be
identified and then corrected using two arithmetic (addition)
operations. These operations, therefore, increase significantly
as the number of the sensing errors increases and they,
even more, double for every iteration performed. In contrast,
the complexity of the deep learning approach depends on
the NN models used to perform estimation (i.e., number of
layers, neurons, etc.). The computation requirements of this
approach weighs more on the training process than on the
prediction process of the DL models. However, this training
operation does not take place often, in fact once a DL model
is trained it can then be used to perform estimations for the
channel traffic statistics.

Table 6 shows a comparison for the computational
complexity of the considered approaches in this work in terms

of the computation time taken to perform 100 samples of
estimations for the channel traffic statistics under ISS. As it
can be appreciated, the computational cost associated with
the closed-form expressions approach is the most efficient
one, while it is significantly higher for the reconstruction
algorithms approach. On the other hand, the deep learning
approach is considerably less complex than the algorithmic
approach and reasonably more complex than the closed-form
expression approach. It can also be noticed that the already
trained DL models require significantly less computations
than the resulting computations from the training process,
however, as explained earlier, this training is not required to
take place often to preform estimations for the channel traffic
statistics. Therefore, considering the significant accuracy
improvement with a reasonable increase in the complexity,
the proposed DL approach can be considered an efficient
solution for providing accurate estimation for the channel
traffic statistics under ISS.

IX. CONCLUSION
The harmonious coexistence of several wireless communi-
cation systems in a shared frequency spectrum is highly
dependent on making effective decisions for the utilisation
of such spectrum. These decisions are usually based on the
users’ activity within the channel and their traffic statistical
information. Therefore, it is crucial for a spectrum sharing
system to obtain accurate estimation of the traffic statistics
even under low SNR conditions (i.e., ISS). In this context,
this work has studied the existing approaches in the literature
that correct the estimation of the statistical parameters
of the channel traffic under ISS, including both closed-
form expression approach and the algorithmic reconstruction
approach. In addition, a novel deep learning approach
has been proposed, which can learn from the imperfect
observations of the traffic statistics in order to predict their
accurate estimations. Therefore, several estimation methods
based on deep learning have been modelled and validated
for the mean, variance, minimum and distribution of the
channel traffic. It was demonstrated that the proposed
approach outperforms the previous approaches widely used
in the literature, which are based on closed-form expressions
and reconstruction algorithms, under different scenarios of
sensing error probabilities.

Finally, the investigation of using other types, more
powerful, neural networks, e.g., Convolutional Neural Net-
work (CNN) and/or Recurrent Neural Network (RNN),
to solve the problem of estimation of channel traffic statistics
under ISS, and the potential of using multitask learning with
a shared NN model to provide multi statistical parameters
is suggested as a part of the future work. In addition,
the complexity of these neural networks with respect to the
ones considered in this work would be also important to
investigate. A useful extension of this work, furthermore,
would be the exploitation of the proposed estimation methods
in various applications of spectrum sharing systems.
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