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ABSTRACT Aiming at the problems of low stability of path planning, inability to avoid dynamic obstacles,
and long path planning for multi unmanned aerial vehicles (UAV) in mountainous environment, a path
planning method for UAV was proposed based on the fusion of Sparrow Search Algorithm (SSA) and
Bioinspired Neural Network (BINN). The method first scans the flight environment and smoothes the
surface, then raises it to obtain the safe surface, and uses SSA to find a series of nodes with the lowest
comprehensive cost on the safe surface. Then, B-spline curves are used to fit these nodes, so that the planned
path is smooth to meet the flight requirements of the UAV. When the dynamic obstacle is detected in the
predetermined trajectory, the improved BINNmethod is used to carry out local path replanning to achieve the
purpose of dynamic obstacle avoidance. Computer simulation results demonstrate that the fusion algorithm
can plan a collision-free path in a mountainous environment, and the planned path is smooth and short.
Compared with the Artificial Bee Colony Algorithm (ABC) and Dragonfly Algorithm (DA), the fusion
algorithm has obvious advantages in the stability of path planning and planned path length, and has the
ability of dynamic obstacle avoidance.

INDEX TERMS Path planning, multi-UAV, sparrow search algorithm, bioinspired neural network,
safe surface.

I. INTRODUCTION
In recent years, UAVs have been widely used in various mili-
tary and civilian missions due to their small size, lightweight,
fast speed, and low cost of equipment [1]–[4]. Therefore,
the important technologies of UAVs attract the attention
of researchers, such as task allocation [5], communication
network [6], path planning [7], and formation technology
[8]. Path planning is the key and foundation of success in
UAV missions. This paper mainly studies the real-time path
planning of multi-UAV in mountainous environments. This
problem is somewhat challenging because a long-distance
complex environment needs to ensure the planned path
is feasible, has low computational complexity, and avoids
dynamic obstacles.

The path planning of UAVs mainly consists of two
parts: environment modeling and path planning method.
Conventional environmental modeling methods include Grid
Maps [9], Voronoi graphs [10], and Artificial Potential
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Field [11]. The Grid Map is easy to model the environment,
but for long flight paths, search space is too large, and it
is difficult to define the size of the grid. Especially in 3-D
space, the modeling will be more complex and there will be
more grids [12], [13]. L proposed a method to reduce the
height size and transform the 3-D mesh into a 2-D mesh,
but it is still only applicable to a small environment [14].
Compared with the Grid Map, the Voronoi reduces search
space, but the accuracy is also reduced. At the same time,
the environment changes and it is difficult to update the
model [15]. Therefore, the Voronoi is not suitable for an
environment with dynamic obstacles. Artificial Potential
Field can be used in dynamic environments [16], but in
a complex environment, there is a problem of not finding
the path [17]. Du establishes a dynamic environment model
by designing a variable threshold to dynamically define the
repulsion force of the obstacle, but the modeling is still
too complex in the face of a complex environment [18].
In the long-distance mountainous environment, the staff map
through the satellite first, and the planner can scan the region
with the satellite to obtain the corresponding digital map. Fan
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used the two-dimensional cubic convolution interpolation
method to preprocess the digital map [19]. Hu proposed a
comprehensive smoothing algorithm [20], through which the
comprehensive equivalent surface could be obtained, and then
the height could be raised to generate a safe surface. The
algorithm was used to plan the path on the surface, and
the collision-free track could be obtained. This method is
more suitable for long-distance path planning and easier to
be applied in a real scene.

