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ABSTRACT In this study, an automatic test platform suitable for steering gears was established, which
can test four sets of rudder systems separately. In addition, we propose an anomaly detection method based
on deep learning technology to complete the automated multi-fault classification of the steering gear test.
This paper combines the particle swarm optimization algorithm and the grey wolf optimization algorithm to
optimize the convolutional neural networks (HPSOGWO-CNN). The proposed HPSOGWO-CNN model is
constructed in two stages to realize the efficient and high-accuracy anomaly detection of the rudder system.
In the first stage, through 10-fold cross validation, the optimal number of search agents of the HPSOGWO
algorithm is obtained, and the performance is compared with GWO and PSO algorithms respectively. The
results demonstrate that HPSOGWO algorithm is an excellent technique for automatic selection of hyper-
parameters. In the second stage, the designedHPSOGWOalgorithm is used to fine-tune the hyper-parameters
of CNN, and a highly matched model for anomaly detection of rudder system test parameters was finally
obtained. The experimental results show that the accuracy of this method is 99.846%, the precision is
99.748%, the recall is 99.498%, the F-score is 99.618%, and Kappa reaches 0.99565. CNN-based hybrid
optimization for anomaly detection of rudder system, is advanced in comparison to KNN, SVM, BP, CNN,
PSO-CNN, GWO-CNN, MGWO-CNN, WdGWO-CNN, RW-GWO-CNN models, in terms of accuracy,
precision, recall, F-score, and kappa, respectively. Moreover, it is not affected by the imbalance samples,
and can achieve accurate classification for small training samples.

INDEX TERMS Anomaly detection, data analysis, HPSOGWO-CNN, rudder system.

I. INTRODUCTION
The rudder system is a kind of servo mechanism, which is
widely used in the control systems of airplanes, ships, mis-
siles, etc. It receives the control signals from the flight control
system and drives the deflection of the rudder surface, so as to
control of flight attitude and trajectory. In order to ensure the
precise control of the rudder system, it is necessary to analyze
the state parameters, static parameters and dynamic parame-
ters of the rudder system during the production process. Initial
testing of the rudder system was done manually. With the
rapid development of automated test systems, the parameter
test process has become efficient and accurate [1]. However,
a large number of rudder system parameter test results are
still analyzed by manual processing method at present, which
leads to the difficulty in ensuring the accuracy of anomaly
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detection and time-consuming [2]. In the analysis of the rud-
der system, we judge the performance based on the test results
of a set of parameters. If the parameter value is abnormal,
it is the work we need to do to locate the specific problem
directly, quickly and automatically. In recent years, machine
learning technology has also been applied in anomaly
detection [3]–[7].

There are few applications of machine learning in the
evaluation of steering systems, and only 4 documents have
studied it. Table 1 summarizes it.

In Reference [8], the authors used Support Vector
Machine (SVM) to diagnose the fault of steering gear
and realized intelligent data analysis. And they focused on
developing a new decision-points distribution and weight-
assignment-oversampling method. The classification accu-
racy is 91%, the recall is 96.67%, the F-score is 94.2%, and
the TNR is 74%. In Reference [9], the intelligent algorithm
was applied to the fault detection and location of rudder
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system and the imbalance data were effectively processed.
The highlight of this article is the use of adaptive sampling
algorithm considering informative instances (ASCIN) to pro-
cess the dataset. This technology prevents the loss of impor-
tant information in the dataset. The classification accuracy is
97.3%, and the TNR is 88.3%. The authors applied Shuffled
Frog Leaping Algorithm-based Random Forest (SFLA-RF)
algorithm to rudder fault diagnosis in Reference [2]. The
advantages of this method for classification are short time
and high accuracy. The classification accuracy is 99.787%,
and the kappa is 0.99486. Reference [10] broke through
the technical bottleneck of low parameter testing efficiency,
the classified kappa is 0.9954, and the RMSE is 0.0395.

None of the four papers analyzed and studied the classi-
fication performance of the various states of steering gear.
In actual engineering, we not only need to ensure that the
overall classification accuracy is high, but also that the differ-
ent states of the steering gear can be accurately distinguished.
This article introduces deep learning technology for the first
time, and makes a systematic analysis in this regard, breaking
the gap of deep learning technology in the classification of
test data of the rudder system.

TABLE 1. Summary of related work on rudder system fault diagnosis.

