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ABSTRACT The most important component of photorealism in Computer Graphics is given by a physically
correct approximation of the light transport. Besides the direct illumination from light sources, there is an
indirect illumination, produced by the reflections of the light rays on other surfaces of the scene. In Computer
Graphics, the process of computing the illumination of a surface by considering both the direct and the
indirect illumination is widely known as global illumination. This paper describes several classes of real-
time global illumination techniques used in current game engines together with our own implementations
of these approaches. All implementations were made in our own framework, specially designed with a
multi-pass rendering architecture that allows fast implementation of rendering techniques and the reuse of
functionalities. We analyze these classes based on the following criteria: the visual results produced by the
indirect diffuse lighting, the ability to produce glossy reflections, shadows, ambient occlusion, subsurface
scattering, translucency and volumetric lighting as well as the ability to simulate area lights. We present the
quantitative results of our implementations, obtained with the same external parameters for all techniques,
thanks to the unified implementations in the same framework. An important observation is that our analysis is
focused on the techniques that are based on the rasterization pipeline, thus, the comparison does not include
the techniques designed entirely for the ray-tracing pipeline.

INDEX TERMS Computer graphics, real-time global illumination, reflective shadowmap, light propagation
volumes, voxel-based representation, screen space.

I. INTRODUCTION
The rise of photorealism in real-time computer graphics took
a big turn in recent years thanks to the advancements of
the graphics processing units (GPUs). Along with this, rel-
atively new techniques were adopted by the game industry to
enhance the visual quality of their products, taking advantage
of the new capabilities of GPUs.

There are several techniques of real-time global illumina-
tion with different degrees of flexibility. Most of them require
a pre-computation pass which accumulates information about
the scene geometry. A major drawback of this approach is
the lack of indirect lighting influence on dynamic objects,
which cannot be processed offline. In recent years there was a
breakthrough in real-time global illumination techniques that
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don’t require a pre-processing pass and work entirely with
real-time computed data structures.

More and more commercially available game engines
provide specialized implementations of global illumination
techniques to support different degrees of photorealism,
in real-time, at various performance costs. Unreal Engine
4 implements a monolithic lighting system which provides
very good visual results, based on its own surface caching
technique called Lightmass Global Illumination [1]. This
built-in global illumination approach is completely pre-
computed. Alternatively, it offers various implementations
for real-time techniques, but the support for them is partially
limited, requiring additional work for the developer. Unity 3D
game engine offers various implementations for different use
cases, but all of them are partially offline, requiring a scene
pre-computation pass [2]. CryEngine offers full support for
real-time global illumination and also provides tools for pre-
computed techniques based on the user requirements [3].
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Additionally to game engines, there are several frame-
works called global illumination engines, which provide only
the illumination part and support integration in most of the
commercially available game engines or in proprietary ones.
They usually offer solid implementations of pre-computed
techniques but lack support for real-time ones. One such
example is the framework called Enlighten [4], which uses
a hybrid technique that offers partially dynamic global illu-
mination results, but still requires a scene pre-processing
pass.

In the following sections we analyze several classes of
real-time global illumination techniques used in current game
engines. We chose to analyze the following four classes, that
we consider to cover most of the real-time global illumination
techniques used in current game engines:
• Reflective shadow map-based techniques
• Discrete ordinate method-based techniques
• Techniques using the voxel representation of the scene
• Screen space techniques
We chose a representative technique from each class and

made our own implementations. We present these imple-
mentations, together with our in-house framework specially
designed for implementing rendering techniques, with a
multi-pass rendering architecture. We chose to develop this
framework in order to test all techniques using the same
external parameters, such as scene geometry and material
properties. Also, a more accurate comparison requires the
same implementation at the level of the graphics API, objects
management in the GPU memory and the same internal
structure, objectives achieved with the developed framework.
Moreover, it was designed for fast implementation of ren-
dering techniques and allows the reuse of functionalities.
We describe this framework in more detail and present
the rendering pipeline of each real-time global illumination
implementation.

