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ABSTRACT Automatic traffic-sign detection is a hot topic in computer vision and one of the critical
technologies of intelligent transportation. The Transformer structure has recently become a research hotspot
due to its excellent performance. We hope to apply this structure to the design of traffic sign detection
algorithms. Therefore, we make some improvements to Sparse R-cnn, a neural network model inspired
by Transformer. Sparse R-cnn is a novel model, and its core idea is to replace hundreds of thousands of
candidate anchors in the RPN network with a small set of proposal boxes. The experiments in our paper
proved that the performance of the Sparse R-cnn model is better than other existing general object detection
models. Based on the original Sparse R-cnn inspiration, an improved Sparse R-cnn model is proposed. First,
a novel backbone for the task of traffic-sign detection is proposed.Multi-scale fusion structure is the essential
method of improving the algorithm for small target detection, so improving the multi-scale capability of
the backbone is a required method for designing traffic sign detection. So, we made further improvements
to the existing backbone ResNest. We enhanced the multi-scale representation ability of the backbone by
constructing hierarchical residual-like connections within each single radix block in the original ResNest.
We call the improved backbone Res2Nest. The novel backbone proposed by us shows better performance
without introducing excessive computational costs to the model. In addition, the attention mechanism is also
an effective method to improve the detection of traffic signs, so we set up a branch network for recalibrating
the channel feature response adaptively through the Global Average Pooling (GAP) operation and a fully
connected layer. It can also be seen as the implementation of the cross-channel self-attention mechanism.
After experiments by TT100K dataset, our method would attain a better accuracy and robustness.

INDEX TERMS Deep learning, object detection, traffic-sign detection, self-attention mechanism, improved
Sparse R-cnn.

I. INTRODUCTION
In recent years, driving assistance systems and autonomous
vehicles have been widely used. Correctly detecting and
recognizing traffic signs in the field of vision can help
drivers or autonomous vehicles effectively reduce driving
risks. Therefore, automatic-traffic sign detection and recog-
nition has become a hot topic in computer vision. Neverthe-
less, it remains challenging to detect and recognize traffic
signs by the computer in the real world due to the unstable
features of traffic signs in different occasions, such as self-
damage, viewing angle changes, and bad weather. Moreover,
the architecture of the traffic sign detection model is required
to be as efficient and straightforward as possible because
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the promptness of the algorithm is essential for practical
applications.

For researchers, there are several technical challenges in
achieving automatic traffic sign detection and recognition.
The first small object detection model based on deep learning
has the problem of data imbalance, for example, the imbal-
ance of samples in the dataset and the imbalance of positive
and negative boxes in RPN (Region Proposal Network); com-
pared with the feature map obtained by a shallower layer,
the deeper one contains richer semantic information, but rela-
tively lacks detailed features especially for small objects [1].

Additionally, the performance of the algorithm can be
affected by multiple factors such as bad weather, the damage
to the traffic sign itself, and the noise of the sensors.

Aiming at these problems, a traffic sign detection sys-
tem based on improved Sparse R-cnn (Sparse Region-based
convolutional network) [2] is proposed. Our detection model
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accomplishes comparable detection and classification accu-
racy with state-of-the-art methods. Our model mainly con-
tains threemodules: a ResNest (Split-AttentionNetworks) [3]
backbone network, an improved DIIH (Dynamic Instance
Interactive Head) [2], and two task-specific prediction layers.

The Transformer structure has recently become a research
hotspot due to its excellent performance. We hope to apply
this structure to the design of traffic sign detection algorithms.
Therefore, we make some improvements to Sparse R-cnn,
a neural network model inspired by Transformer. Sparse
R-cnn is a purely sparse method for object detection. It uses a
series of learnable proposal boxes and features to replace the
thousands of candidates generated by traditional RPN net-
work in a two-stage(dense-to-sparse) model, such as Faster
R-cnn (Faster Region-based convolutional network) [4] and
Fast R-cnn (Fast Region-based convolutional network) [5].

The contributions can be summarized as follows:
We believe that the key to designing a traffic sign detection

algorithm is to improve the small object detection ability of
the algorithm as much as possible. Therefore, our idea is
to improve the multi-scale capabilities of the backbone and
add the attention mechanism to the RoI (Region of Interest)
extraction process. Based on this idea, our improvements to
Sparse R-cnn are as follows.

First, we propose a novel backbone for the task of traffic-
sign detection. We made further improvements to the exist-
ing backbone ResNest. ResNest consists of a series of
Split-Attention blocks that enables attention across feature-
map groups, and these blocks are stacked in ResNet-Style.
ResNest preserves the overall ResNet (Residual Network) [6]
structure without incurring the high computational cost.
We enhanced the multi-scale representation ability of the
backbone by constructing hierarchical residual-like connec-
tions within each single radix block in the original ResNest.
We call the improved backbone Res2Nest. The novel back-
bone proposed by us shows better performance without intro-
ducing high computational costs to the model.

Second, we design an improved DIIH (Dynamic Instance
Interactive Head) as the RoI head of our model. We set up a
branch network to recalibrate the channel feature response
adaptively through the GAP (Global Average Pooling) [7]
operation and a fully connected layer. The improvedDIIH has
better performance without incurring excessive calculation
costs.

The model proposed in this paper shows a significant
superiority compared to the state-of-the-art. The rest of this
paper is organized as follows. Section 2 briefly reviews
the related work for generic object detection and traf-
fic sign detection. Section 3 presents the proposed traf-
fic signs detection model based on a deep neural network.
Section 4 discusses the results of our experiments and abla-
tion research. Section 5 concludes our work.

II. RELATED WORK
Traditional traffic signs detection technology primarily relies
on manually extracting image features of various attributes,

such as color information, edge detection, and geometrical
shapes.