We also analyzed anomaly detection and fault diagnosis in
other areas related to the steering gear experiment, as shown
in Table 2. In Reference [11] different fault modes of
rolling bearings can be reliably identified. In Reference [12],
the author used Random Forest (RF) as a classifier to classify
the complex fault of gearbox. Reference [13] showed that
SVM has outstanding generalization performance and can
obtain high classification accuracy when applied in machine
condition monitoring and diagnosis. In Reference [14], CNN
was used for feature extraction of time-frequency graph, so as
to carry out sensor fault classification. In Reference [15],
Deep Neural Networks (DNNs) was designed for fault
classification, which can overcome the shortcomings of
artificial neural network. Reference [16] can achieve high-
precision fault diagnosis when the workload changes.
In Reference [17], Independent Component Analysis (ICA)
was used for feature extraction of induction motor data, and
multi-classification fault identification based on SVM was
completed. Reference [18] applied the learning ability of
Deep Belief Network (DBN) to fault diagnosis of rolling
bearing. Reference [19] and [20] combined the powerful

TABLE 2. Summary of DL-based methods for fault diagnosis.

capabilities of neural network in feature extraction and deep
auto-encoders (DAE) in classification.

To sum up, it can be seen from the above literatures that
machine learning has been widely used in various fields of
fault diagnosis. Among them, deep learning has a significant
effect in mechanical fault diagnosis.

In recent years, Convolutional Neural Network (CNN) and
optimization algorithms have been widely used in various
fields. The Particle Swarm Optimization (PSO) and the Grey
Wolf Optimization (GWO) algorithm have significant effects
in optimization. Reference [21] used only pixels and dis-
ease labels as the input of CNNs to automatically classify
skin lesions, with a level of competence almost equal to
dermatologists. In Reference [22], the designed neural net-
work was used to complete binary stress detection and three
types of emotion classification. In Reference [23], the con-
textual deep CNN predicted the corresponding label of each
pixel vector to complete hyper-spectral image classification.
Reference [24] showed that the classification performance
of DNNs can be significantly improved by PSO algorithm,
and compared the impact of the swarm size on PSO and
neural network architecture on classification performance.
In Reference [25], in order to obtain better classification per-
formance, the author adopted PSO algorithm to optimize the
parameters in SVM. In Reference [26], the hyper-parameters
in the CNN model were optimized by PSO algorithm,
which achieved the purpose of improving network perfor-
mance andmade the selection of hyper-parameters automatic.
Reference [27] pointed out that some hyper-parameters
in CNN had a significant impact, whereas other hyper-
parameters were not very important. In Reference [28],
ImGWO was used for feature selection, and ImCNN was
used for network anomaly classification. In Reference [29],
an enhanced GWO algorithmwas used to optimize the hyper-
parameters of Convolutional Neural Network-Long Short-
Term Memory (CNN-LSTM) networks. In Reference [30],
the optimal size of system components was obtained by
Hybrid PSO and GWO (HPSOGWO) algorithm. Refer-
ence [31] showed the superiority of HPSOGWO algorithm
in optimizing the path. In Reference [32], the performance
of the hybrid optimization algorithm was verified in a prac-
tical problem. In Reference [33], through the comparative
experiments of various optimization algorithms, the superior
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TABLE 3. Investigation of experimental methods used in this article.

aspects of HPSOGWO algorithm were obtained. Table 3
summarizes the relevant algorithms.

From the survey in Table 3, CNN has a significant
performance on classification. Refined from the cited liter-
ature, the PSO algorithm can effectively fine-tune the hyper-
parameters of the CNN network, and the rate of convergence
is fast, but the accuracy needs to be improved. The GWO
algorithm ismore excellent in terms of optimization accuracy.
In recent years, the traditional machine learning algorithm
has been applied to rudder system fault diagnosis, which
can achieve automatic classification of abnormal data, but
the classification performance for small samples needs to be
improved. Inspired by the above research, we try to use the
CNN optimized by the HPSOGWO algorithm to extract and
classify the test parameters of the rudder system in order to
achieve outstanding accuracy of fault location. Thus, the rud-
der system parameter analysis can be automated.

The main contributions of this paper are summarized as
follows:

1) An automatic test platform for steering gears has been
built to realize parameter testing of up to four sets of steering
gears at the same time.

2) A convolutional neural network model combining par-
ticle swarm optimization algorithm and grey wolf optimiza-
tion algorithm (HPSOGWO-CNN) is proposed for anomaly
detection of rudder system. This model can obtain superior
classification performance in the rudder system.

3) In this paper, the HPSOGWO algorithm is used to solve
the problem of difficult selection of CNN hyper-parameters.

4) This article solves the problem of inaccurate classifica-
tion caused by imbalanced steering gear samples.

The rest of this article is structured as follows. The
Section 2 introduces the system model. In the Section 3,
the optimal CNN model for rudder system testing is con-
structed. In the Section 4, the performance of the model is
verified by a series of comparative experiments, which is
followed by a summary of the Section 5.

II. PROPOSED SYSTEM MODEL
In this study, we propose a new model named HPSOGWO-
CNN, which uses the HPSOGWO algorithm to optimize

the hyper-parameters in the 1D CNN to obtain the best 1D
CNN structure. Among them, the optimization algorithm
is a hybrid variant that combines PSO and GWO variants
together.

