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ABSTRACT Disturbance observer (DOB) techniques are effective and practical methods for rejecting dis-
turbances inmotion control applications. Nonlinear DOBs that are based on dynamicmodels are employed to
apply the robust control technique to robot manipulators to improve position tracking performances. Time-
delayed control techniques are also effective methods for addressing uncertainties in robot manipulators.
Recent research results have demonstrated that both schemes are robust in compensating for highly nonlinear
uncertainties in robot dynamics. The objective of this paper is to demonstrate the structural equivalence
between a nonlinear disturbance observer and a time-delayed controller (TDC) under the nonmodel-
based control framework of robot manipulators. In addition, a Cartesian TDC for robot manipulators is
implemented and its stability is analyzed. The effects on the tracking performance in terms of sampling
times, inertia values, and torque constants of the Cartesian TDC are compared and analyzed for a robot
manipulator that follows a circular trajectory by both numerical and empirical investigations.

INDEX TERMS Disturbance observers, time-delayed control, equivalent structure, stability, robot
manipulators.

I. INTRODUCTION
Disturbance observer is a major control scheme for reject-
ing uncertainties of internal nonmodel dynamics and exter-
nal disturbances in motion control applications [1]. Linear
disturbance observers(DOBs) are implemented with inverse
models of linear systems and Q filter design [2]. Nonlinear
DOBs can be implemented with dynamic models of the
target system to realize the inverse dynamics control for
nonlinear systems such as robot manipulators [3]–[8]. Thus,
the accuracy of the dynamic models of the system is the most
important issue for DOB implementation.

However, modelling dynamical systems is not easy, and
the accuracy of modelling is uncertain. The exact mod-
eling of dynamical systems is impossible since there are
many nonmodeled dynamic components such as unknown
payloads, friction, stiction, back lash, and hysteresis. Since
robot manipulators are highly nonlinear and multi-input
multi-output systems, accurate positioning control with

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiguang Feng .

dynamic model compensation is challenging. This leads
to the development of control algorithms for addressing
modeling uncertainties, along with completely unknown
dynamics.

Decentralized adaptive sliding mode control with distur-
bance observers for robot manipulators was proposed [9].
Intelligent techniques are promising candidates for address-
ing nonmodel dynamics. Neural network control schemes for
learning the inverse dynamics of robot manipulators have
been presented [10], [11]. Online learning and control were
conducted to learn a robot system by defining training signals
to cancel out uncertainties [12]. Neural network-based learn-
ing has the substantial advantage of a simple learning and
control structure, but it requires fast and massively parallel
computing to realize online learning and control [13]–[15].
Fuzzy control methods have been presented for robustly
addressing changes in systems [16]–[18]. Fuzzy control
shows advantages in interpreting human expressions, but
establishing optimal rules that satisfy the control performance
requirements is difficult and requires a time-consuming
process.
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Therefore, in the nonmodel-based control framework for
robot manipulators, the time-delayed control (TDC) is a
promising candidate for the robust control performance due
to its simplicity and robustness [19], [20]. TDC uses the
previously sampled control information of the acceleration
measurement and the inertia matrix [21]. Consequently,
a fast sampling time is required, which affects the perfor-
mance and the stability of the system in the linear system
analysis.

However, the stability of TDC for the nonlinear systems
such as robot manipulators can be analyzed differently from
that in linear cases. The stability issues of TDC have been
addressed and the stability was found to depend upon the iner-
tia matrices of the robot manipulators [15], [22]. In consider-
ation of the stability issues in TDC, sliding mode control with
TDC was proposed, and adaptive techniques were applied to
TDC for robot manipulators to mitigate the disadvantages of
the TDC scheme [23]–[26].

The objective of this paper is to prove that the TDC
structure for robot manipulators becomes equivalent the
nonmodel-based disturbance observer structure. When non-
linear model-based DOBs are implemented in real sys-
tems, computational time delays for calculating the inverse
dynamic models are required. Since the concept is the same
for the nonlinear nonmodel-based DOB design with compu-
tational time delays, the design structure is exactly same as
the TDC structure. Eventually, the nonlinear nonmodel-based
DOB becomes TDC.