At present, the research methods of path planning can
be divided into two categories: Global path planning and
local path planning. Global path planning refers to obtaining
a feasible path in a given environment through intelligent
optimization algorithms or Mathematical Programming [21],
In general, path planning is made for the given environment
first, and then the planned route is implanted into the UAV
system for off-line flight, which has low computational
requirements for the UAV and relatively simple engineering
application. With the rapid development of intelligent
optimization algorithms, many intelligent optimization algo-
rithms are used in path planning. Such as the Cuckoo
Search algorithm(CS) [22], the Bat algorithm [23], the Grey
Wolf Optimization algorithm(GWO) [24], the Genetic algo-
rithm [25], and the Quantum Particle Swarm Optimization
algorithm(QPSO) [26]. In [27], the Simulated Annealing
algorithm is introduced to improve the A* algorithm for
global path planning, which reduces planning time and search
scope of the A* algorithm and solves the problem of long
path planning time for UAV. However, it is difficult to
ensure an optimal path in a complex environment. Wang
used the global optimization ability of the Artificial Bee
Colony (ABC) algorithm to solve the problem that the
traditional A* algorithm was difficult to obtain the optimal
path [28], but the ABC algorithm had the disadvantage of the
locally optimal solution and low stability. Li decomposes and
connects the obstacle map to form multiple convex polygons
based on the convex decomposition principle of concave
polygons, and then uses the ABC algorithm to search for the
optimal path in all the connected domains to avoid the local
optimum [29]. However, none of the abovemethods can solve
the problem of avoiding dynamic obstacles.

Local path planning is to select the next feasible direction
of the UAV according to the current environment and
constraints. Because the calculation force of UAV is low,
the calculation amount of this method should not be too
complicated. Zhang introduced path memory to improve
the Artificial Potential Field, which avoided the traditional
Artificial Potential Field method easily falling into local
minimum value [16]. Ulises et al. proposed to use the
membrane pseudo-bacterial potential field (MemPBPF) algo-
rithm to evolve the parameters required by the artificial
potential field method, which achieved good results in
obstacle avoidance and path smoothing [30]. Most of the
above methods are suitable for small environments. However,
it was difficult to ensure that the planned path was globally
optimal and time-consuming, and it was not suitable for

UAVs to make long-distance path planning in a mountainous
environments. Chang introduced Q-learning to improve
the dynamic window algorithm and increased the success
rate of the dynamic window algorithm for path planning
in the unknown mountainous environment [31]. However,
the calculation of the algorithm is more complex, and it does
not apply to the low computational power of the UAV, and the
path of local path planning does not have the global optimal.

To overcome the global path planning cannot avoid the
dynamic obstacles and local planning to the UAV calculation
force requirements and the planned path does not meet
the requirements of mountainous environment flight. In this
paper, a path planning method combining global program-
ming and local programming is proposed. This method
combines the Sparrow Search algorithm(SSA) [32] and the
Biologically InspiredNeural Network algorithm(BINN) [33].
In the proposed method, the safe surface map was used to
construct global motion space [20], and the key nodes were
searched on the safe surface using SSA. Then the B-spline
Curves were used to smooth the planned path [34]. When
a dynamic obstacle was detected, BINN was activated to
replan the path to complete the local obstacle avoidance
function. The path obtained through SSA can ensure global
optimization. When dynamic obstacles are detected while
flying in a predetermined path, local path reprogramming is
carried out. After avoiding the dynamic obstacles, continue
to fly in a predetermined path, to reduce the computational
force requirement of the UAV.

The main contributions of the paper are as follows: (1) A
method fused SSA and improved BINN is proposed to solve
the problem that it is difficult for multi-UAV to obtain a safe,
short path and avoid dynamic obstacles in a mountainous
environment. The two methods promote each other and
greatly improve the performance and extend function. (2)
SSA was used for global path planning, and high activity
values of corresponding neurons were set to avoid BINN
falling into local optimum by using a global predetermined
trajectory. (3) The structure of BINN’s neurons was improved
and a buffer layer was added to make obstacle avoidance
better. (4) The fusion method reduces the computing power
requirement of airborne computers and is suitable for
practical applications.

This paper is divided into the following sections: Section II
introduces the Flight space modeling and comprehensive
cost model. In Section III, A multi-UAV path planning
method based on fused SSA and improved BINN is proposed.
In the IV section, the simulation analysis is carried out, and
the comparison with the ABC algorithm and DA verifies the
feasibility and high performance of the proposed method.
Finally, Section V is comprised of the conclusion.

II. FLIGHT SPACE MODELING AND COMPREHENSIVE
COST MODEL
To reach the target safely, the UAV needs to achieve
collision-free flight under the conditions of total flight length
constraints, threat zone distance constraints, mountainous
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FIGURE 1. Global modeling diagram. (a) Original mountainous map, (b) Safe surface diagram.

environment constraints, and adjacent UAV distance con-
straints. This chapter mainly describes the UAV flight space
modeling and comprehensive cost model.