A. GREY WOLF OPTIMIZER (GWO)
The Grey Wolf Optimizer (GWO) was originally proposed
by Mirjalili et al. [34]. Grey wolves have a very strict social
hierarchy. The leaders of the pack are called Alphas (α).
To be specific, Alphas manage the team and are answer
for making decisions. The second largest scale of the grey
Wolf is Beta (β). Beta wolves obey the Alphas and help
the Alphas make decisions. The lowest level of grey wolves
is Omega (ω), which is a group of the pack who are com-
pletely obedient to other wolves. The other wolves are called
Delta (δ). They obey Alpha and Beta, but dominate Omega.

The GWO optimization process mainly includes the social
hierarchy, encircling prey, hunting, attacking prey and search
for prey.

1) SOCIAL HIERARCHY
In order to design the GWO, we established a mathemati-
cal model of the social hierarchy of wolves. Among them,
the optimal solution is Alpha. Similarly, the second and third
optimal solutions are called Beta and Delta. The remaining
candidate solutions are named Omega. The algorithm opti-
mization process is dominated by Alpha, Beta and Delta.

2) ENCIRCLING PREY
The mathematical model of encircling behavior of each
search agent in the wolf pack is as follows. The position of
the grey wolf is updated by (1) and (2).

−→
D =

∣∣∣−→C · −→Xp (t)−−→X (t)
∣∣∣ (1)

−→
X (t + 1) =

−→
Xp (t)−

−→
A ·
−→
D (2)

where t indicates the current iteration,
−→
A and

−→
C are coef-

ficient vectors,
−→
Xp is the position vector of the prey, and

−→
X indicates the position vector of a grey wolf.
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The vectors
−→
A and

−→
C are given by the following mathemat-

ical formula:

−→
A = 2−→a · −→r1 −

−→a (3)
−→
C = 2−→r2 (4)

where components of −→a are linearly decreased from
2 to 0 over the course of iterations and −→r1 ,

−→r2 are random
vectors in [0,1].

3) HUNTING
We set Alpha, Beta and Delta as the three optimal solutions.
Then update the position of Omega and other wolves accord-
ing to the location information of Alpha, Beta and Delta,
as shown in Fig. 1.

FIGURE 1. Steps to update the location of the grey wolves.

The mathematical model of this behavior can be expressed
as follows:

−→
Dα =

∣∣∣−→C1 ·
−→
Xα −

−→
X
∣∣∣ (5)

−→
Dβ =

∣∣∣−→C1 ·
−→
Xβ −

−→
X
∣∣∣ (6)

−→
Dδ =

∣∣∣−→C1 ·
−→
Xδ −

−→
X
∣∣∣ (7)

−→
X1 =

−→
Xα −

−→
A 1 ·
−→
Dα (8)

−→
X2 =

−→
Xβ −

−→
A 2 ·
−→
Dβ (9)

−→
X3 =

−→
Xδ −

−→
A 3 ·
−→
Dδ (10)

−→
X (t + 1) =

(
−→
X1 +

−→
X2 +

−→
X3
)
/3 (11)

4) ATTACKING PREY AND SEARCH FOR PREY
According to (3), the decrease of−→a value will cause the fluc-
tuation of

−→
A value. When

−→
A is in the [-1,1] interval, the next

position of the agent can be at any position between the wolf
and its prey. On the one hand, |A| < 1 forced the wolf to
attack its prey. On the other hand, |A| > 1 forces the wolf to
separate from its prey, hoping to find more suitable prey.

B. PARTICLE SWARM OPTIMIZATION (PSO)
Particle swarm optimization was first proposed by Kennedy
and Eberhart [35]. The algorithm is composed of particles,
each of which has only two attributes: velocity and position.
Update the velocity and position of each particle through (12)
and (13), and finally obtain the optimal solution.

vk+1i = vki +c1r1
(
Pkbest−x

k
i

)
+c2r2

(
gbest−xki

)
(12)

xk+1i = xki + v
k+1
i (13)

where i refers to the particle in the swarm. k is the number
of iterations. r1 and r2 values represent random numbers
in the range [0,1]. The coefficients c1and c2 represent the
optimization parameters. Pbest represents the best position
of the individual, gbest represents the best position of the
population.

C. HYBRID PSO-GWO (HPSOGWO)
Although PSO technology is subject to some limitations,
it has some advantages, such as simplicity, durability, and
easy implementation. The disadvantage is that it is easy to
fall into a local minimum [36]. And, GWO algorithm has
the characteristics of strong convergence performance, few
parameters, and easy implementation. It avoids local trapping
and maintains the balance between exploration and exploita-
tion. But there is a lack of communication between individual
positions and group positions. In this way, both these extraor-
dinary features of PSO and GWO are incorporated into the
algorithm of HPSOGWO [37].