In the framework of the Cartesian space control of robot
manipulators, TDC is designed, and its stability is analyzed.
Extensive simulation studies of tracking the circular tra-
jectory of a three-link robot manipulator are performed to
evaluate the robustness of the control performance by TDC.
Sampling time issues are addressed through simulation stud-
ies. The selection of suitable torque constants for leveling the
Cartesian space and the joint space is suggested. The stability
issue of selecting the inertia value for the constant inertia
matrix is addressed through extensive simulation studies.

Finally, empirical studies are conducted, and the results
support the outperformance of the TDC scheme.

II. ROBOT DYNAMICS
The dynamics of an n joint robot manipulator with external
disturbance and internal nonmodel dynamics is described as

D(q)q̈+ C(q, q̇)+ G(q)+ τu = τ + τdis, (1)

where D(q) is the n x n inertia matrix, C(q, q̇) is the
n x 1 Coriolis and centrifugal torque vector, G(q) is the n x
1 gravity force vector, q(t) is the n x 1 joint angle vector, q̇(t)
is the n x 1 joint angular velocity vector, q̈(t) is the n x 1 joint
angular acceleration vector, τu(t) is the n x 1 other nonmod-
eled torque vector, τdis(t) is the n x 1 external disturbance,
and τ (t) is the n x 1 input torque vector.
The Jacobian relationship is expressed as

Ẋ (t) = J (q)q̇(t), (2)

where J (q) is the n x n Jacobianmatrix. The Cartesian dynam-
ics equation is established by using (2).

D∗(t)Ẍ (t)+ C∗(t)+ G∗(t)+ Fu(t) = F(t)+ Fdis(t), (3)

where D∗(t) = J−TD(q)J−1 is the n x n Cartesian inertia
matrix, C∗(t) = −J−TD(q)J−1J̇ J−1Ẋ + J−TC(q, q̇) is the n
x 1 Cartesian Coriolis and centrifugal force vector, G∗(t) =
J−TG(q) is the n x 1 Cartesian gravity force vector, X (t) is
the n x 1 position vector, Ẋ (t) is the n x 1 linear velocity
vector, Ẍ (t) is the n x 1 linear acceleration vector, Fu(t) is
the n x 1 nonmodel force vector, Fdis(t) is the n x 1 external
disturbance vector, and F(t) is the n x 1 input force vector.

For simplicity, (3) can be reformulated as

D∗(t)Ẍ (t)+ H∗(t)+ Fu(t) = F(t)+ Fdis(t), (4)

where H∗(t) = C∗(t)+ G∗(t), which can be modelled.

III. DISTURBANCE OBSERVER
Here disturbance observers are designed for the Cartesian
position control of robot manipulators.

A. MODEL-BASED DISTURBANCE OBSERVER
The Cartesian dynamic model with uncertainty is expressed
as

D∗(t)Ẍ (t)+ H∗(t)+ Fud (t) = F(t) (5)

where Fud (t) = Fu(t) − Fdis(t) is the uncertainty. The
Cartesian control input V (t) is defined as a PD-typed control
as

V (t) = Ẍd (t)+ KDė(t)+ KPe(t), (6)

where Xd (t) is the desired trajectory, e(t) = Xd (t)−X (t) and
KD,KP are controller gain matrices.
The control law with a delayed disturbance estimate

becomes

F(t) = F̄(t)− F̂ud (t − T ), (7)

where F̂ud (t − T ) is the delayed estimate of the disturbance
that is due to the model calculation time, namely the sampling
time T and F̄(t) is the model-based control law, which is
defined as

F̄(t) = D̂∗(t)V (t)+ Ĥ∗(t), (8)

where D̂∗(t), Ĥ∗(t) are estimates of D∗(t),H∗(t),
respectively.