A. FLIGHT SPACE MODELING
The flight space modeling studied in this paper is divided into
two parts: global space modeling and local space modeling.

1) GLOBAL SPACE MODELING
In the global space, the mountainous environment of path
planning is shown in Fig. 1 (a). Because the real terrain
environment is complex, with deep valleys and steep
mountains, the direct path planning in this environment
requires higher flight requirements of the UAV, which is
prone to collision. In this paper, a comprehensive smoothing
algorithm proposed in [20] was adopted to limit and smooth
the slope of the terrain and the curvature of the valley,
to reduce the flight difficulty of the UAV. After smoothing,
a smooth surface C(x, y) was obtained, as shown in Fig.1 (b).
Based on the smooth surface, the height h is raised to generate
a safe surface S(x, y). h is the minimum height of the UAV
from the ground.

S(x, y) = C(x, y)+ h (1)

The safe surface is higher than the mountain. When flying,
the UAV needs to keep a certain distance from the mountain
to achieve a safe flight. When the flying height of the UAV is
lower than the safe surface, it will collide with the mountain,
and the path planning on the safe surface can reduce the
probability of the UAV hitting the mountain and increase the
flight safety of the UAV.

2) LOCAL SPACE MODELING
When the UAV flies to a certain location, the sensor detects
the dynamic obstacle, then the local path replanning is started,
and local modeling needs to be carried out according to the
current environment. In local space, a 3 * 3 * 3 mesh map
composed of neurons is established, and the connection vein
of each neuron is shown in Fig.2. There are 17 alternative
navigable directions of the UAV, which are represented by
neuron Na. When the UAV is in the current position, it will

FIGURE 2. Local modeling diagram.

not only check the information of alternative neuron Na but
also the information of reference neuron Nr.When the neuron
Nr behind Na is occupied by obstacles, the neuron activity
information of Na will be reduced. The additional reference
neuron Nr can be used as a buffer for the dynamic obstacle
avoidance of the UAV and improve the success rate of the
obstacle avoidance of the UAV.

When the UAV starts local obstacle avoidance, the forward
information is probed through the sensor and then expressed
as the state information of each neuron. The state information
of alternative neuron As is defined as Formula (2), and
the state information of reference neuron Rs is defined as
Formula (3).

As =


2 E target location
E movable position
−2 E obstacle position
0 UAV position

(2)

Rs =


−2E obstacle position
2 E target location
0 otherwise

(3)

B. COMPREHENSIVE COST MODEL
Within the threat zone, there are threats such as enemy radar
detection, As shown in Fig.3, the threat zone is a cylinder
formed by a threat source O (xo, yo, zo) and its action radius
R1. The UAV can only go around this range, but cannot go
over it. Therefore, in the path from the key node x to the
key node x + 1, the Euclides distance between any point
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FIGURE 3. Constraint diagram of threat zone distance.

FIGURE 4. Constraint diagram of adjacent UAV distance.

T (xt , yt , zt) and threat source O shall meet the following
requirements:

R1 <
√
(xt − xo)2 + (yt − yo)2 + (zt − zo)2 (4)

As shown in Fig.4, multi-UAVs need to maintain a safe
distance while flying. Although different flight starting points
and different timing sequences are set at the beginning of
the aircraft, global path planning could cause two UAVs to
collide. Therefore, it is necessary to set the minimum distance
to the UAV. A sphere is built with the UAV as the center and
the minimum distance R2 as the radius. The Euclides distance
of two adjacentU1 (x1, y1, z1) andU2 (x2, y2, z2) shouldmeet
the following requirements:

R2 <
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (5)

To simulate UAV flight in the real environment as much as
possible, relevant constraints are set according to the effect
of total flight length lmax and minimum turning radius rmin on
the actual flight of UAV. Therefore, the sum of the flying path
li of each key node should meet the following requirements:

lmax >
node∑
i=0

li (6)