The modified governing equations of the hybrid algorithm
are as follows:

−→
Dα =

∣∣∣−→c1 · −→Xα − ω ∗ −→X ∣∣∣ (14)
−→
Dβ =

∣∣∣−→c2 · −→Xβ − ω ∗ −→X ∣∣∣ (15)
−→
Dδ =

∣∣∣−→c3 · −→Xδ − ω ∗ −→X ∣∣∣ (16)

The velocity and position update equations obtained by
combining PSO and GWO algorithm are as follows:

vk+1i = ω ∗
(
vki + c1r1

(
x1 − xki

)
+ c2r2

(
x2 − xki

)
+c3r3

(
x3 − xki

))
(17)

xk+1i = xki + v
k+1
i (18)

In (17), ω represents the inertia weight parameter.

D. FRAMEWORK CONSTRUCTION OF 1D CNN MODEL
In this study, a new 1D CNN model is proposed for the
anomaly detection of rudder systems. Specifically, the 1D
CNNmodel designed in this paper includes three convolution
layers, two pooling layers, one flatten layer, two dropout
layers and two dense layers. The structure of 1D CNN is
described as follows:
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1) INPUT LAYER
The input layer is used to accept preprocessed rudder system
test data.

2) CONVOLUTION LAYER
This layer has multiple filters and performs most of the
computation. The convolution is passing through this layer.
Generally speaking, convolution generates a new spectrum
representation by sliding the kernel with a certain ‘‘stride’’
across the entire spectrum. Then the output feature map is
passed to the activation function to achieve nonlinear changes
in the network layer. The activation function used in the
convolutional layer designed in this paper is ReLU. Obtain
the number of filters ni and filter size SF in the convolutional
layers through the HPSOGWO optimization algorithm.

3) POOLING LAYER
It is usually used for feature dimensionality reduction to
achieve the purpose of compressing data and reducing the
number of parameters in the training process, thereby reduc-
ing overfitting and improving the fault tolerance of themodel.
There are two main types of pooling layers: maximum pool-
ing and average pooling. This article uses maximum pooling.
Also, HPSOGWO algorithm is used to determine the pool
size SP.

4) FLATTEN LAYER
The flatten layer is used to ‘‘flatten’’ the output of the pooling
layer, that is, to convert it into a vector. It is usually used for
the transition from the convolution layer or pooling layer to
the fully connected layer.

5) DROPOUT LAYER
The dropout layer achieves the effect of using random deacti-
vation of hidden units to prevent overfitting. The introduction
of this randomness forces the network to become redundant,
so that the network does not match the training samples well,
thereby increasing the generalization ability of the network.
In the training process, we randomly sample according to a
certain probability to change the network structure, which is
equivalent to training different networks. For the two dropout
layers in this experiment, select two dropout ratio values
of 0.25 and 0.5, respectively.

6) DENSE LAYER
This layer contains a large number of neurons, which are used
to connect neurons in this layer with those in other layers.
When the activation function of the dense layer is set to Soft-
max, the layer can be regarded as a classification layer [38].
The model designed in this paper has two dense layers. The
number of unitsC in the first dense layer is determined by the
optimization algorithm. And the second dense layer is used
for classification. This experiment needs to divide the test
results of the rudder system into 11 categories, so the number
of units in this layer is 11.

III. EXPERIMENT VALIDATION
A. RUDDER SYSTEM TESTING EQUIPMENT
This paper establishes an automatic test platform suitable for
rudder system testing, which can automatically complete rud-
der system data collection and processing, performance index
testing and other functions. The test equipment is mainly
composed of a main control industrial computer, power sup-
ply, capture card, signal conditioning circuit, driver, pneu-
matic steering gear and multi-function data acquisition card.
It can test four sets of rudder systems separately, which
greatly improves the test efficiency. The system automatically
analyzes the rudder system parameters returned to the indus-
trial control computer to meet the requirements of anomaly
detection.

It is well known that the rudder must be evaluated before
use to ensure that all parameters are in normal condition.
If the parameter is abnormal, it needs to be analyzed and
adjusted immediately, which is directly related to the perfor-
mance of the steering gear. Therefore, how to improve the
accuracy of the anomaly detection of rudder system is very
necessary. Fig. 2 shows a brief flow chart of the rudder system
test.

FIGURE 2. Overview of the rudder system test process.

B. DATASET DESCRIPTION
In this study, 19490 historical test data are used. The test items
of the pneumatic rudder system included in this dataset are
as follows: transient time, overshoot, steady-state errors, hys-
teresis, band width, etc. These parameters reflect the dynamic
and static characteristics of the pneumatic rudder system, and
are a comprehensive index for evaluating the performance of
the rudder system.

Here, the columns in the dataset are called ‘‘features.’’
There are 10 types of features in our work, corresponding to
10 types of errors. The ‘‘labels’’ indicate 11 test statuses, con-
sisting of a qualified type and 10 types of faults. Furthermore,
the test data of each rudder system consist of 10 characteristic
values and a label. The overview of the dataset is shown
in Table 4.