Color-based methods like HSI(Hue-Saturation-Intensity)
[8] and HCL(Hue-Chroma-Luminance) [9] mostly rely on
threshold-based segmentation of traffic sign objects in a
color space. However, one major disadvantage of these
methods is that illumination change in the real world
can easily affect algorithm performance. In order to solve
the above problem, some shape-based approaches have
been carried out, like SIFT (Scale Invariant Feature Trans-
form) [10], SURF (Speeded-Up Robust Features) [11], HOG
(Histogram-Oriented Gradients) [12], FFT (Fast Fourier
Transform) [13] and Haar-Wavelet features [14]. Then,
the features obtained by the color/shape-based extractor are
usually utilized for training the classifier, such as SVM (Sup-
port Vector Machine) [15] and RF (Random Forest) [16].
Although these traditional image processing methods are still
widely used in traffic sign and other object detection tasks, for
example, Anant R [17] used a HOG-SVMmodel to recognize
traffic signs, and Takaki Masanari [18] used a SIFT [10]
model to detect road objects; however, there is still upside
potential in the accuracy and robustness of the traffic signs
detection algorithm.

In recent years, algorithms based on deep CNN (Convo-
lutional Neural Networks) have been widely used in object
detection tasks due to their excellent performance and plas-
ticity [19], [20], and they perform much better than the tradi-
tional ones.

Deep learning detection algorithms include single-stage
and two-stage algorithms. The single-stage algorithm is also
known as the dense algorithm [2], which directly outputs the
location and category of bounding boxes densely in a single-
shot way, such as SSD (single shot multibox detector) [22],
YOLO [23]–[25], and RetinaNet [26]. The two-stage algo-
rithm is also called the dense-to-sparse algorithm [2]. This
kind of algorithm obtains a small set of foreground regions
proposals from dense candidates firstly, and then modify
the localization of each proposal and predict category, such
as R-cnn (Region-based convolutional network) [4], Fast
R-cnn [4], Faster R-cnn [5].

The main factor that affects the traffic sign detection
algorithm’s performance is the algorithm’s ability to detect
small targets [21]. Therefore, researchers have taken many
measures, such as designing a multi-scale feature fusion
backbone, adding feature pyramids to the neural network,
and due to the popularity of transformers, using the attention
mechanism to improve the ability of neural networks to detect
small targets has become a hot topic in research.

In response to this problem, Cao et al. [27] improved
Faster R-cnn through the HRNet(High-Resolution Net-
work) [28] backbone network and PISA (Prime Sample)
sample strategy [29]. Hai et al. [30] used ResNet-101 to
improve the backbone of Cascade R-cnn [31] for traffic-sign
detection. Han et al. [32] tried to use the shallow layer of
VGG(Visual Geometry Group) [33] as the backbone of Faster
R-cnn and used OHEM [34] (Online Hard Example Mining)
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FIGURE 1. The architecture of our model. Our method is a deep neural network composed of a backbone network, a series of
DIIHs, and two task-specific prediction layers. There are three inputs: an image, a set of proposal boxes, and proposal features.
The backbone extracts the feature of an input image firstly, then inputs corresponding proposal boxes and proposal features into
the improved dynamic head to generate object features, and finally outputs the prediction of objects.

to improve the sampling strategy. Liang et al. [35] designed
a feature pyramid to improve the feature extractor of Faster
R-cnn for traffic signs detection. Zhao et al. [36] proposed an
improved Libra R-cnn [1]model based on theGuided-Anchor
RPN [37]. These methods do improve the detection perfor-
mance of the algorithm, but there are still some shortcomings.
For example, the use of an overly complex backbonemay lead
to low inference time or ignoring the semantic information
contained in the deeper feature maps, thereby may resulting
in the deterioration of the robustness, and so on.

In improving the backbone, we made further improve-
ments to the existing backbone ResNest, a ‘‘split-transform-
merge’’ network. This architecture can implement strong
feature expression capability with fewer parameters and cal-
culation costs. We enhanced the multi-scale representation
ability of the backbone by constructing hierarchical residual-
like connections within each single radix block in the original
ResNest. In addition, we believe that a small number of
proposal boxes (e.g., 100) is enough to predict all objects in an
image according to [2], so we implement an improved Sparse
R-cnn for traffic signs detection.

III. APPROACH
A. PIPELINE
Ourmethod is a deep neural network composed of a backbone
network, a series of DIIHs, and two task-specific prediction
layers. There are three inputs in total: an image, a set of
proposal boxes, and proposal features. The latter two are
learnable and can be optimized with other parameters in
the network. The backbone extracts feature map firstly, then
inputs corresponding proposal boxes and proposal features
into the improved dynamic head to generate object features,
and finally outputs classification and location of objects. The
overall architecture of the improved Sparse R-cnn is shown
in Fig 1.

B. BACKBONE
Multi-scale fusion structure is the essential method of
improving the algorithm for small target detection, so improv-
ing the multi-scale capability of the backbone is a required

method for designing traffic sign detection. So, we made
further improvements to the existing backbone ResNest.
We enhanced the multi-scale representation ability of the
backbone by constructing hierarchical residual-like connec-
tions within each single radix block in the original ResNest.
We call the improved backbone Res2Nest.