In the planned path, the minimum radius of curvature is
C , then the minimum turning radius rmin should meet the
following requirements:

rmin ≤ C (7)

In this paper, the SSA algorithm is used to solve the path
planning problem in global space, and the constraints include

threat zone distance constraint, adjacent UAV distance con-
straint, total flight length constraint, and minimum turning
radius constraint. The above four constraints constitute the
total constraint function Fcost :

Fcost =
4∐
i=1

fi · ωi (8)

where fi is the constraint expression of Equations (4), (5), (6)
and (7), ωi is the weight of each constraint, and the optimal
weight is obtained through multiple simulation adjustments.
The key point of an optimal solution is the minimum value of
the constraint function.

III. PROPOSED SOLUTIONS
In this paper, the method of integrating SSA and improving
BINN is used for multi-UAV path planning, The whole
path planning problem is divided into two parts: global
programming and local programming. In global program-
ming, SSA is used to search a series of key nodes with
the lowest comprehensive cost on the safe surface, and then
B-spline curves were used to fit the key nodes to obtain the
predetermined trajectory. When the UAV is flying, a sensor
will be used to detect the environmental information ahead
all the time, and local path planning will be started when a
dynamic obstacle is detected ahead. Local path planning takes
the current position as the starting node, the predetermined
trajectory is used as the target area direction and uses the
improved BINN as the local planning method. The overall
planning flow chart is shown in Fig.5.

A. CALCULATE GLOBAL KEY NODES BASED ON SSA
To improve the efficiency of solving global critical track
points, the SSA is used to solve the key nodes with
the lowest comprehensive cost in the safe surface. SSA
algorithm is a new kind of swarm intelligence optimization
algorithm, which is designed according to the foraging
characteristics of the sparrow population. Compared with
algorithms such as Bat algorithm, GWO algorithm, Whale
Optimization algorithm, Dragonfly Algorithm (DA) and
Locust Optimization algorithm [35], SSA Algorithm has
excellent stability and convergence in single-mode and multi-
mode test functions. Because the position update of the SSA
algorithm is jumping and discontinuous, it effectively avoids
falling into the local optimum. The specific optimization
steps are as follows:

In the SSA, themore fitness producer sparrow gets the food
first. Since the producer sparrow is responsible for finding
food for the entire sparrow population and providing food
directions for all the join sparrows. As a result, the producer
sparrow has a larger food search area than the entrant sparrow.
The position update formula for each generation of Producer
is as follows:

x t+1i,d =

 x ti,d · exp
(

−i
α · itermax

)
, R2 < ST

x ti,d + Q · L, R2 ≥ ST
(9)
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FIGURE 5. Work flow diagram.

where x ti,d denotes the d-dimensional position of the ith
individual in the t generation of the population, α ∈ (0, 1] is a
uniform random number, R2 ∈ [0, 1] denotes warning value,
ST ∈ [0.5, 1.0] denotes the alert threshold, Q is a standard
normally distributed random number, L denotes a matrix of 1
* d, itermax denotes the maximum number of iterations.
For scroungers sparrows, in the process of searching for

food, some of the participating sparrows will observe the
producer sparrows all the time. If the producer sparrow finds
food, the scrounger’s sparrowwill fly around. The Scroungers
position update formula is as follows:

x t+1i,j =


Q · exp

(
x tw − x

t
i,j

i2

)
, i >

n
2

x t+1p +

∣∣∣x ti,j − x t+1p

∣∣∣ · A+ · L, ohterwise

(10)

where x tw denotes the worst position of sparrows in the current
population, and x t+1p denotes the optimal position of sparrows
in the current population. A denotes a matrix of 1 * d in
which each entry is randomly assigned either 1 or −1, and
A+ = AT

(
AAT

)−1
.

When the entire sparrow population is threatened by a
natural predator, it triggers an anti-predation mechanism:
shrinking toward a central safe position. The anti-predation
behavior formula is as follows:

x t+1i,j =


x tb + β ·

∣∣∣x ti,j − x tb∣∣∣ , fi > fb

x ti,j + K ·


∣∣∣x ti,j − x tw∣∣∣
(fi − fw)+ ε

 , fi = fb
(11)

where β is the step size control parameter, obeying the normal
distribution random number with a mean of 0 and variance

of 1. K ∈ [−1, 1] is a uniform random number, fi denotes the
fitness value of the current sparrow individual. fb and fw are
the current global best and worst fitness values, respectively,
ε is an extremely small constant to avoid the denominator
being 0.