The disturbance with nonmodeled dynamics is defined
from Fig. 1 as

Fud (t) = F̃(t)− F(t), (9)

where F̃(t) is the actual control input force including external
disturbance Fud (t), which is not available. Since the dis-
turbance cannot be estimated directly, we use the dynamic
models to estimate the disturbance indirectly as

F̂ud (t) = Fest (t)− F(t), (10)
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where Fest (t) is the estimated dynamic model, which is
expressed as

Fest (t) = D̂∗(t)Ẍ (t)+ Ĥ∗(t). (11)

where Ẍ (t) is the acceleration signal that includes the distur-
bance information. In practice, the acceleration signals are
measured by sensors or can be estimated by suitable filters.

Substituting (11) into (10) yields the disturbance estimate

F̂ud (t) = D̂∗(t)Ẍ (t)+ Ĥ∗(t)− F(t). (12)

Substituting (8) and (10) into (7) yields the control law of
DOB

F(t) = D̂∗(t)V (t)+ Ĥ∗(t)− F̂ud (t − T )

= D̂∗(t)V (t)+ Ĥ∗(t)− (Fest (t − T )− F(t − T )). (13)

Substituting the delayed version of (11) into (13) yields the
eventual control law

F(t) = D̂∗(t)V (t)− D̂∗(t − T )Ẍ (t − T )

+ Ĥ∗(t)− Ĥ∗(t − T )+ F(t − T ). (14)

Therefore, if the sampling time is sufficiently fast that
t ≈ t − T , then the following can be assumed:

D̂∗(t) ≈ D̂∗(t − T ), Ĥ∗(t) ≈ Ĥ∗(t − T ),F(t) ≈ F(t − T ).

(15)

Then we can achieve the following relationship from (14):

D̂∗(t)(V (t)− Ẍ (t − T )) = 0. (16)

Substituting (6) into (16) yields the decoupled closed-loop
error equation for realizing independent axis control

D̂∗(t)(ë(t)+ KDė(t)+ KPe(t)) = 0, (17)

where Ẍ (t) ≈ Ẍ (t − T ) is assumed.
Fig.1 shows the corresponding control block diagram of

the model–based nonlinear DOB in Cartesian space.

B. NONMODEL-BASED DISTURBANCE OBSERVER
For the nonmodel-based nonlinear DOB, we do not use any
models; hence, we set the inertia matrix estimate D̂∗(t) to
a constant inertia matrix D̄∗ and eliminate the model Ĥ∗(t)
from Fig. 1. The nonmodel-based nonlinear DOB control law
from (13) becomes

F(t) = D̄∗V (t)− F̂ud (t − T )

= D̄∗V (t)− (Fest (t − T )− F(t − T )), (18)

where the model estimate Fest (t) becomes the product of a
constant inertia matrix and the acceleration signal

Fest (t) = D̄∗Ẍ (t), (19)

where D̄∗ = α∗I and α∗ is a constant.
Substituting the delayed version of (19) into (18) yields the

nonmodel-based nonlinear DOB control law

F(t) = D̄∗V (t)− D̄∗Ẍ (t − T )+ F(t − T ) (20)

FIGURE 1. Model-based nonlinear DOB control structure.

To implement (20), we require a constant inertia matrix D̄∗,
a delayed acceleration signal Ẍ (t−T ), and a previous control
law F(t − T ). Fig. 2 shows a control block diagram of the
nonmodel-based nonlinear DOB.

FIGURE 2. Nonmodel-based nonlinear DOB control structure.

The complete control law becomes

F(t)= D̄∗(Ẍd (t)+KDė(t)+KPe(t))−D̄∗Ẍ (t−T )+F(t−T )

(21)

This is known as the time-delayed control which is
described in next section.

IV. TIME-DELAYED CONTROL
A. TDC SCHEME
From (4), the Cartesian dynamics for TDC can be described
as

D∗(t)Ẍ (t)+ H̄∗(t) = F(t), (22)

where H̄∗(t) = H∗(t)+Fu(t)−Fd (t), which includes all the
dynamics except an inertia force.