Further, we analyze the visual results for the indirect dif-
fuse illumination obtained with each class of techniques and
also their ability to produce auxiliary photorealistic effects
that are usually decoupled from the actual illumination pro-
cess and require supplementary techniques. We chose as
auxiliary effects the ability to produce: glossy reflections,
shadows, ambient occlusion, subsurface scattering, translu-
cency, volumetric lighting and the simulation of area lights.
We provide visual results, when they exist, along with the
technical details that were used to obtain them. Moreover,
we explain why some effects cannot be produced.We provide
and analyze the quantitative results of our implementations
concluding with our recommendations for the best scenarios
that suit each class of selected real-time global illumination
techniques.

The rest of the paper is organized as follows. Section II
reviews related comparative analyses and surveys in the
field. In Section III we offer the details of the chosen
classes of real-time global illumination techniques, followed
by the description of our implementations in Section IV.
In Sections V and VI we analyze each class of techniques

based on qualitative and quantitative criteria, respectively.
Finally, conclusions are presented in Section VII.

II. RELATED WORK
Over time, several global illumination techniques that were
initially classified as offline or interactive solutions have
achieved real-time performance due to the technological
advances of GPUs. The game industry, which is the main
beneficiary of these technological advances, slowly accepts
techniques that were not initially intended for real-time appli-
cations. Therefore, a classification of global illumination
techniques based solely on time performance is not always
relevant, so several classifications on different criteria have
been proposed.

Ritschel et al. [5] provided a very comprehensive classi-
fication of the interactive global illumination techniques.
Moreover, they proposed a comparative analysis based on
qualitative criteria. This analysis, even if quite old, offers
an exceptional overview of the global illumination field.
The authors of this analysis are the same authors of most of
the techniques that are currently considered state of the art
in the game industry. They are the authors of some of the
techniques that are described and analyzed in this paper.

Other analyses were performed for particular scenarios and
environments. Dachsbacher et al. [6] provided a comprehen-
sive analysis for techniques that are based on many-lights
rendering. Jönsson et al. [7] classified the global illumination
techniques specialized for general volume rendering. They
also proposed a comparative analysis based on theoretical cri-
teria. Heidrich [8] offered a specialized analysis for interac-
tive techniques based on the capability to provide good results
in non-diffuse environments. These environments present
an additional difficulty to obtain the indirect components
of illumination. Damez et al. [9] described and analyzed the
global illumination techniques specialized for high-quality
animations and dynamic environments.

The book ‘‘Advanced Global Illumination’’ by
Dutre et al. [10] offers a detailed analysis for most of the
offline global illumination techniques. It also offers a compre-
hensive description of the theoretical basis which all of those
techniques rely on. Also, the book ‘‘Real-Time Rendering’’
by Akenine-Möller et al. [11] presents a very good analysis
for the current rendering techniques accepted by the game
industry. They offer an analysis for current global illumina-
tion techniques with a focus on industry approaches.

There are several comprehensive analyses of various
components of the global illumination effect.
Szirmay-Kalos et al. [12] presented the techniques that can
produce mirror reflections. A good description of shadow
techniques was made by Woo et al. [13] and in particular
for those in real-time by Hasenfratz et al. [14]. Also, sev-
eral analyses were made for classes of shadow techniques,
such as that of Scherzer et al. [15] for the shadow mapping
technique or that of Kolivand and Sunar [16] for the shadow
volumes one. A more comprehensive analysis of shadows
techniques is presented in the book ‘‘Real-Time Shadows’’
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by Eisemann et al. [17]. An analysis of the ambient occlusion
component is presented by Méndez-Feliu and Sbert [18].
Cerezo et al. [19] provided a comprehensive analysis of par-
ticipating media rendering techniques.

All the analyses described above represent a very good
source of documentation about the field of real-time global
illumination. In this paper, we analyse the techniques in this
field from a specific point of view, important for the visual
results they offer. We propose a classification of these tech-
niques and analyze the possibility that the proposed classes
to produce autonomously and unitarily a chosen set of illu-
mination effects and phenomena. All our conclusions are
accompanied by visual and quantitative results obtained by us
in a framework in which all classes of techniques have been
implemented.