VOLUME 9, 2021 121849



W. Wang et al.: CNN-Based Hybrid Optimization for Anomaly Detection of Rudder System

TABLE 4. Dataset overview.

C. EXPERIMENTAL 1D CNN ARCHITECTURE
1) EXPERIMENTAL SETUP
In this experiment, we hope to obtain the best network archi-
tecture, so the HPSOGWO algorithm is used to fine-tune the
hyper-parameters of 1D CNN.

The experimental setup is as follows: The number of sam-
ples selected by one training of the neural network is called
batch size. The loss function will vibrate and not converge
due to the unreasonable number of batch-sizes; increasing
the number of batch-sizes within a certain range can not
only shorten the training time of neural network, but also
improve the accuracy of training. Therefore, we define the
hyper-parameter as: batch− sizes = 512. The training of 1D
CNN model is performed using the adaptive moment estima-
tion (Adam) algorithm [39]. In the optimization, the fitness
function selects the accuracy value. Each neural network
is trained for 100 epochs. The parameters of HPSOGWO
algorithm are set as follows: maximum number of iterations
is 10, c1 = c2 = c3 = 0.5, ω ∈ [0.5, 1). Moreover,
the dataset are partitioned by 10-fold cross validation. The
specific method is as follows: first, preprocess the data in the
dataset D; second, randomly shuffle the order; then divide
it into 10 mutually exclusive subsets of similar size. The
training set is composed of the union of 9 subsets (T ), and
the testing set is composed of the remaining subsets (9).
Therefore, 10 times of training and testing are carried out,
and the results of 10 tests are averaged to get the final result.
The above experimental settings are used to analyze the per-
formance of the optimized algorithms of HPSOGWO, PSO
and GWO.

The process of using HPSOGWO algorithm to optimize
CNN can be summarized as follows.

1) Set the population of grey wolf Pop = 30, the max-
imum number of iterations Max_iterations = 10,
the optimization dimension Dim = 6, and set the
upper and lower boundaries of the hyper-parameters
according to Table 5.

2) Initialize the population of grey wolf Xi(i =

1, 2, . . . , 6), which is the value of six hyper-parameters.
3) Population boundary check. Prevent the initialized

hyper-parameters exceeding from the upper and lower
boundaries.

4) Evaluate the fitness of the population. The specific pro-
cess is to substituting the initialized hyper-parameters
into CNN and training CNN to obtain the accuracy
of multi-fault classification of the rudder system. The
accuracy is the fitness value.

5) Sort the fitness.
6) Sort the population position according to the fitness.

Specifically, let the fitness correspond to the hyper-
parameters one by one.

7) Set the best three grey wolves Xα,Xβ ,Xδ , that is,
the three sets of hyper-parameters due to the three
highest fitness.

8) Iterations < 10, if Pop < 30, update parameters
a,A, c, ω, calculate the velocity and position of the
search agents according to (17) and (18).

9) Increase the number of Pop by 1.
10) Go back to Step 8-9, until Pop ≥ 30.
11) Go back to Step 3-6. Update the fitness corresponding

toXα to the global optimal solution, andXα is the global
optimal position.

12) Increase the number of Iterations by 1.
13) Go back to Step 8-12, until Iterations ≥ 10. The final

highest fitness is the global optimal solution, and the
global optimal position is the optimal hyper-parameters
for constructing the network.

14) In order to obtain a more reliable and stable CNN
model, this paper uses 10-fold cross-validation train-
ing, replaces the training set 10 times, repeats the
above steps, and finally obtains 10 sets of optimal
hyper-parameters.

2) IMPACT OF THE SEARCH AGENT SIZES ON HPSOGWO
The influence of the number of search agents in the
HPSOGWO algorithm on the experimental results is ana-
lyzed by the experiment. The following search agent sizes are
investigated: SA = {10, 20, 30, 40}, and Table 5 summarizes
all hyper-parameters that need to be fine-tuned to obtain the
best classification results.

Use the testing set to evaluate the classification per-
formance of the 1D CNN optimized by the HPSOGWO
algorithm. As mentioned earlier, we perform 10-fold cross
validation. Specifically, 10 repeated independent experiments
are carried out for different search agent sizes. In Fig. 3,
we show the classification accuracy of the HPSOGWO algo-
rithm optimized for all search agent sizes. It can be proved
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TABLE 5. The search range of the hyper-parameters.

FIGURE 3. In the HPSOGWO algorithm, the classification accuracy of
different number of search agents on 9.

FIGURE 4. Minimum, average and maximum accuracy obtained for 9

using the optimized 1D CNN. The white line in the box-plot is the median
line.