The main strategy of TDC is to estimate H̄∗(t) from (22)
as

H̄∗(t) = F(t)− D̂∗(t)Ẍ (t). (23)

Since H̄∗(t) is not available at the same sampling time,
it can be obtained by using the previously sampled informa-
tion as
ˆ̄H∗(t)= H̄∗(t−T )=F(t−T )−D̂∗(t−T )Ẍ (t−T ), (24)

where T is the one sample time delay. Then, a new TDC law
is established as

F(t) = D̂∗(t)V (t)+ ˆ̄H (t)

= D̂∗(t)V (t)+ F(t − T )− D̂∗(t − T )Ẍ (t − T ). (25)

Substituting (6) into (25) yields the TDC control law

F(t)= D̂∗(t)(Ẍd (t)+KDė(t)+KPe(t))+F(t−T )

− D̂∗(t−T )Ẍ (t−T ). (26)
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If we use the constant inertia matrix D̄∗ instead of D̂∗(t)
and D̂∗(t − T ) in (26) then the control law becomes model
free.

F(t) = D̄∗(Ẍd (t)+ KDė(t)+ KPe(t))+ F(t − T )

− D̄∗Ẍ (t − T ). (27)

According to careful examination of (27), D̄∗, Ẍ (t − T )
and the fast sampling time T are required to realize the TDC
scheme.

Comparing the TDC control law in (27) with the
nonmodel-based nonlinear DOB control law in (21), the two
schemes eventually become the same; hence, the structure of
TDC is equivalent to that of the nonmodel-based nonlinear
DOB.

Another important consideration in Cartesian space control
is the transformation from the Cartesian force to the joint
torque, which can be realized by applying the Jacobian rela-
tion as follows:

τ (t) = JTF(t). (28)

Fig. 3 shows a TDC block diagram, which eventually
becomes the same as the diagram in Fig. 2.

FIGURE 3. TDC structure.

B. STABILITY ANALYSIS
Acceleration signals Ẍ (t) are important for extracting the
uncertain dynamics information in both the DOB and TDC
schemes. Combining (22) and (25) yields the acceleration
error as in (16), which is defined as

ζ (t) = Ẍ (t)− V (t). (29)

Multiplying both sides of (29) by D∗(t) and substituting
Ẍ (t) from the Cartesian dynamic equation (22) yields

D∗(t)ζ (t) = D∗(t)[D∗−1(t)(F(t)− H̄∗(t))− V (t)]

= F(t)− H̄∗(t)− D∗(t)V (t). (30)

SubstitutingF(t) with the Cartesian TDC law (27) into (30)
yields

D∗(t)ζ (t) = D̄∗V (t)+ F(t − T )− D̄∗Ẍ (t − T )

−H̄∗(t)− D∗(t)V (t), (31)

Substituting the delayed version F(t − T ) of the Cartesian
dynamic equation (22) into (31) yields

D∗(t)ζ (t) = D̄∗V (t)+ D∗(t − T )Ẍ (t − T )+ H̄∗(t − T )

−D̄∗Ẍ (t − T )− H̄∗(t)− D∗(t)V (t)

= (D̄∗− D∗(t))V (t)+ (D∗(t − T )− D̄∗)Ẍ (t − T )

+H̄∗(t − T )− H̄∗(t), (32)

Dividing both side of (32) by D∗(t) yields

ζ (t) = (D∗−1(t)D̄∗ − I )V (t)+ D∗−1(t)(D∗(t − T )− D̄∗)

× Ẍ (t − T )+ D∗−1(t)(H̄∗(t − T )− H̄∗(t)), (33)

Substituting Ẍ (t − T ) = V (t − T ) + ζ (t − T ) from (29)
into (33) yields

ζ (t) = −(I − D∗−1(t)D̄∗)V (t)+ D∗−1(t)(D∗(t − T )− D̄∗)

×V (t − T )+ D∗−1(t)(D∗(t − T )− D̄∗)ζ (t − T ))

+D∗−1(t)(H̄∗(t − T )− H̄∗(t)), (34)

Adding and subtracting ζ (t − T ) and rearranging (34)
yields

ζ (t) = −(I − D∗−1(t)D̄∗)V (t)+ D∗−1(t)(D∗(t − T )− D̄∗)