III. REAL-TIME GLOBAL ILLUMINATION TECHNIQUES
A. RENDERING EQUATION
Kajiya [20] states that light can be described as an electro-
magnetic radiation using the following equation:

L(x,ω) = Le(x,ω)+
∫
�+

fr (x,ω,ω′)Li(x,ω′)cosθ dω′ (1)

where L(x,ω) represents the radiance leaving from point x
in direction ω. Le(x,ω) is the emittance term, which rep-
resents the radiance directly emitted from point x in direc-
tion ω. fr (x,ω,ω′) is the scattering function of the surface in
point x for the radiance which comes from direction ω′ and
is reflected in direction ω. Li(x,ω′) represents the radiance
which comes from direction ω′ to x. �+ is the upper hemi-
sphere oriented around the normal vector ENx and θ is the angle
made by the directionω′ with ENx. Figure 1 illustrates the light
transport approximation.
fr (x,ω,ω′) function represents the distribution of the radi-

ance reflected over the upper hemisphere of point x. The
function is evaluated for a pair of directions (ω,ω′) in rela-
tion to the angle with the normal vector ENx. It is widely
known as the bidirectional reflectance distribution function
(BRDF) [21]. This surface material specific function can
be described using various reflection models like the ones
proposed by Lambert, Phong [22], Blinn [23], Cook and
Torrance [24] orWalter et al. [25]. A comprehensive analysis
of the reflection models was presented by Schlick [26].

The final objective of the global illumination techniques
is to compute an approximation for the Li(x,ω′) factor using
various radiance accumulation methods for all directions in
the upper hemisphere of point x.

Kajiya [20] proposed a statistical solution known as path
tracing that uses the Monte Carlo integration to solve the
equation. This technique extends the ray-tracing approach
proposed by Whitted [27] by using several randomly traced
rays at each intersection point, instead of a single ray traced
in the reflected direction. As can be seen from the number of
rays created recursively, this technique has a low efficiency
and it is not suitable for real-time applications, even if over
time several optimizations have been proposed [10].

FIGURE 1. The light transport approximation described in Equation 1. The
dotted paths represent the light coming indirectly from source to point x
after the reflection on geometry. It should be noted that each point where
light is reflected receives indirect light from the rest of the points in the
scene. However, for the simplicity of the visual representation, the paths
of these light rays have been omitted graphically.

Other approaches use the finite elements method to dis-
cretize the scene geometry in patches and compute the
indirect illumination using the evaluation of those patches.
Goral et al. [28] first proposed such an approach, known as
radiosity. A comprehensive analysis of this class of tech-
niques was presented by Cohen and Wallace [29]. Another
class is represented by the photon mapping [30] technique.
This approach computes the incoming radiance in two passes.
First, a set of photons are spread from the light position into
the scene using the ray-tracing principle and each bounce
of rays is cached into a photon map. In the second pass,
the intensity of the light in a point is computed based on
the photon density estimation around that point. A class that
extends this technique is instant radiosity [31]. It introduces
the concept of virtual point light (VPL) to represent a point on
a surface that emits light in a hemisphere around the normal
to that point. This technique uses a first pass similar to that of
the photon mapping technique to generate the positions of the
VPLs, but for the second pass, a gathering approach is used
to compute the indirect illumination.

Unfortunately, none of the techniques described above
is suitable for real-time applications. However, several
approaches have been proposed to cache the results of
these techniques into various data structures and com-
pute the indirect illumination using the cached information.
Ward et al. [32] proposed to cache the results of the ray-
tracing technique into a texture. However, with the advances
of GPUs, it has been proven that the texture can also be
incrementally generated in real-time [33]. Greger et al. [34]
proposed to cache the irradiance at discrete points in world

125160 VOLUME 9, 2021



C. Lambru et al.: Comparative Analysis of Real-Time Global Illumination Techniques in Current Game Engines

space and use this data to compute the indirect illumination.
Sloan et al. [35] proposed to pre-compute only the radiance
transfer to allow changes such as light intensity or color in
real-time.