SE-Net(Squeeze-and-Excitation Network) [39] introduces
the channel-attention mechanism by recalibrating the chan-
nel feature response adaptively. SK-Net(Selective Kernel
Network) [40] proposes two network branches to general-
ize feature- attention. ResNeXt [38] adopts group convolu-
tion in the ResNet [6] bottle block. This structure is also
called ‘‘split- transform-merge.’’ Inspired by the above net-
works, ResNest [2] is proposed, consisting of a series of
Split-Attention blocks to enable attention across feature-map
groups, and these blocks are stacked in ResNet-Style to
generalize the attention mechanism. Reg2Net [6] improves
the multi-scale ability of neural networks by constructing
hierarchical residual-like connections within one single resid-
ual block. Based on the above inspiration, we have made
further improvements to ResNest. In each radix of ResNest,
we replace the 3 × 3 convolution layer with a group
of 3× 3 filters with smaller groups of filters while connecting
different filter groups in a hierarchical residual-like style. The
novel backbone our proposed has better performance without
incurring excessive computational costs. In the following part
of this section, wewill introduce the Split Attention block and
the structure of our backbone network in detail.

1) IMPROVED SPLIT-ATTENTION BLOCK
Split-Attention block is a computational unit composed of the
feature-map group and split attention operations.We replaced
the 3 × 3 convolution layer with our improved architecture
called theMTF block(Multi-Scale Fusion Block). The overall
structure diagram of our backbone is shown in Fig 2.

Like ResNext, the feature map input into the ResNest
block will be divided into several groups, and the number of
groups K is a hyperparameter. We regard the obtained feature
map group as ‘‘cardinal groups,’’ and each cardinal group
is divided into R (R is the abbreviation of ‘‘Radix’’) splits,
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so the feature map which is input in ResNest block would
be divided into G = KR splits. In this paper, we set K = 2,
R = 2, the same as the origin ResNest model, due to abla-
tion experiment shows that this setting is the most efficient.
We do some convolutional transformations to the features
in each individual split, denoting them as {F1,F2 . . .FG}.
As shown in Fig 3, for the feature maps in each Radix, after
the 1× 1 convolution, we evenly split the feature maps into s
feature map subsets, denoted by xi, where i ∈ {1, 2, . . . s}.
Each feature subset xi has the same spatial size but 1/s
number of channels compared with the input feature map.
Except for x1, each xi has a corresponding 3× 3 convolution,
denoted by Ki(). We denote by yi the output of Ki(). The
feature subset xi is added with the output of Ki−1() and then
fed into Ki(). The features obtained by transformation can be
represented as Ui. Thus, Ui can be written as (1):

Ui = Concat(yi)

yi =


xi i = 1
Ki(xi) i = 2
Ki(xi + yi−1) 2 < i ≤ s

(1)

FIGURE 2. The overall architecture diagram of Res2Nest. The input feature
map is first divided into R cardinal groups and split attention operation is
performed on those features. Finally, the features of each cardinal group
are concatenated to obtain a feature map with the same size as the input,
then fused with the input through a neck bottle, similar to ResNet-D.

2) SPLIT ATTENTION IN CARDINAL GROUPS
For each cardinal group, we fuse the features of all its splits
by element-wise summation, and then the Kth cardinal group
can be expressed as (2):

Û k
=

∑
Rk
j=R(k−1)+1Uj

Û k
∈ RH×W×(C/K ) for K ∈ 1, 2, . . .K (2)

where H , W , C are the block output feature-map sizes, and
then we perform split attention operations on the fused fea-
tures. The overall flow is shown in Fig. 4.

The fused features are then fed into a Global Average Pool-
ing (GAP) [7] layer across spatial dimensions sk ∈ RC/K ,
which can effectively collect global context information with

FIGURE 3. Schematic diagram of the structure of the MTF block,
we evenly split the feature maps. Each feature subset xi has the same
spatial size but 1/s number of channels compared with the input feature
map. Except for x1, each xi has a corresponding 3 × 3 convolution,
denoted by Ki (). The feature subset xi is added with the output of Ki−1()
and then fed into Ki ().

embedded channel statistics. Here the Cth composition is
expressed as (3):

skc =
1

H ×W

H∑
i=1

W∑
j=1

_

U k
c (i, j) (3)

Then we use two fully connected layers with ReLU
(Rectified Linear Units) activation to get the mapping of
sk as the assignment weights of the feature combination.
This operation is denoted as 9(sk ). The representation of the
cardinal group is obtained by a weighted combination over
splits, the Cth channel is calculated as (4):

V k
c =

R∑
i=1

aki (c)UR(k−1)+i (4)

the coefficient aki can be calculated as (5):

aki (c) =


exp(9c

i (s
k ))∑ R

j=0 exp(9
c
i (s

k ))
if R > 1,

1
1+ exp(−9c

i (s
k ))

if R = 1
(5)

the outputs from each cardinal group are then
concatenated (6):

V = Concat{V 1,V 2, . . .VK
} (6)

The final output of the ResNest block is obtained by a
shortcut connection, which can be expressed as Y = V + X
if the output and input feature map share the same shape. For
blocks with a stride, we use an average pooling layer before
a 1× 1 convolutional layer with a stride of 2 to transform the
input feature map: Y = V + 0(X ). In the backbone design
of this paper, in addition to replacing Residual Block with
ResNest Block, we make the following three changes to the
original ResNet.
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We use an average pooling layer with a kernel size of
3×3 instead of the strided convolution at the transition block
because the convolution layers require handling the zero-
padding strategies, which is often suboptimal in small objects
prediction tasks like traffic signs detection.

We replace the first 7 × 7 convolutional layer with three
succeeding 3× 3 convolutional layers (we set the stem chan-
nels of the backbone to 64), and a 2 × 2 average pooling
layer is added to the shortcut connection before the 1 × 1
convolutional layer in the transitioning blocks with a stride
of 2. The latter two changes of ResNet are two effective
modifications introduced by ResNet-D [41].

We construct the Feature Pyramid Network (FPN) [42]
with levels P2 through P5 to further fuse the feature maps
output from ResNest, l indicates the levels of FPN, and Pl
has 2l lower than the input in resolution.