×V (t − T )+ (I − D∗−1(t)D̄∗)ζ (t − T )

− (I − D∗−1(t)D∗(t − T ))ζ (t − T )

+D∗−1(t)(H̄∗(t − T )− H̄∗(t)), (35)

Substituting ζ (t − T ) = Ẍ (t − T ) − V (t − T ) from (29)
into (35) yields

ζ (t) = [I − D∗−1(t)D̄∗]ζ (t − T )+ [I − D∗−1(t)D̄∗]

(V (t − T )− V (t))− [I − D∗−1(t)D∗(t − T )]

Ẍ (t − T )+ D∗−1(t)[H̄∗(t − T )− H̄∗(t)], (36)

Rearranging (36) by defining the forcing function r(t)
yields

ζ (t) = [I − D∗−1(t)D̄∗]ζ (t − T )+ r(t), (37)

where D∗(t) is the Cartesian inertia matrix and D̄∗ is the
Cartesian constant inertia matrix. The forcing function is
defined as

r(t) = [I − D∗−1(t)D̄∗](V (t − T )− V (t))− [I − D∗−1(t)

D∗(t − T )]Ẍ (t − T )+ D∗−1[H̄∗(t − T )− H̄∗(t)].

(38)

According to careful examination of (38), the forcing func-
tion r(t) can be zero if the sampling time is sufficiently fast
such that V (t) ≈ V (t − T ), D∗(t) ≈ D∗(t − T ), and H̄∗(t) ≈
H̄∗(t − T ).
Then (37) becomes a first order delayed equation

ζ (t) − [I − D∗−1(t)D̄∗]ζ (t − T ) = 0. (39)

In the discrete domain, (39) can be represented as a first
order difference equation

ζ (k) − [I − D∗−1(k)D̄∗]ζ (k − 1) = 0. (40)

For the stability condition of the Cartesian TDC in the
discrete domain, the stability bound is

||I − D∗−1(k)D̄∗|| < 1, (41)
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FIGURE 4. Environment setup.

TABLE 1. Specifications of a robot manipulator.

Thus, the constant inertia value D̄∗ should be selected
to satisfy the stability condition (41) for the stable control
response.

V. NUMERICAL STUDIES
A. SIMULATION SETUP
Fig. 4 illustrates a three-link robot that is initially located
at X0 = [0.3, 0.3, 0.5]Tm for evaluation of the position
tracking performance. The initial angle of the robot is q0 =
[π/4, π/4 , −π/2]T . It is assumed that each joint has non-
linear friction 0.5sgn(q̇)+ 0.3q̇.
Table 1 lists the parameters of the robot. The robot is

required to follow a circular trajectory with a radius of 0.2m
that is configured in the xyz-plane so that the robot is con-
trolled in all the axes. Position control tasks for the sampling
times of 0.01s and 0.001s are conducted for comparison.

First, we evaluate several control schemes under nonmodel
dynamics with joint frictions. Joint torques are bounded by
±50Nm for the actuator protection.

As a performance measure, the root-mean-squared (RMS)
error of the tracking of a complete circular trajectory is calcu-
lated for the performance comparison of each control scheme.

perror =

√∑
((xd − x)2 + (yd − y)2 + (zd − z)2) (42)

B. CARTESIAN PD CONTROL
In the first test, the PD control scheme is used to control a
robot to follow the circular trajectory. Controller gains are
selected as, KD = 20I ,KP = 100I . Table 2 lists the RMS
tracking errors for various torque constants. Fig. 5 shows
the tracking results for various torque matrices, KT = kT I .
The best performance is realized when kT = 21, but the
tracking performance remains poor as shown in Fig. 5(b).

FIGURE 5. PD control performance.

TABLE 2. RMS errors for various torque constants.

Even though the gain is increased, the tracking performance
was not improved due to the torque saturation and nonlinear
joint frictions as shown in Fig. 5 (d).

It is difficult for the PD control scheme to find a suitable
torque constant to minimize the Cartesian position tracking
errors; hence, the Cartesian PD control scheme seldom sat-
isfies the tracking performance requirements. In most cases,
full dynamic models are not available, and additional uncer-
tainties are present. As a result, the performances of PD
control are degraded, as listed in Table 2.