Over time, several real-time techniques have been pro-
posed that do not require pre-computed information. Such
techniques, along with their variations, are described in the
following sections.

B. REFLECTIVE SHADOW MAP-BASED TECHNIQUES
The reflective shadow map (RSM) was introduced by
Dachsbacher and Stamminger [36] and represents a data
structure with several buffers that stores information about
the first bounce of light on the surfaces of the scene. It is
obtained by rendering the scene from the light position with a
projection specific to the type of the light source. The buffers
store the position where the reflections take place, the normal
vectors of the geometry and the reflected radiant flux, which
represents the intensity of the photon flux emitted by the light
source.

To produce the indirect diffuse illumination, an extended
version of the instant radiosity technique is used, where the
VPLs represent the pixels in the RSM. Unfortunately, this
means that the evaluation time is directly proportional to the
resolution of the RSM. This process has a final complexity of
θ (Screenw ·Screenh ·RSMw ·RSMh), where {Screenw, Screenh}
is the resolution of the screen and {RSMw,RSMh} is the
resolution of the RSM. This complexity exceeds the capabil-
ities of current GPUs and Dachsbacher and Stamminger [36]
proposed a stochastic sampling to acquire the VPLs. The
evaluation of each pixel in the screen is still done, but instead
of processing all the pixels in the RSM, only a subset of pixels
is chosen. Let proj

Screeni,j
RSM be the position of a screen pixel

projected on the RSM. The pixels in the RSM that become
VPLs are chosen around proj

Screeni,j
RSM , through a Poisson sam-

pling. Also, for temporal coherence, a constant set of samples
is used for every screen pixel. This optimization results in a
complexity of θ (Screenw·Screenh·K ), whereK is the constant
number of samples. This approach produces a wide range of
visual artifacts because the technique is no longer physically
correct after including the stochastic sampling.

There are several techniques that use this approach as a
pass of accumulating VPLs, which are later processed in
different ways. The prevalent approach of these techniques
is to use an importance selection strategy of the RSM pixels.
Lensing and Broll [37] proposed a shading method that needs
only a small set of VPLs, but requires an offline process
of selection. Prutkin et al. [38] proposed a segmentation pre-
process of the RSM to extract a set of virtual area lights which
are used for the shading calculations.

There are certain limitations related to an importance
selection of the samples, therefore several techniques were
proposed to pre-process the RSM and to transform it in
different data structures which are more suitable for the indi-
rect lighting computations. Kaplanyan [39] used the RSM

as the source for a spatial grid of spherical harmonics. This
technique is described in the next section. Bischoff et al. [40]
used a more complex process to extract and generate a set of
proxy lights from the RSM. These lights are interpreted as
direct light sources in a specialized graphics engine which
is optimized for the evaluation of a large set of lights.
Dachsbacher and Stamminger [41] later described a reverse
approach. Instead of calculating the indirect illumination for
the entire screen by gathering the VPLs, they used a splatting
process for each VPL to compute the indirect illumination
only for the screen pixels for which a VPL has a signifi-
cant influence. This approach improves the performance and
allows for additional effects.

The use of the RSM alone has certain limitations. Even
if the indirect contribution of light can be computed using
the VPLs, the occlusion for the indirect light is difficult to
produce. Moreover, the VPLs can be used to obtain only
one bounce for the indirect diffuse component. To overcome
these limitations, Ritschel et al. [42] introduced the imper-
fect shadow maps (ISMs), which represent low resolution
z-buffers acquired for eachVPL. The acquisition process uses
a coarse approximation of the scene as a set of points. The
ISMs are used for the indirect light occlusion and they can
be extended to imperfect reflective shadow maps (IRSMs) to
acquire sequential bounces of light. Ritschel et al. [43] later
improved the occlusion detection by using the screen space
information in the process of selecting the RSM pixels.