TABLE 6. Comparison of averages value.

from the analysis graph that when 30 search agents are used,
the classification accuracy is the highest.

In order to verify the consistency of the hyper-parameter
quality of HPSOGWO algorithm obtained in 10 indepen-
dent experiments, the box plot shown in Fig. 4 is drawn.
Table 6 lists the average values of various results. Table 7 lists
the accuracy results obtained from 10 independent experi-
ments conducted with different search agents. In Fig. 4 and
Table 6, we show that the performance of the accuracy in

TABLE 7. The results of accuracy over 10 independent runs.

testing set when using HPSOGWO algorithm to optimize
1D CNN network under four different search agent sizes.
Interestingly, increasing the number of search agents may
lead to the deterioration of the lowest accuracy in ten opti-
mization experiments. In other words, increasing the size
of search agents may not be able to effectively improve
the initial low-quality positions. In addition, it can be seen
from Table 7 that when the number of search agents is 30,
the average accuracy of 10 experiments can reach 99.790%.
Compared with the number of search agents of 10, 20 and 40,
the accuracy is increased by 0.047%, 0.026% and 0.006%,
respectively.

3) ANALYSIS OF THREE OPTIMIZATION ALGORITHMS
In order to verify the superiority of the HPSOGWO algo-
rithm in the optimization of 1D CNN hyper-parameters
over the PSO algorithm and the GWO algorithm, we con-
ducted the following two experiments. The population
size of the three different algorithms is 30. As shown
in Fig. 5 (a), compared with the PSO-CNN algorithm, the
HPSOGWO-CNN algorithm has higher classification accu-
racy in 9 when optimizing 1D CNN in 10 independent
repeated experiments.

Another excellent feature of our proposed HPSOGWO-
CNN model is that it converges faster than the GWO-CNN
model. This is because, compared with the GWO algorithm,
the HPSOGWO algorithm adopts the velocity and position
update formula of the PSO algorithm, which improves the
exploration ability of the GWO algorithm. In Fig. 5 (b),
we show the number of iterations required in each of the
10 independent repeated experiments when the fitness func-
tion value reaches the optimal value for the first time. For
example: in the experiment with serial number 1, when the
HPSOGWO algorithm is used to optimize 1D CNN, the fit-
ness function value reaches the best value after the first
iteration is completed; however, under the same conditions
of T and 9, using the GWO algorithm, the fitness function
value can reach the best value at the 9th iteration.

Overall, it can be seen from this that the HPSOGWO
algorithm is an effective technique for automatic selection
technology of hyper-parameters in neural networks, and its
performance is superior to that of the other two algorithms
alone.
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FIGURE 5. Performance comparison results of optimization algorithms.
(a). In 10 independent repeated experiments, the accuracy of PSO-CNN
and HPSOGWO-CNN model on 9. (b). In 10 independent repeated
experiments, the rate of convergence of PSO-CNN and HPSOGWO-CNN
model on 9.

4) PERFORMANCE EVALUATION
Through the above experiments using 10-fold cross valida-
tion, ten different optimal solutions were finally obtained
in ten experiments. Therefore, the 10 best solutions of the
HPSOGWO-CNN model are shown in Table 8.

TABLE 8. The ten best performing solutions of the HPSOGWO-CNN model.

In this experiment, we divide the training set and the testing
set at a ratio of 8:2. Furthermore, due to the differences
in initialization weights and deviations, repeated training of
the network with the same hyper-parameters will result in
different training results each time, in other words, different
classification performance obtained [27]. Therefore, in order
to obtain a more stable network structure, we performed five
repetitive training on these ten best combinations, as shown
in Figs. 6. Through the analysis of accuracy and kappa

FIGURE 6. After full training (epoch = 200), the accuracy and kappa of
the 10 performing hyper-parameter combinations are shown. For each
combination, the dots represent the experimental results, whereas the
dotted line represents the average of all five replicates.

coefficient, it is concluded that the average performance of
model 2 is the best.

The hyper-parameters of model 2 are used to construct the
1D CNN designed in this experiment. As shown in Table 9,
the 1D CNN consists of 3 1D convolution layers, 2 1D
pooling layers and 1 flatten layer in the convolution part.
The first layer, the second layer and the fourth layer of the
1D CNN structure are convolution layers, which contain 60,
32 and 64 1Dfilters respectively. The size of each convolution
layer filter is 2, the stride size is 1, and the output uses the
ReLU activation function. The third layer and the fifth layer
are the max pooling layer, and the pool size is 2. The sixth
layer is the flatten layer. In general, data are input in the
form of 10 × 1 vectors and output in 192× 1 vectors through
these layers. Next, as shown in Fig. 7, all the output data are
connected into one vector, which is fed into a dense layer with
351 units. And dropout ratio value is selected to be as 0.25.
The ReLU activation function is used for each unit. The last
dense layer is the output layer, and dropout ratio value is
selected to be as 0.5. Using Softmax as the activation func-
tion, 11 classification results are obtained. These 11 types
of results divide the data into qualified types and 10 types
of faults, thus realizing the anomaly detection of the rudder
system.
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TABLE 9. The architecture of 1D CNN.