FIGURE 4. Split-attention block within a cardinal group. We use c = C/K
in this figure for easy visualization, and c′ is the inter-channel which is
expressed as c′ = c ∗ radix/(reduction_factor), H, W are the sizes of the
output feature map.

In the experiment of our paper, we resize the images of
TT100K [43] to (3× 1024× 1024) as the input of the model,
and the channels of feature maps output from the four stages
of ResNest are 256, 512, 1024 and 2048, respectively, then the
backbone feeds these featuremaps into FPN(Feature Pyramid
Network), and we set the channels of all pyramid is 256.
We visualize the feature map extracted by the backbone
through HFM (Heat Feature Map) [44] shown in Fig. 5, and it
can be seen that the features of the input image are accurately
mapped to the feature map of ResNest block in each stage.

C. IMPROVED SPARSE R-CNN
In addition to the feature maps outputs by FPN, Sparse R-cnn
also requires two inputs: Proposal boxes and Proposal fea-
tures. The attention mechanism is also an effective method to
improve the detection of traffic signs, so we set up a branch
network for recalibrating the channel feature response adap-
tively through the Global Average Pooling (GAP) operation
and a fully connected layer. It can also be seen as the imple-
mentation of the cross-channel self-attentionmechanism. The
rest of this section explains the workflow of improved Sparse
R-cnn in detail.

1) LEARNABLE PROPOSAL BOX
Instead of using the Region Proposal Network (RPN) to
generate proposals, Sparse R-cnn [2] adopts a small set of

learnable proposal boxes with a size of (N × 4) as region
proposals. Each proposal box contains four values, represent-
ing the center coordinates, height, and width of the predicted
object. All proposal boxes are initialized as the size of the
whole image before they are fed into DIIH (the shapes of
each initialized proposal box are slightly different to make the
model more flexible), as shown in Fig 10(a). Those proposal
boxes can be seen as the initial guess of the object location,
and the parameters of these boxes are updated in DIIH during
the training or inference process in each iteration.

2) LEARNABLE PROPOSAL FEATURE
The 4-d proposal box can only describe the location of the
object but does not contain detailed information, such as
posture and shape. Therefore, Sparse R-cnn needs another
input, ‘‘proposal feature’’ as a supplement. It is a feature
vector that encodes the rich instance characteristics with a
size of N× d, where N is the number of proposal boxes and d
is the dimension of the proposal features.We set its dimension
to 256 as the original Sparse R-cnn in our paper. Those
features have a one-to-one correspondence with the proposal
boxes, representing the detailed features of the corresponding
proposal boxes.

Sparse R-cnn utilizes the self-attention mechanism of
Transformer [45] to process the proposal features before them
fed into DIIH. We use Multi-head attention with a residual
connection followed by layer normalization to implement this
process. It can be expressed as (7), where x is the proposal
feature and theMatten(x) is theMulti-head attention function.

x = LayerNorm (x +MAtten (x)) (7)

The attention function can be described as mapping a set
of key-value pairs and a query to an output. The output can be
computed as a weighted sum of the values, where the weight
can be calculated by the compatibility function of the query
with its corresponding key. We divide the proposal features
into h parts equally, where h is the number of heads (we set
h = 8), and perform self-attention operations in parallel, then
the output vectors from each head are concatenated to get the
final values. The multi-head self-attention function requires
three inputs, namely keys, queries and values. We simply set
them as x = keys = values = queries = proposal features in
this work.

As shown in Fig. 6, the input values, queries, and keys are
divided into h parts. After these inputs enter a fully connected
layer, they are performed the Scaled Dot-Product Attention
operation in parallel, and then we concatenate the output vec-
tor of each head and feed it into a fully connected layer to get
the final value. The calculation process of ScaledDot-Product
Attention can be expressed as (8), where dk represents the
dimension of the key matrix.

Atten(Q,K ,V ) = softmax(
QKT
√
dk

)V (8)
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FIGURE 5. We visualize the feature map extracted by the backbone through HFM, (a) is a sample of the dataset with a size of 3× 1024× 1024,
(b)-(e) are the HFM of ResNest from the second to the fourth stage. It can be seen that the features of the input image are accurately mapped
to the feature map of the ResNest block in each stage.

The calculation formula of the Multi-head attention mech-
anism can be expressed as (9)

Multi_h(Q,K ,V ) = Concat(head1, . . . headh)WO

head i = Atten(QWQ
i ,KW

K
i ,VW

V
i ) (9)

where h is the number of heads, Wi is the learnable weight,
and WQ

i ,W
K
i ,W

V
i ∈ Rdmodel×dk ,WO

∈ Rhdv×dmodel , where
dmodel , dk , and dv are the channels of x (proposal feature), and
the key and value channels in each head. Proposal features that
implemented self-attention operation will be fed into DIIH.

FIGURE 6. (a) The process of scaled dot-product attention. (b) Multi-head
attention consists of several attention layers running in parallel.

3) IMPROVED DIIH
Dynamic Instance Interactive Head (DIIH) is the core of
Sparse R-cnn. It generates the positions and features of the
predicted objects through the input feature maps, proposal
boxes, and proposal features. As shown in Fig. 7, we improve
the DIIH and set up a branch network to recalibrate the
channel feature response adaptively through the GAP (Global
Average Pooling) [7] operation and a fully connection layer.
It can also be seen as the implementation of the cross-channel
self-attention mechanism. Moreover, we stack 6 cascaded
DIIHs in the whole model to generate the final object predic-
tion. The object features and elegant proposal boxes output
by each DIIH stage will be used as the input of the next DIIH
stage.