C. DISCRETE ORDINATE METHOD-BASED TECHNIQUES
In order to avoid storing the reflected radiance after one
or more light bounces for all surfaces in the scene, several
approaches were proposed to pre-compute and store the radi-
ance transfer at discrete positions in a grid that covers the
entire scene. The information in the grid cells can be used to
obtain the radiance that reaches any position for any direction
on the scene surfaces. To store the radiance transfer at a cer-
tain position, a specialized data structure is required to store
the radiance that reaches the specified position from all direc-
tions around it. This class of approaches is known as discrete
ordinate methods [44] (DOMs) and was first introduced into
the Computer Graphics field by Kajiya and Von Herzen [45].
They stored the radiance at discrete positions in the scene
with spherical harmonics to compute the scattering of light
in clouds. Geist et al. [46] have adopted a similar approach
that uses the Lattice-Boltzmann method to store the radiance
transfer in generic participating media. Unfortunately, they
failed to achieve real-time performance. Fattal [47] proposed
a faster approach to store the radiance at discrete positions
using several two-dimensional data structures called light
propagation maps.

In contrast to the techniques presented above, which have
been designed for light scattering in participating media,
Kaplanyan [39] applied this approach to produce real-time
indirect illumination. He used a three-dimensional grid,
called light propagation volume (LPV), that stores a spherical
harmonic in each cell. Instead of storing the radiance transfer
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of the light that comes directly from a light source, he stored
in the LPV the radiance transfer from the light reflected by
the scene surfaces. To compute the information in each cell,
he initially introduced the reflected radiance from the pixels
of an RSM and propagated this initial radiance between the
cells for the entire grid. In the shading pass, each cell acts as
a VPL.

This technique is divided into three passes: RSM genera-
tion, radiance injection and radiance propagation. The first
pass generates an RSM for every light. For the radiance
injection pass, a set of pixels are selected from the RSM
and transformed into a set of VPLs in world space. Each
VPL is stored inside the spatial grid in the nearest cell. The
representation of the VPL’s radiance is stored as a spherical
harmonic with emitted radiance contribution only on the
hemisphere described by the VPL. The third pass propagates
the radiance from any filled cell to all its neighbors. This
is an iterative process, every cell receiving in each iteration
information from more distant cells. However, this pass can
be described as an aggregation process.

There are certain extensions that can enhance this tech-
nique. One problem is represented by the required size of the
grid which highly depends on the scene scale. Also, there is
a lack of indirect light occlusion inside the grid at the prop-
agation pass. To overcome these problems, Kaplanyan and
Dachsbacher [48] presented several extensions to the original
technique. A cascaded approach was proposed to store differ-
ent levels of detail of the spatial grid according to the distance
from the observer. Moreover, a coarse representation of the
scene was proposed to cancel the light propagation. This
is represented as an additional grid of spherical harmonics
with positions and orientations according to the actual scene
geometry. In addition, Franke [49] has extended this approach
to be used for mixed reality environments.

D. VOXEL-BASED TECHNIQUES
Voxel-based techniques compute a simplification of the mesh
representation of the geometry in the form of a voxel repre-
sentation. A voxel is basically a three-dimensional version
of the pixel and is visually represented as an axis aligned
cube. The reason for choosing a voxel structure is the wide
range of advantages it provides, ranging frommemory usage,
friendly packaging into the GPU as a built-in 3D texture to
fast collision detection.

The field of scan conversion of the mesh representation
into a voxel representation, known as voxelization, has sev-
eral techniques developed to achieve real-time results. This
field is very important because of the flexibility of the voxel
representation which has multiple applications on different
fields, like simulation, collision detection or rendering. After
1990, several techniques were focused on the accuracy of
the voxelization process [50], but with the GPUs advances,
those techniques have changed the focus on real-time per-
formance. Fang and Chen [51] presented an implementation
on early GPU generations that requires multiple drawings of
the scene. Dong et al. [52] proposed a technique that requires

a single draw of the scene to acquire the voxel representation,
but this representation is limited to binary information per
voxel. Eisemann and Décoret [53] proposed a similar but
faster approach, specialized for watertight models. With the
advances of GPUs, several implementations [54], [55] have
taken advantage of the high parallel power with CUDA or
OpenCL. Crassin et al. [56] proposed a technique that takes
advantage of the rasterization process of the GPU, which is
hardware accelerated. Moreover, they proposed a specialized
data structure that can store arbitrary types of data in a sparse
voxel octree (SVO) inside the GPU’s memory. This data
structure can be partially recreated without the need to rebuild
the entire SVO.