B. LOCAL PATH REPLANNING BASED ON BINN
The local path planning method adopts improved BINN,
which is derived from the circuit model and action potential
transfer formula of nerve cell membrane proposed by
Hodgkin andHuxley [36]. Grossberg built on that and applied
it to areas such as motion control and path planning [37].
At present, many scholars have applied this method to the
path planning of UAVs. Compared with artificial potential
field and dynamic window algorithm, BINN has low compu-
tational cost and high obstacle avoidance success rate, which
is very suitable for path planning in an unknown environment.
But in some cases, there will be wrong path judgment,
planning path twists and turns [38]. NI uses the dragonfly
algorithm to optimize the activity of BINN’s neurons, to avoid
the UAV falling into the local optimum [39]. However,
the computation is heavy and the global optimum of the
planned path cannot be guaranteed. In this paper, the activity
of target neurons is strengthened by the predetermined
trajectory of global planning and the network model is
adjusted to improve the method, which can avoid the BINN
algorithm falling into the local optimal, the planned path is
smoother and the algorithm is more efficient.

When the sensor detects the presence of dynamic obstacles
in front of the UAV during its flight, local path replanning
will be initiated. The replanning takes the current position
as the starting point and the direction of the predetermined
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trajectory as the target area. When the sensor detects that
there is no dynamic obstacle ahead and the UAV returns to
the predetermined trajectory, local path planning ends.

In local planning, a 3-D mesh model is first constructed.
In this model, as shown in Fig.2, a grid cell represents
a neuron, and the information of each neuron is updated
in real-time in the unit of seconds. Each second maps the
activity information of the neuron according to environmental
information detected by the sensor, and each neuron connects
with adjacent neurons to form an active-transmitting network.

In the traditional BINN model, the UAV was placed
in the center of 26 neurons, and it spent one-third of
the time calculating information of the neurons that were
moving back.Moreover, it could only perceive environmental
information of one step at a time, and the success rate
of avoiding dynamic obstacles was low. In a flight with a
predetermined trajectory, the UAV does not travel backward,
so placing the UAV in the center of the first section in BINN
modeling can detect the two-step environment, making the
information from each neuron more valuable.

dxi
dt
= −Axi + (B− xi) Sei − (D− xi) S

i
i (12)

where xi denotes the activity value of the ith neuron, A
controls the decay rate of the neuron, B and D denotes the
upper and lower limits of the neuron activity. Sei denotes
excitatory excitation, S ii denotes inhibitory excitation, and its
formula can be expressed as follows:

Sei = [AS ]+ +
n∑
j=1

ωij
[
xj
]+
+ [RS ]+ (13)

S ii =
(
[AS ]− + [RS ]−

)
(14)

As and Rs are external incentives obtained according to
the environment, and their values are assigned from formula
(2) and formula (3). ωij is the connection weight of the
ith neuron and the jth neuron. In this paper, the Angle
between two neurons is taken as the standard. The smaller
the angle, the greater the weight. [As]+ represent excitatory
excitation, take the positive value, [As]−, [Rs]− represent
inhibitory excitation, take the negative value. n = 17 denotes
17 alternative neurons.

The activity value of each Alternative Neuron can be
calculated by the above formula. The path selection strategy
of UAV is as follows:

Pn ⇐ xn = max (xi, i = 1, 2, . . . , k) (15)

In the above formula, k denotes the number of neurons
adjacent to the neuron where the UAV is currently located,
which is 17 in this paper. xn denotes the most active neuron
at present, and the Pn denotes the location of the neuron.
When the UAV selects a path, it compares the activity of
neighboring neurons and selects the most active neuron
as the next step location. Repeat the above steps until
the local path planning is completed when no dynamic
obstacles are detected ahead and the predetermined trajectory

of the global planning is returned. Because the calculation
of BINN is simple, and the reference path direction will
enhance the activity of the corresponding neurons, it avoids
the disadvantage of falling into local optimization when
conventional algorithm planning.