C. CARTESIAN TDC SCHEME
Next, the TDC scheme for the same circular trajectory
tracking task is evaluated. Two sampling times, namely,
T = 0.001s and T = 0.01s, are tested.

1) CASE 1: T = 0.001s AND kT = 1
We begin with the constant inertia α∗ = 0.01, which results
in an unstable response. As the inertia value is increased grad-
ually, the tracking error decreases. However, joint torques
start oscillating. Fig. 6 shows the circular trajectory tracking
results for α∗ = 0.05, 1.1, 1.2, and 1.5. The tracking perfor-
mances for α∗ = 1.1, 1.2, and 1.5 are comparable, whereas
that for α∗ = 0.05 is not. Table 3 lists the RMS errors of the
circular trajectory tracking for various values of α∗. Here the
torque is set to a constant value of 1.

However, the joint torqueswithα∗ = 1.2 exhibit chattering
behavior as shown in Fig. 7 (b). As the constant inertia value
is increased, the position tracking errors remain similar, but
severely chattering torques are observed. Thus, we select
α∗ = 1.1 to realize the best performance, as listed in Table 3.
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FIGURE 6. TDC tracking performance when T=0.001s and kT = 1.

FIGURE 7. Joint torques when T=0.001s.

TABLE 3. RMS errors for various inertia values when T = 0.001s and
kT = 1.

A reasonable bound for the inertia value for the track-
ing performance was identified by simulation studies as
0.03 ≤ α∗ ≤ 1.1.

2) CASE 2: T = 0.001s AND kT = 10
We increased the torque constant to 10. Fig. 8 shows the cor-
responding performances and Table 4 lists the RMS position
tracking errors for various inertia values. Above α∗ = 1.1, the
joint torques show chattering behaviors. Therefore, the best
performance is realized when α∗ = 0.5 in Table 4, and the
error exceeds that for α∗ = 1.1 when kT = 1 is used, as
presented in Table 3.

We have identified the stable region of the inertia value as
0.02 ≤ α∗ < 1.1. The overall tracking errors exceed those

FIGURE 8. TDC tracking performance when T=0.001s and kT = 10.

TABLE 4. RMS errors for various inertia values when T = 0.001s and
kT = 10.

FIGURE 9. TDC tracking performance when T=0.01s.

in Case 1. Hence, higher torque gains do not always improve
the tracking performance, even under the fast sampling time.
The simulation results also suggest that the use of the torque
constant is unnecessary when the sampling time is fast, such
as T = 0.001s.

3) CASE 3: T = 0.01s AND kT = 1
For the slower sampling time T = 0.01s, the overall perfor-
mances of the TDC scheme, which are presented in Fig. 9,
are lower than those with T = 0.001s, which are presented
in Fig. 6. A reasonable bound on the tracking performance
was identified by simulation studies to be 0.2 ≤ α∗ ≤ 1.1,
as listed in Table 5. However, when the inertia value exceeds
α∗ = 1.3, the trajectory tracking response chatters, as shown
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FIGURE 10. Joint torques when T=0.01s.

TABLE 5. RMS errors for various inertia values when T = 0.01s and
kT = 1.

TABLE 6. RMS errors for various inertia values when T = 0.01s and
kT = 10.

in Fig. 9 (b). The joint torques also chatter as shown in
Fig. 10 (b). Fig. 11 shows the tracking error for each axis
when α∗ = 1.1, which is considered to be the optimal value.

4) CASE 4: T = 0.001s AND kT = 10
The tracking performance can be further improved by
increasing the torque constant to kT = 10. Table 6 lists the
RMS errors for various values of α∗. A reasonable bound on
the inertia value for the tracking performance is identified by
simulation studies to be 0.1 ≤ α∗ ≤ 1.1, which is similar to
that in Case 3. The overall tracking errors are lower than those
of Case 3; hence, the higher torque constant is required to
improve the tracking control performance when the sampling
time is not sufficiently fast.