Given N proposal boxes, Sparse R-cnn first remaps these
boxes to the FPN feature map and uses the RoIrEAligns
operation to extract the features of each box, the size of each
RoI feature is (S × S × C) (We set S = 7, C = 256 in this
paper). Similarly, the RoI feature in each box has a one-to-
one correspondence with its proposal feature Pi(C), and they
will be fused in the instance interactive module.

For each proposal region, the RoI feature and its corre-
sponding proposal feature are fused through an architecture
termed ‘‘Dynamic Layer.’’ Firstly, the RoI feature is resized
to a 2-d vector with a size (S2, C) as one of the inputs of
the Dynamic Layer, and the proposal feature is directly fed
into a fully connected layer to get the parameters with length
(2 × C ′ × C) of Dynamic Layer,
where C ′ is a hyperparameter named ‘‘Dynamic Channel,’’
which is set to 64 in this paper. Then the vector is divided
equally into two parts with length (C ′ × C), and we reshape
them into 2-d vectors of size (C,C ′) and (C ′,C) respec-
tively named ‘‘Pin’’ and ‘‘Pout.’’ Dynamic layer performs
matrix multiplication on the ROI2d , Pin, and Pout in turn, then
makes batch normalization and ReLU activation to the output
after each multiplication, then the fusion feature (S2,C) is
obtained, this process can be expressed as (10), where Pin ∈
RC×C ′ ,Pout ∈ RC ′×C ,RoI2d ∈ RS2×C .

Out = M(M(RoI2d,Pin),Pout)

M(A,B) = ReLU(BN(AB)) (10)

In the original Sparse R-cnn model, the fusion feature is
flattened into a 1-d vector and then fed into a fully connected
layer to obtain the final output of the Dynamic Layer. How-
ever, this fully connected layer is prone to overfitting because
the fully connected layer has a lot of learnable parameters,
and more importantly, it acts as a black box in the process of
generating object features [7]. Therefore we improved this
architecture. SE-Net [39] and ResNest [2] implement the
cross-channel attention mechanism through recalibrate the
channel feature response adaptively. Based on the inspiration
of the above works, we design a branch network to imple-
ment the cross-channel self-attentionmechanism in the object
feature generation process without additional computational
costs of the entire network.
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FIGURE 7. The architecture of improved dynamic instance interactive head, RoI features, and Proposal features are fused through
dynamic module, and then fed into two branch networks to implement the self-attention mechanism, and then object features and
predictions of object classifications and localizations are generated, object features are used as the proposal features in next stage.

As shown in Fig. 7, the features output by the Dynamic
Layer are processed separately in two branches, one is to
flatten the features and then feed them into a fully connected
layer, and the other is to perform the Global Average Pooling
(GAP) [7] operation to the features, the GAP layer averages
the feature maps of each layer. This operation can be regarded
as a structured regularization to obtain the spatial average of
multiple feature layers. Then we match the output channels
with another branch through a fully connected layer, as shown
in Fig. 8, and finally fuse the outputs of the two branches in an
element-wise add manner, thus implementing a self-attention
mechanism and inhibiting the overfit of the neural network.

FIGURE 8. The process of global average pooling. The GAP layer averages
the feature maps of each layer and then sends them into a fully
connected layer to match the size of the other branch network.

The feature outputs from Dynamic Layer are fed into two
consecutiveC-channels fully connected layers. This architec-
ture is borrowed from the FFN (Feed Forward Network) of
Transformer [45] to increase the flexibility of the model. The
feature outputs from FFN are called object features, which
are used to be the proposal feature of the next DIIH stage.
The object feature is fed into two fully connected layers
respectively to obtain the final prediction of the object’s class
and location. The input proposal box refined through location

prediction is used as the proposal box in the next DIIH stage.
After six refinements by DIIHs, the output proposal boxes
and their corresponding class labels are used as the final
prediction of the image, we set the threshold to filter out
the proposal boxes with low scores, and finally the model
outputs appropriate prediction boxes. We select three stages
of proposal boxes from a particular iteration and visualized
them as Fig 10(b)-(e). It can be seen that the proposal boxes
in the model are gradually positioned on the traffic signs of
the input image.

4) SET PREDICTION LOSS
The loss function in our paper can be expressed as (11)

L = λcls × Lcls + λL1 × LL1 + λgiou × Lgiou (11)

where Lcls is focal loss (α = 0.25, γ = 2) of predicted
classifications and ground truth category labels. LL1 and Lgiou
are L1 loss and generalized IoU loss of predicted boxes and
ground truth bounding boxes. λcls, λL1 and λgiou are hyper-
parameters, and we set λcls = 2, λL1 = 5 and λgiou = 2
respectively same as the origin Sparse R-cnn model.

IV. EXPERIMENTS
A. DATASET
The experiments on traffic signs used the TT100K [43]
dataset, a traffic-sign benchmark from 100K Tencent Street
View panoramas. The dataset contains 9167 images (6105 for
training and 3071 for testing). These images cover significant
variations in illuminance and weather conditions with a size
of 2048 × 2048. Each traffic sign in the benchmark is anno-
tated with a class label, gt-bbox (ground truth bounding box),
and pixel mask.
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TABLE 1. Statistical table of TT100K.

Although this benchmark includes a total of 234 categories
of traffic signs, in the experiment, we found that some cate-
gories only appear in the training dataset or the test dataset.
Using such annotations cannot objectively evaluate the per-
formance of the algorithm. Therefore we selected 125 cate-
gories that are contained in both the training dataset and test
dataset.

We perform statistical analysis on the benchmark and sum-
marize the statistical results in Table 1, and some statistical
results are visualized as shown in Fig 9.