C. PATH SMOOTHING STRATEGY BASED ON B-SPLINE
CURVE
After the SSA algorithm is used to get the key nodes,
a B-spline curve fitting is used to connect the key nodes
to make the planned flight path smooth and meet the flight
constraints of the UAV. B-spline curves are parametric func-
tions, and their construction is based on mixing functions. Its
parameter construction provides the ability to produce non-
monotonic curves. Its function expression is as follows:

C(u) =
n∑
i=0

Pi · Ni,p(u) (16)

In the above formula, Pi denotes the control vertex, Ni,p(u)
is the i-th p-order B-spline basis function corresponding to the
Pi. p ≥ 1, U =

{
u0, u1, . . . , up, up+1, . . . , un, un+p

}
, which

is a nondecreasing sequence composed of n+ p+ 1 numbers
in the interval [0, 1], ui is called a node, set U is called a
node vector, the beginning and end values are generally 0 or
1. If ui = ui+1 = · · · = ui+p−1, then ui is a multiple node of
degree p, Ni,p(u) is usually computed by a recursive formula
for Cox-deBoor:

Ni,0 =

{
1 ui ≤ u ≤ ui+1
0 otherwise

(17)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u)+

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u)

(18)

If the denominator of either of the fractions is zero, that
fraction is defined to have zero value. From the above
formula, we can calculate the value of each basis function.

B-spline curves can be divided into uniform B-spline
curves, quasi-uniform B-spline curves, piecewise Bezier
curves and non-uniform B-spline curves. In this paper,
the quasi-uniform B-spline curve is adopted: the node values
at both ends are 0 and 1, and the repetition is based
on the order p by adding 1, and all the inner nodes are
evenly distributed, for example, u0 = · · · = up =
1, 0.1, 0.2, . . . 0.8, 0.9, un+1 = · · · = un+p+1 = 1. Its fitting
effect is shown in Fig.6:

In summary, the pseudo-code of the fusion algorithm in this
paper is shown in the Algorithm (see Fig.7).

IV. SIMUATION EXPERIMENTS AND DISCUSSION
To verify the feasibility and effectiveness of the method
of integrating SSA and improving BINN, the simulation
experiment was carried out on the Matlab platform, on a
computer with the i7-7700HQ CPU and 16G memory. The
main research content of this paper is the path planning of
multi-UAV, which does not involve UAV formation control.
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FIGURE 6. Quasi-uniform B-spline curve with 5 control points of order 3.

FIGURE 7. The pseudo code of the proposed fusion algorithm.

Therefore, the formation control of multi-UAV is simplified.
To avoid collisions between UAVs, each UAV takes off at
different coordinate points, and takeoff time has the sequence.
The simulated environment map is a simulation of the real
mountainous environment. The parameters of the proposed
method and the simulation parameters in this study are listed
in Table 1.

A. STATIC ENVIRONMENT EXPERIMENT
To test the performance of the proposed fusion algorithm,
a static experiment is carried out first. The starting coordi-
nates of five UAVs are (20, 20, 200), (40, 40,200), (0, 0,
200), (40, 0, 200) and (0, 40, 200) respectively. The target
coordinate is (500, 500, 300), the coordinates of the two threat
zones are (210, 185), (390, 410), and the threat radius is

TABLE 1. Parameters of the proposed method.

TABLE 2. Set the mission information and environment information for
the test.

20 meters. The results are shown in Fig.8. In Fig.8(a) and
Fig.8(b), we can see the flight trajectory of UAV in the
mountain. Fig.8(c) shows the bottom view of the mountain,
and the absence of the trajectory line of the UAV in the
figure means that the UAV did not cross the mountain.
Fig.8(d) shows that the flight trajectory of the five UAVs is
relatively uniform and smooth, avoiding key mountains and
threat zone and successfully arriving at the target area. It can
be proven that the trajectory planned by this method is smooth
and does not cross the mountain.