D. SUMMARY OF THE SIMULATION RESULTS
1) COMPARISON STUDIES
We have listed the best performance and the stability region
for each of the four cases in Table 7. The lower limit of α∗

is selected when the robot can follow the circular trajectory

FIGURE 11. Axis tracking error of α∗ = 1.1 when T=0.01s.

TABLE 7. Summary of all cases.

TABLE 8. RMS errors for various inertia values when T = 0.001s and
α∗ = 1.

from unstable states and the upper limit of α∗ is defined just
before chattering behaviors start.

An interesting observation is that the lower and upper
limits are approximately the same for the same sampling time.
The upper limit is approximately the same for all the cases.
Therefore, there exists a stability bound as described in (41).

2) PERFORMANCE EVALUATION WITH VARIOUS TORQUE
CONSTANTS
For each sampling time, the effects of the torque constant
kT on the tracking performance have been evaluated. The
inertia value is set to α∗ = 1 for all cases. Table 8 lists
the RMS errors for various kT values with the sampling time
of T = 0.001s. The best tracking performance is realized
when kT = 1. When the higher torque gain is used, the lower
performance is observed. Hence, tuning the torque constant is
unnecessary with a fast sampling time, such as T = 0.001s.

For the sampling time T = 0.01s, interesting results
have been obtained as listed in Table 9. A superior tracking
response is observed when the torque constant is kT = 3
compared to kT = 1; thus, the torque constant must be
increasingly optimized for the slower sampling time. The
increased tracking error is also caused by the slow sampling
time.

VOLUME 9, 2021 122305



S. Jung, J. W. Lee: Similarity Analysis between Nonmodel-Based DOB and TDC

TABLE 9. RMS errors for various inertia values when T = 0.01s and
α∗ = 1.

FIGURE 12. Two arm mobile manipulator.

FIGURE 13. Tracking results of PD control.

VI. EXPERIMENTAL STUDIES
Here, we obtain experimental results for comparison with the
simulation results.

FIGURE 14. Tracking results of TDC.

A. EXPERIMENTAL SETUP
The test-bed is a mobile manipulator that was built in our
laboratory as shown in Fig. 12. It has two arms with 6 degrees
of freedom and two wheels. The first three links are con-
trolled to follow the circular trajectory. The sampling time
is T = 0.01s.

B. PD CONTROL SCHEME
Fig. 13 shows the tracking response that was obtained using
a PD control scheme. We observe the notable tracking error
with chattering behaviors due to high gain effects. The
controller gains were KP = [18000, 17000, 16000]T , and
KD = [2000, 2000, 1000]T . The torque constants was KT =
[21, 21, 10]T . The high gains of the PD control scheme did
not satisfy the performance requirements.

C. TDC SCHEME
The same task was performed by the TDC scheme.
Fig. 14 shows the better tracking response. The tracking
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errors were reduced even when smaller gains were used. The
controller gains were KP = [600, 500, 400]T and KD =
[60, 50, 40]T . The inertia constant was α∗ = 1.5, and the
torque constant vector was KT = [2.8, 2.7, 2.6]T . The RMS
error of Fig. 14 (a) is 0.0841.

VII. CONCLUSION
In this paper, we have shown that the time-delayed control
method eventually becomes equivalent to a nonmodel-based
nonlinear disturbance observer. Numerical and experimental
studies have shown that PD controllers exhibit limited per-
formances due to nonlinear uncertainties in robot manipu-
lators. Superior performance by TDC was observed when
the constant inertia matrix was suitably selected within the
stability bound. However, the selection of an unsuitable con-
stant inertia matrix resulted in poor tracking performance
and even instability. We also considered two sampling times.
As expected, the tracking performances at the faster sampling
time were superior; thus, the sampling time is important in
TDC. For the low sampling time, the torque constant can be
used to improve the position tracking performance. The upper
limit of the constant inertia is almost same for all the cases.
Although the stability bound in (41) is approximated in a
discrete domain, consistency of the stability bounds has been
observed in numerical studies. Empirical results demonstrate
the outperformance by TDC scheme.
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