According to the convention proposed by the com-
monly used large-scale dataset MS COCO benchmark [49].
We divided bboxes(bounding boxes) into three groups based
on their area, namely, small(area ∈ [1, 1024)), middle(area
∈ [1024, 9216)), and large(area >= 9216). It can be seen
that the areas of bbox in the TT100K are mostly smaller
than 9216 pixels, the total proportion of large objects is only
7.35%, the proportion of medium objects is slightly higher,
about 52.25%, and the small objects are second, accounting
for about 40.40%. This result shows that the key to improving
the performance of the traffic-sign detection model is to
improve its ability to detect small objects.

FIGURE 9. Visualizations of some statistical results about TT100K.
(a) is the histogram of object pixel areas, and (b) is the pie chart of the
object pixel area.

B. TRAINING DETAILS
The experimental environment of our approach was NVIDIA
TITAN XP graphics, Ubuntu 16.04LTS system, CUDA
10.2, PyTorch 1.5.1 programming framework based on
Python 3.8.1.

In the preprocessing of the dataset, we first resized the
input images to 1024 × 1024. In all training and inference
experiments, we uniformly used the 1024 × 1024 images

as input images, and the data augmentation includes random
horizontal and random flip.

In the training process, the default training schedule
was 36 epochs, and the initial learning rate was set to
2.5 × 10−5, but we used the ‘‘linear-warmup’’ method to
increase the learning rate to 2.5 × 10.5 slowly, the warm-
up iteration was 500, and the learning rate was divided by
10 at epoch 27 and 33, respectively. The optimizer was
‘‘AdamW [46]’’ with a weight decay of 0.0001. The mini-
batch was 2 images, and all models were trained with
2 GPUS. The partial weights of our backbone Res2Nest are
initialized as the pre-trained weights of ResNest on Ima-
geNet [47], and the weights of other modules of our algorithm
were initialized with Xavier [48].

The default number of proposal boxes, proposal features,
and DIIH stages was 300,300,6, respectively. We will specify
it in the ablation analysis.

C. INFERENCE DETAILS
Given an input image, our model directly predicts
100 bounding boxes associated with their scores, and without
any post-processing, the origin Sparse R-cnn set the number
of predictions per image is equal to the input proposal boxes.
However, we set it to 100 directly because we found that this
hyperparameter has little effect on the results. We proved the
above points in the ablation experiment and listed the relevant
ablation experiment data in Table 6. The scores indicate the
probability of boxes containing an object.

D. DETECTION PERFORMANCE AND EFFICIENCY
In response to different situations, many previous scholars
have proposed different algorithm evaluation methods, such
as [52]. Based on the inspiration of these works, we evaluated
the traffic sign detectionmodel from the three aspects of algo-
rithm complexity, accuracy, and robustness. We compared
our method with three representative generic object detec-
tors Faster R-cnn, Cascade R-cnn, Sparse R-cnn, and three
state-of-the-art traffic-sign detectors proposed by Cao et al.,
Wang et al., and Zhao et al. Their general structure is shown
in Table 2. The purpose of comparing with the general object
detection model is to prove why we improved Sparse Rcnn
instead of other approaches. In addition, for each general
object detection approach, we used ResNet, ResNest, and our
improved backbone for training to prove that our improve-
ment is practical. Furthermore, the specific impact of each
improvement is analyzed in the ablation experiment.

TABLE 2. Comparison of the state-of-the-art traffic-sign detection model
in architecture.

In this section, we used the inference time to repre-
sent the complexity of the overall model to compare with
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FIGURE 10. Visualization of proposal boxes. (a) is the initialized proposal boxes, all proposal boxes are initialized as the size of the whole image.
(b)-(d) are the visualization of the proposal boxes in 1,3,5 DIIH stages of a particular iteration. It can be seen that the proposal boxes in the model
are gradually positioned on the traffic signs of the input image, and (e) is a visualization of the final prediction. The predictions are partially
enlarged.

TABLE 3. Comparison of the state-of-the-art model in architecture.

state-of-the-art more intuitively. However, we adopted Float-
ing point operations (FLOPs) and the number of parameters
to represent algorithm complexity for more detailed analysis
in the ablation analysis.

We used AP(Average Precision) (APs, APm, APl), AP50,
and AP75, which were introduced by MS COCO [49]
benchmark to evaluate the accuracy of methods. The results
are shown in Table 3. The AP obtained by our model is
49.0, and the AP50, and AP75 are 62.3 and 56.8, respectively.
According to the results of experiments 1-4, our model per-
forms the best accuracy compared with other state-of-the-
art traffic sign detection models. Experiments 5-10 prove
that for general target detection models, directly replacing
ResNet with ResNest can improve the algorithm’s perfor-
mance, while experiments 8-13 prove that our improvement
to ResNest is practical, our MST block further improves the
performance of the algorithm. We will explain in more detail
in the ablation analysis. In addition, in terms of the detection
ability of small and medium targets, the AP obtained by our
algorithm was significantly higher than other traditional two-
stage algorithms.

Fig. 11 illustrates the P-R(Precision-Recall) [49] curves of
our model and other state-of-the-art models of APs, APm, and

APl. We only use ResNet50 for the backbone of the general
target detection model in order to make the experimental
results more intuitive and concise. The P-R curve is a standard
measure to evaluate the performance of object detectors.
The larger the coverage area of the P-R curve, the better
performance of the algorithm. It can be seen in Fig. 11 that
the coverage area of our P-R curve is generally higher than
other methods. The visualization of our detection results is
shown in Fig. 13. As shown in Fig. 13, our method can
effectively detect small and multiple traffic-sign objects in
images, but our method does not significantly improve the
detection ability of large objects.