B. STATIC ENVIRONMENT CONTRAST EXPERIMENT
To test the advantages of the proposed fusion algorithm,
comparative experiments were carried out. In Table 2,
the mission information and environment information for
path planning are shown, The mission information is repre-
sented by the starting coordinate and the ending coordinate
Qt , the starting coordinates of five UAVs are (20, 20,
200), (40, 40, 200), (0, 0, 200), (40, 0, 200) and (0, 40,
200) respectively in each experiment. The environmental
information is composed of different mountainous maps and
threat zone O, the information O is given by the Threat source
position and its corresponding radius r1 in (x, y, z, r1) format.
Each environment configuration is amap instance designed to
evaluate the performance and accuracy of the proposed fusion
algorithm; these instances were labeled as Env1, Env2, . . . ,
Env6.

To make a comparison between the proposed fusion
algorithm and the ABC and DA algorithms, we considered
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FIGURE 8. Path planning results of SSA. (a) view = (−45◦, 45◦), (b) =(45◦, 45◦), (c) =(90◦, −90◦), (d) =(0◦, 90◦).

the following points: (1) To compare the fairness of the
experiment, the iterations of the three algorithms are all
40 times. At the beginning of the experiment, we tested each
algorithm many times and set parameters such as population
size as an optimal value obtained in the experiment. (2) To
avoid the chance of experiment, each algorithm was tested
10 times in each environment. (3) In the discussion of the
results, we took the length of the planned path and the success
rate of the mission as the comparison items. The mission is
considered successful when there is no collision.

Fig.9 shows the operation results of the fusion algorithm on
six different environments. It can be seen from the figure that
the fusion algorithm can pass through the mountainous
environment constrained by various threatening regions
without collision, including getting rid of the local minimum
area and reaching the target position surrounded by obstacles.
Table 3 is the mission success rate comparison of the
three algorithms. Compared with ABC and DA algorithms,
the fusion algorithm can adapt to various environments to
complete tasks safely. Fig.10 is the comparison of the planned
path length of the three algorithms. It can be concluded that
the path length planned by the fusion algorithm is shorter
and more stable. The above experiments can prove that
comparedwith common path planningmethods, the proposed
fusion algorithm has better performance, stronger stability,
and robustness.

TABLE 3. Path planning average success rate.

C. DYNAMIC ENVIRONMENT EXPERIMENT
To prove the dynamic obstacle avoidance capability of the
proposed fusion algorithm, several dynamic flying obstacles
are added in the static environment. In this simulation
experiment, The mapping size of the 3-D mesh model is 60m
* 60m * 60m, the distance of each adjacent neuron is 30m,
and two dynamic obstacles are set, with starting coordinates
of (30, 156, 380) and (101, 80, 350) and ending coordinates
of (323, 313, 360) and (328, 227, 400). It can move at 5 m/s,
which is slower than a UAV. There is one test UAV with a
speed of 30 m/s. The starting coordinate is (20, 20, 200) and
the target coordinate is (500, 500, 300). The results of the
dynamic experiment are shown in Fig.12. In Fig.12 (a) and
Fig.12 (b), it can be seen that the UAV detects obstacles at
nodes (56, 117, 378) and (285, 288, 421), and then uses BINN
to carry out local path replanning, finally arriving at the next
node (100, 189, 326) and (337, 279, 426). In Fig.12 (c) and
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FIGURE 9. Path planning results of SSA in six environments. (a) Env1 (b) Env2 (c) Env3 (d) Env4 (e) Env5 (f) Env6.

FIGURE 10. Path length results for the three different implementations:
ABC, DA, SSA.

Fig.12 (d), it can be seen that the UAV has completed obstacle
avoidance without crashing into the mountain. The results

FIGURE 11. Dynamic obstacle avoidance of five UAVs.

show that the proposed method can avoid the obstacles when
facing dynamic obstacles, and finally realize the collision-
free flight.
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FIGURE 12. Dynamic obstacle avoidance simulation diagram of a single UAV. (a) view = (−45◦, 45◦), (b) =(45◦, 45◦), (c) =(0◦, 90◦),
(d) =(0◦, 90◦) No marked.

TABLE 4. Simulation results of multi-UAV dynamic obstacle avoidance.