IV. ANALYSIS AND DISCUSSION
A. EVALUATION METRICS
The following parameters are used to evaluate the perfor-
mance of the proposed model: accuracy, precision, recall,
F-score and kappa.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(19)

Pr ecision =
TP

TP+ FP
(20)

Re call =
TP

TP+ FN
(21)

F − score = 2×
Pr ecision× Re call
Pr ecision+ Re call

(22)

kappa =

N
r∑
i=1

xii −
r∑
i=1
(xi+ × x+i)

N 2 −
r∑
i=1
(xi+ × x+i)

(23)

where TP, TN , FP and FN represent true positive, true nega-
tive, false positive and false negative, respectively. TP refers
to the normal category that is classified as normal, and FN
refers to the normal category that is classified as abnormal.
On the contrary, an abnormal category classified as a normal
category is called FP, and an abnormal category classified as
an abnormal category is called TN .

B. COMPARISON OF PERFORMANCE INDEXES
OF DIFFERENT MODELS
In order to thoroughly evaluate the proposed model, we com-
pared the proposed HPSOGWO-CNN model with traditional

machine learning algorithms, other neural network algo-
rithms, unoptimized CNN, and CNN models optimized by
different optimization algorithms. The experimental results
of classification performance of each model are the average
of 5 repeated experiments.

There are various ways to improve GWO algorithm
[40], [41]. In order to analyze the advantages of HPSOGWO
algorithm in optimizing CNN, this paper compares it with
MGWO [42], RW-GWO [43] and WdGWO [44]. Among
them, MGWO and RW-GWO both improved the parameter
update mechanism, and WdGWO improved the grey wolf
individual position update mechanism.

The model settings for the comparison experiments are
as follows: The BP model uses a structure that removes the
convolution part of the HPSOGWO-CNN model. Specif-
ically, we can analyze the influence of the convolution
part of HPSOGWO-CNN on the classification performance
by extracting the BP model formed after the flatten layer
of the HPSOGWO-CNN model. The values of the hyper-
parameters of the CNN model are the middle value of
the optimization range of each hyper-parameter. In addi-
tion, the PSO-CNN, GWO-CNN, MGWO-CNN, RW-GWO-
CNN, and WdGWO-CNN models use the same training
set and testing set as the HPSOGWO-CNN model in the
experiment. Specifically, the hyper-parameters of the models
constructed by different optimization algorithms are shown
in Table 10.

TABLE 10. Hyperparameters of different models.

In order to analyze the complexity of the model, the space
complexity of the proposed model is analyzed. Space com-
plexity is mainly affected by the number of parameters in the
model. The larger the space complexity, the larger the amount
of data needed for training the model.

TABLE 11. Total parameters of different models.

Table 11 shows that the total parameters of the MGWO-
CNN model are the lowest, and that of the PSO-CNN model
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TABLE 12. Comparison of classification performance of different models.

are the highest. Among them, the total parameters of the
proposed model are 79827, which is relatively low.

The classification performance index shown in Table 12 is
the average value obtained from 5 repeated experiments.
Compared with KNN and SVM, the accuracy of our proposed
model is improved by 3.566% and 1.898%, respectively.
Recall, F-score and Kappa all perform poorly in the two
traditional machine learning algorithms. Compared with the
BP model, the accuracy is increased by 0.58%, which indi-
cates that the feature extraction of data through the convolu-
tion layer can effectively improve the classification accuracy.
The accuracy of the CNN model without optimization is
0.282% lower than that of the CNN model optimized by
the HPSOGWO algorithm. In other words, the optimization
algorithm is indeed effective in improving the classification
performance.

In the experiment, six optimization algorithms of PSO,
GWO, MGWO, WdGWO, RW-GWO and HPSOGWO are
compared to optimize the classification performance of CNN.
The results show that the PSO-CNN model performs the
worst among the 5 performance index evaluations of accu-
racy, precision, recall, F-score and kappa, which are all lower
than the CNN model optimized by GWO and improved
GWO. Among them, the accuracy of the HPSOGWO-CNN
model is 99.846%, the precision is 99.748%, the recall is
99.498%, and the F-score is 99.618%. Kappa is 0.99565,
which is the closest to 1 compared with the other 9 models.
Among the 4 improved GWO algorithms, the evaluation
indicators of HPSOGWO-CNN stand out.

In addition, we report the program execution time of
different models. Specifically, the running time required
by GWO-CNN is 78.074s, and the running time of the
4 improved GWO algorithms has been shortened. Among
them, the running time of HPSOGWO-CNN is the shortest,
reaching 56.288s. On the premise of ensuring high-quality,
the CNNmodel structure optimized by the HPSOGWO algo-
rithm can reduce its execution time.