In addition, we also evaluated the robustness of our meth-
ods. We simulated some severe weather images and noisy
images by the corruption image generation method intro-
duced byHendrycks andDietterich [50].We generated foggy,
frost, snowy images and images with Gaussian noise based on
the original TT100K test dataset as our robustness test dataset
and divided each severity into 3 levels according to [51].
Fig. 12 shows some generated corruption images.

We considered the AP obtained by detecting the original
dataset as ‘‘AP Clean’’ and that by corruption as ‘‘AP Corr.’’
and used the percentage of ‘‘AP Corr.’’ in ‘‘AP Clean’’ to
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FIGURE 11. Precision-recall curves for APs, APm, and APl of seven object detection methods.

represent the method robustness (12). The results of the
robustness experiment are shown in Table 5. In general,
our method can maintain good performance for traffic-sign
detection under bad weather and noise. For fog corruption,
our method can almost ignore the corruption of bad weather.
The AP percentages for the severity levels 1 to 3 were
96.5%, 92.1%, and 90.6%, respectively, which are the highest
compared to other state-of-the-art methods. Compared to the
original Sparse R-cnn, the AP percentage of our algorithm
increased by an average of 8%, indicating that the robustness
under foggy weather has been significantly improved. For
frost corruption, our method is still the most robust of all
stage-of-the-art in our experiments. Our method obtains AP
percentages of 94.9%, 87.8%, and 77.4%, and compared to
the original Sparse R-cnn, the AP percentage of our algorithm
also increased by an average of 8%, indicating that the robust-
ness under frost weather has been significantly improved. For
Gaussian noise corruption, our method obtained AP percent-
ages of 89.3%, 75.9%, and 55.3%, respectively, and for snow
corruption, the AP percentages were 76.6%, 57.6, and 52.9,
respectively. For Gaussian noise and snowy weather interfer-
ence, our model does not have the highest robustness ratio
(second only to the model of Cao et al.), we believe that it
may be caused by the nature of the noise being different from
the previous noises, but the AP obtained by our model under
this interference is still the highest. Therefore we believe that
our algorithm can still work normally under the interference
of these noises.

Percentage =
AP Corr .
AP Clean

(12)

E. ABLATION ANALYSIS
1) THE COMPLEXITY OF BACKBONE
This section mainly analyzes the complexity of the backbone
and the improvement effect of improved Sparse R-CNN.
We used FLOPs (Floating-point Operations) and the num-
ber of parameters to represent the complexity of the neural
network architecture. We compared the FLOPs and number
of parameters of ResNet50, ResNest50, and our Res2Nest50.
The results are shown in Table 4, ResNest50 has about 1.8M
more parameters than ResNet50, and when the input image

size is 1024 × 1024, ResNest50 is 26.4G FLOPs more than
ResNet50, and our Res2Nest50 has about 1.7M parameters,
and 13.2G FLOPs more than ResNest50. We believe that
the increased computational costs are within an acceptable
range. In addition, although we believe that a deeper feature
extraction network may improve the accuracy of the detector,
it will affect the inference time and does not meet the real-
time requirements of traffic sign detection tasks. Therefore,
we only use a feature extraction network with a depth of 50 as
the backbone of our model.

TABLE 4. Comparison of the model complexity and computational
efficiency of backbones.

2) THE IMPACT OF PREDICTION BOXES
The number of prediction boxes in the final output of the
original Sparse R-cnn neural network was set to be equal to
the proposal boxes. However, we found that the number of
prediction boxes has nothing to do with the proposal boxes,
and too many prediction boxes will prolong the training time
of the model, as shown in Table 6. We used the improved
Sparse R-cnn with a Res2Nest50 as the model of the ablation
experiment, but according to the original Sparse R-cnn paper,
we only used 100 and 300 proposal boxes as the main con-
figuration of the improved Sparse R-cnn. It can be concluded
from Table 5 that the number of proposal boxes in DIIH
will affect the performance of the algorithm, but the final
prediction boxes have nothing to do with the accuracy, and
too many predict boxes can make the training time longer.

We analyzed this because the number of objects in the
image is usually much smaller than the number of the maxi-
mum prediction boxes, so most of the prediction boxes are
filtered by the threshold, which does not affect the final
detection accuracy. Therefore, we set the prediction boxes to
a constant of 100.
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FIGURE 12. Corruption image simulation of different severities. We generated foggy, frost, snowy images and images with
Gaussian noise based on the original TT100K test dataset as our robustness test dataset.

TABLE 5. Comparison of the robustness of detection methods.

3) THE ABLATION OF DESIGN CHOICES
This section mainly introduces some ablation experiments
for hyperparameter selection and model design. First,
we explained our choice of parameters in the backbone design
through hyperparameter ablation experiments. In addition,
we proved that each of our improvements is effective through
model ablation experiments.

For Res2Nest, although the increase of group, radix, and
split will increase the complexity of its algorithm, the increase
is minimal. However, the difference in AP obtained by differ-
ent hyperparameter training is more pronounced. Therefore,
our strategy is to choose a smaller group, radix, or split
hyperparameters if the obtained AP is not much different.
In the experiment, we only change the backbone of themodel,

122784 VOLUME 9, 2021



J. Cao et al.: Traffic-Sign Detection Algorithm Based on Improved Sparse R-cnn

FIGURE 13. Visualization of the detection results attained by our method. We partially magnified the detected traffic signs in order to facilitate
observation.