In order to prove that the proposed fusion algorithm
can make multi-UAV avoid dynamic obstacles, four UAVs
are added into the above experimental environment, and
the starting coordinates of five UAVs are (20, 20, 200),
(40, 40, 200), (0, 0, 200), (40, 0, 200), (0, 40, 200) respec-
tively, the target coordinate is (500, 500, 300), the coordinate
of the two threat zones are (210, 185), (390, 410), the threat
radius is 20 meters. The experimental results are shown
in Table 4 and Fig.11

The results show that the proposed method can avoid
obstacles and achieve collision-free flight when multi-UAV
faces dynamic obstacles. As shown in Fig.11, it can be seen
that when the UAV detects an obstacle, it can avoid the
dynamic obstacle and finally reach the target point.

D. DYNAMIC ENVIRONMENT CONTRAST EXPERIMENT
To demonstrate the effect of improving BINN, a comparative
experiment was conducted. In this experiment, the pro-
posed fusion algorithm is compared with the basic BINN,
the starting coordinates of the five UAVs are (0, 250, 230),

FIGURE 13. Path planning results of fusion algorithm in complex dynamic
environment

(0, 200, 230), (10, 225, 210), (20, 250, 210), (20, 200, 230)
respectively. The target coordinate is (500, 250, 370), the
coordinates of the two threat zones are (170, 260, 320),
(460, 230, 380), and the threat radius is 20meters. To improve
the complexity of the environment, four dynamic obstacles
were added, which are spheres with a radius of 5 meters, and
their starting coordinates are (60, 200, 300), (150, 160, 400),
(440, 270, 320), (400, 260, 390) respectively.

The operation results of the proposed fusion algorithm
are shown in Fig.13. It can be seen that the five UAVs can
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TABLE 5. Comparison of path length and success rate in dynamic
experiment.

safely avoid the dynamic obstacles flying either from the
front or the side and have no collision with the mountain and
the threat zones. Table 5 is the comparison of path length
and obstacle avoidance success rate with the basic BINN,
data from ten experiments on the same map. As can be seen
from the table, the path length of the fusion algorithm is
shorter, more stable, and the success rate reaches 100%. The
above experiments show that compared with the basic BINN
method, the proposed fusion algorithm is more stable in
dynamic obstacle avoidance, and the planned path is shorter
and better.

V. CONCLUSION
A fusion algorithm is proposed for path planning of multi-
UAV in a mountainous environment. The fusion algorithm
combines SSA, improved BINN, and B-spline curve to
generate a safe, smooth, and short path for UAVs in
the mountainous environment with radar threats, mountain
threats, and dynamic obstacles. The main characteristic of
the fusion algorithm is that it combines the advantages
of the two methods, and the two methods promote each
other. The sparrow search algorithm has the characteristics
of fast convergence, high stability, and strong optimization
performance, and the global route generated by the algorithm
can guide for the improved BINN to avoid falling into the
local optimal. Then, the structure of the traditional BINN is
improved by adding a layer of buffer to improve the success
rate of avoiding dynamic obstacles.

Experimental results in different static and dynamic
environments show that the proposed fusion algorithm
can effectively solve the path planning problem of multi-
UAV in a complex mountainous environment. In the static
environment experiment, we compared several common path
planning methods, such as ABC and DA, and showed
obvious advantages in terms of safety and path length.
In dynamic environment experiments, compared with basic
BINN, the improved BINN has obvious progress in path plan-
ning length and obstacle avoidance success rate. Therefore,
the fusion algorithm proposed in this paper is very suitable
for multi-UAV path planning in a complex mountainous
environment.

In the future, UAVs will be used more for reconnaissance
or navigation missions in complex environments. In the case
of known target coordinates, the global path planning method
is undoubtedly the best choice, and its planned path is better
and shorter than the local path planning. Because of the
complexity of the environment, there is a great chance that
the UAV will carry out the replanning of the flight path
under the predetermined trajectory, and local planning is an
indispensable part. The combination of global path planning

and local path planning can reduce the computing power
requirement of airborne computers and is more suitable for
practical applications. Therefore, the combination of global
planning methods and local planning methods is a better
solution for multi-UAV path planning in a long-distance and
complex environment.
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