The non-parametric statistical hypothesis tests of the pro-
posed model and other models are shown in Table 13. The
progressive significance p1 is obtained using the Mann-
Whitney test. It is an approximate normal calculation prob-
ability and is suitable for data with a large sample size.
The precision significance p2 uses Kruskal test, which is the

TABLE 13. Non-parametric statistical hypothesis tests of proposed
method and other methods.

probability obtained by the exact test, and is suitable for data
with a small sample size. The p- value reflects whether the
difference between the two models is statistically significant.
p- value <0.05 indicates that there is a significant difference
between the twomodels. Compared with the proposedmodel,
the non-parametric test values of the two methods are both
less than 0.05, indicating that the comparative experiment in
this paper is meaningful [45].

In summary, the proposed HPSOGWO-CNN model has
the best level and excellent performance in all aspects of
these 10 models. It is an outstanding model for the anomaly
detection of the rudder system.

C. COMPARISON OF PERFORMANCE INDEXES OF
DIFFERENT CATEGORIES
In our work, the HPSOGWO-CNN model performed well in
the overall evaluation performance indicators. Then, in order
to further analyze the classification of each category, we plot-
ted the confusion matrix of the HPSOGWO-CNN model
in Table 14, as well as the accuracy, precision and F-score
of each category of each model in Table 15. The confusion
matrices of the above experiments all selected the best one
from these five experiments. Class Q in Table 15 indicates
that the rudder system is qualified, whereas class FA to FJ
mean the single fault (fault A to fault J).

It is worth noting that the KNN and SVMmachine learning
algorithms are greatly affected by the imbalance of data, and
they are less effective in the classification of FE, FF, FG
and FJ. Especially the KNN model, in the FF classification,
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FIGURE 7. Structure diagram of the proposed 1D CNN.

TABLE 14. A confusion matrix of the HPSOGWO-CNN model.

the accuracy is less than 50%, cannot achieve the classifica-
tion performance.

When the neural network model is used for classification,
it is less affected by data imbalance. Basic neural network
models, such as BP and CNN, improve the classification
performance of each type of fault to more than 90%.

Next, compare the classification performance of the
model obtained by using PSO and GWO to optimize the

CNN hyper-parameters. In terms of accuracy, FA, FB, FC,
FH, FI, FJ, PSO-CNN and GWO-CNN have reached 100%.
Among FD, FE, FF, and FG, the classification accuracy of
GWO-CNN is better than that of PSO-CNN. In terms of
precision and F-score, in addition to the classification per-
formance of FA and FE, the GWO-CNN model is equal
to or better than the PSO-CNN model in the classification
performance of the other nine abnormal categories. It can
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TABLE 15. Accuracy, precision and F-score of each class of each model.

be analyzed that the GWO algorithm is better than the PSO
algorithm in optimizing CNN.

Furthermore, in the comparative experiments of four
improvements of GWO algorithms, the proposed
HPSOGWO-CNN model has the best overall classification
performance. The specific performance is as follows: Among
the 11 types of steering gear failures, 8 types (FA, FB, FC, FD,
FE, FF, FH, FI) have an accuracy of 100%, 9 types (FA, FB,
FD, FE, FF, FG, FH, FI, FJ) have an accuracy of 100%,
and 7 types (FA, FB, FD, FE, FF, FH, FI) of F-score have
reached 100%.

Among them, in the analysis of accuracy, precision and
F-score of the HPSOGWO-CNNmodel, FA, FB, FD, FE, FF,
FH, FI categories can all reach 100%. The sample size of the
7 types of test sets is less than 200, indicating that for small
samples, the model can still achieve the correct classification.

V. CONCLUSION
Aiming at the anomaly detection of the rudder system,
an automatic test platform suitable for the rudder system
is established, and a new model named HPSOGWO-CNN
is proposed for anomaly diagnosis. As we all know,

the performance of neural networks directly depends on
their hyper-parameters, and the artificially designed hyper-
parameters cannot achieve the best network structure, so this
experiment uses the HPSOGWO algorithm to complete the
construction of CNN. The designed CNN is used for feature
extraction and classification of experimental data for rudder
testing. The results of Section 3 show that in the experiment
of optimizing the hyper-parameters of the CNN, compared
with the PSO and GWO algorithms, the HPSOGWO algo-
rithm has obvious advantages in accuracy and the rate of
convergence. In other words, it is a fast and efficient algorithm
for hyper-parameters automatic selection of neural network.
The results in Section 4 show that our proposed model
can achieve 99.846% accuracy, 99.748% precision, 99.498%
recall, 99.618% F-score, 0.99565 Kappa in the multi-fault
classification of the rudder system, and the classification
performance is hardly affected by sample imbalance.
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