Over time, several techniques were proposed to compute
the indirect illumination in real-time using the voxel rep-
resentation. Soler et al. [57] proposed to use the voxel vol-
ume only for indirect lighting occlusion and they have taken
advantage of the fast techniques that produce only binary
information per voxel. The albedo information is acquired
from screen space, but the results are good because of the
supplementary accuracy offered by the voxel representation.
Thiedemann et al. [58] proposed a real-time implementation
of the ray-tracing technique using the voxel representation of
the geometry. Pantaleoni [55] also used the ray-tracing tech-
nique, but he has taken advantage of the CUDA technology
for fast GPU voxelization.

Crassin et al. [59] proposed a cone-tracing technique
which uses 3D mipmaps of the voxel volume and the tri-
linear interpolation between the voxels for better visual
results. Panteleev [60] proposed a slightly modified ver-
sion of this technique that uses 3D clipmaps of the voxel
volume. Aherne et al. [61] took advantage of the hardware-
accelerated sparse textures to compute indirect illumination.
The cone-tracing approach has proven to be flexible and
Franke [62] has extended it to be used in mixed real-
ity environments. Several approaches have been proposed
to use the cone-tracing process, but without the disadvan-
tage of storing the reflected radiance information for the
entire voxel volume, when only a limited subset is required.
Sugihara et al. [63] used the voxel volume with binary infor-
mation per voxel for occlusion and a pre-filtered layered
RSM for indirect illumination. Chen and Chien [64] used a
similar approach, but stored the radiance of the voxels in a
compact list.

E. SCREEN SPACE TECHNIQUES
This class of global illumination techniques depends on the
information available from the observer’s position in the
viewing direction. The data structure used for indirect light-
ing computation is represented by a set of buffers, known as
geometric buffers (G-buffers) [65], which store various prop-
erties of the geometry visible on the screen. To produce global
illumination, the minimum G-buffers required are those that
store the positions, normal vectors and material properties.
In addition, to compute the indirect illumination, the radiance
reflected by the geometry visible on the screen is required.
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FIGURE 2. Left: The path-tracing technique. Middle: The intersection points of the rays with the geometry. These points are used for indirect lighting
computations. Right: The intersection points using the SSDO technique.

This radiance is obtained by computing the direct illumi-
nation for each pixel of the screen. This additional buffer
is usually produced after the G-buffers acquisition and is
considered a separate data structure from the G-buffers. This
geometry representation comes with its own set of advan-
tages and problems. The most important advantage is that
the information present in the G-buffers is independent of the
geometry complexity. Also, the G-buffers can be structured in
mipmap pyramids and the sampling is hardware accelerated.
Therefore, the techniques that use this data structure can
further reduce the amount of geometry processed. However,
this is a coarse approximation of the scene geometry and
depending on the resolution there may be several scalability
problems.

A process similar to the path-tracing technique can be used
directly in screen space to compute the indirect illumination.
For every pixel, N 2D rays are cast into the G-buffers pixels.
These rays are normally distributed inside the upper hemi-
sphere of the pixel according to its normal. All rays are cast
in screen space andmarch through the pixels of the G-buffers.
Each pixel is tested for intersection with the ray. Intersecting
pixels are used as a source of indirect illumination. This
process is described in Figure 2 Left. The N diffuse rays are
traced from the evaluated point x. The green rays intersect the
geometry and contribute to indirect diffuse illumination and
the red rays, which don’t intersect the geometry, are ignored.
The intersection points can be seen in Figure 2 Middle. The
positions and normal vectors of these points are obtained from
the G-buffers.