TABLE 6. Ablation on the final predict boxes.

and the rest of the model is the improved Sparse R-cnn archi-
tecture with 300 proposal boxes. As shown in Table 7, we find
that the hyperparameters Group (K ) and Radix (R) have a
relatively significant impact on the experimental results, but
their increase causes a relatively significant increase in com-
putational cost. The hyperparameter Split(S) has a relatively
small impact on the experimental results, and the calcula-
tion cost brought about by its growth is relatively small.
In addition, we find that when K > 2, the increase of K
is not evident to the increase of the algorithm. We analyze
that the overfitting of the algorithm causes this. Similarly,
when R > 2, or S > 4, the above situation also appears,
so we believe that K = 2, R = 2, S = 4 is the most
efficient hyperparameter combination. This ablation experi-
ment indirectly proves that our improvement is effective, but
we make a more specific explanation in the next ablation
experiment.

In addition, we compared the impact of the Res2Nest
backbone and the improved DIIH head. Since the
results in Table 3 have proved that ResNest is superior to
ResNet in performance, we only compared Res2Nest with
ResNest in this experiment to prove the superiority of our

Res2Nest. As shown in Table 8, when the number of proposal
boxes is 100, and the RoI head of model was composed of our
improved DIIHs, the AP obtained by using Res2Nest50 was
1.1 higher than ResNest50, and when the RoI head was
composed of the original DIIHs, it was 1.0 higher. When the
number of proposal boxes was 300, and the RoI head of the
model was composed of improved DIIHs, the AP obtained by
using Res2Nest50 was 0.9 higher than ResNest50, and when
the RoI head was composed of the original DIIHs, it was
1.0 higher.

For the RoI head of the model, our improved DIIH has
better performance than the original DIIH. When we used
ResNest50 as the backbone of the model, and when the num-
ber of proposal boxes was 100, replacing the original DIIH
with our improved DIIH increased the AP by 0.9, and when
the number of proposal boxes was 300, it increased by 2.9.
When we used Res2Nest50 as the backbone of the model,
and when the number of proposal boxes was 100, replacing
the original DIIH with our improved DIIH increased the AP
by 1.0, and when the number of proposal boxes was 300,
it increased by 2.8. When the number of proposal boxes was
100, the improvement effect of the improved DIIH was not
pronounced, we analyzed that the reason for the result is the
underfitting of the neural network, so we set the number of
proposal boxes to 300 by default.

Moreover, the APs of small objects detection by different
models are also listed in Table 8. It can be seen that our
improvements to the backbone and HIID head are effective.
When the number of proposal boxes is 300, Our model can
increase the AP for the small object by about 0.6, and the
improved HIID head can increase the AP for the small object
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TABLE 7. Hyperparameter ablation experiment results, the content of the table are the APs trained by the model choosing different hyperparameters.

TABLE 8. The impact of ResNest50 backbone and improved DIIH head.

by about 0.3. When the number of proposal boxes is 100,
the AP of the small target detected by our Backbone model
is increased by about 0.8, and the improved HIID head can
increase it by about 0.3.

V. CONCLUSION
The Transformer structure has recently become a research
hotspot due to its excellent performance. We hope to apply
this structure to the design of traffic sign detection algorithms.
Therefore, we make some improvements to Sparse R-cnn,
a neural network model inspired by Transformer. Sparse
R-cnn is a novel model, and its core idea is to replace hun-
dreds of thousands of candidate anchors in the RPN network
with a small set of proposal boxes. The experiments in our
paper proved that the performance of the Sparse R-cnn model
is better than other existing general object detection models.
Based on the original Sparse R-cnn inspiration, an improved
Sparse R-cnn model is proposed.

We believe that the key to designing a traffic sign detection
algorithm is to improve the small object detection ability of
the algorithm as much as possible. Therefore, our idea is to
improve the multi-scale capabilities of the backbone and add
the attention mechanism to the algorithm’s RoI (Region of
Interest) extraction process.

First, we propose a novel backbone for the task of traffic-
sign detection. We made further improvements to the existing
backbone ResNest. We enhanced the multi-scale represen-
tation ability of the backbone by constructing hierarchical
residual-like connections within each single radix block in the
original ResNest. In addition, we set up a branch network for
recalibrating the channel feature response adaptively through
the Global Average Pooling (GAP) operation and a fully
connected layer. It can also be seen as the implementation
of the cross-channel self-attention mechanism.

We evaluated the traffic sign detection model from the
three aspects of algorithm complexity, accuracy, and robust-
ness. We used FLOPs (Floating-point Operations), the num-
ber of parameters, and inference time to represent the
complexity of the neural network architecture. We used
AP(Average Precision), which was introduced by the MS
COCO [49] benchmark, to evaluate the accuracy of methods.
We considered the AP obtained by detecting the original
dataset as ‘‘AP Clean’’ and that by corruption as ‘‘AP Corr.’’
and used the percentage of ‘‘AP Corr.’’ in ‘‘AP Clean’’ to
represent the method robustness.

It can be concluded that our model performs the best accu-
racy compared with other state-of-the-art traffic sign detec-
tion models, and our method can maintain good performance
for traffic-sign detection under bad weather and noise.

In the future, our research focus is to reduce the complexity
of the algorithm as much as possible while ensuring the per-
formance of the algorithm. First of all, based on the previous
work and the experimental results of our algorithm in this
paper, we believe that improving the backbone’s multi-scale
capabilities, especially the fusion of shallow information,
is an effective way to improve the algorithm’s detection of
small objects. However, the complicated fusion method will
cause the calculation cost to be too large, and the inference
speed of the algorithm is too slow. In the future, we will
try to design more efficient fusion feature structures, such as
deleting redundant pooling layers and skipping connection
layers in backbone to save computational costs and reduce
unnecessary resolution loss, or design a feature pyramid net-
work with weight sharing.

In addition, the attention mechanism is also a key method
to solve difficult object detection tasks. In the future, we will
optimize the loss function or further optimize the RoI head to
realize the self-attention mechanism of the algorithm.
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