A direct approach is impractical with current GPUs and
several alternatives were proposed over time. Sloan et al. [66]
used the screen space information to generate a set of spheri-
cal harmonics. These data structures were used to compute
the indirect illumination. Soler et al. [57] proposed a simi-
lar approach to generate a sparse voxel volume with infor-
mation from screen space. Nichols et al. [67], [68] proposed

a segmentation process of the G-buffers to extract a set
of VPLs that are splatted to compute indirect illumination.
They applied this process on downsampled versions of the
G-buffers to gather the VPLs into clusters and they proposed
a hierarchical computation from bottom to top to accelerate
the indirect lighting computations for the VPLs.

Ritschel et al. [69] proposed a more faithful approach to
the path-tracing technique, called screen space directional
occlusion (SSDO). They used a statistical approach to sim-
ulate the path-tracing process. This technique is described
in Figure 2 Right. Each of the {A,B,C,D,E} samples is ran-
domly selected along a ray. The sampling rays are normally
distributed inside the upper hemisphere of x, similarly with
the path-tracing process described above. They used these
samples to approximate the 2D ray-tracing process inside
the G-buffers information. As it can be seen from Figure 2
Right, the samples don’t accurately represent the intersection
points. Some samples are way further inside the geometry
({A,B,C,D}) and others ({E}) are outside the geometry.
For this reason, the sampling pixels inside the G-buffers are
not the same as in the path-tracing process. Each sample is
projected into screen space and is tested whether it resides
inside the geometry, otherwise it’s discarded. The samples
that are inside the geometry contribute to the indirect lighting
computations.

F. RAY-TRACING HARDWARE ARCHITECTURE SOLUTIONS
Even if this paper doesn’t analyze the ray-tracing hardware
architecture solutions in depth, we decided to present their
development and the current status of technology in the field
of real-time global illumination.

The rasterization pipeline has long been the de facto
technology used for real-time computer generated graphics.
Moreover, the GPUs have incorporated the pipeline into
their hardware and optimized and extended it at a fast pace.
However, this pipeline has a major drawback because it does
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not allow direct access to the global information of a scene.
This problem is due to the restrictive and inflexible access to
GPU memory. All the techniques presented in Section III-A
offer superior results in terms of photorealism, but require
access to global information from the scene. They are also
based on calculationswhose requirements exceed the capabil-
ities of current GPUs. For this reason, the possibility of hard-
ware acceleration of these calculations has been explored.

The first variants of hardware accelerators that proved
practical were proposed for volumetric visualization [70].
These hardware accelerators were designed with a fixed
pipeline and could query the intersection of rays with the
geometry of the scene. They could simulate only the primary
ray, without the possibility of recursive ray casts, required
for the ray-tracing technique, and were used for the pho-
ton mapping technique. Subsequently, hardware accelerators
with more flexible [71] and configurable pipelines [72] were
proposed. Several hardware solutions have been proposed,
but their analysis goes beyond the scope of this article.

The Nvidia company has recently developed a GPU archi-
tecture [73] capable of efficiently computing the intersection
of rays with scene geometry. These GPUs have specialized
cores for this process and use internal geometry management
based on acceleration structures. From the point of view of
the pipeline’s API, a new set of shaders was introduced to
create rays and to detect and process intersections.

The visual results of real-time global illumination tech-
niques offered by these GPUs are superior to those of the
rasterization pipeline. Also, the technology has proven that
it can provide very good results for various graphic effects
such as real-time shadows and reflections [74]. However,
a real-time global illumination solution that uses entirely a
path-tracing implementation has not proved practical for this
generation of GPUs. Thus, hybrid approaches were chosen
instead of a complete implementation of the path-tracing
technique. These approaches use the rasterization pipeline
to compute the direct illumination and use the ray-tracing
hardware accelerators through various techniques to compute
the indirect illumination. Several games are limited to cast
a small set of short rays per pixel to produce the indirect
diffuse illumination. This process is followed by a denoising
approach, such as the one proposed by Chaitanya et al. [75]
to eliminate the noise made by reduced sampling.

Hillaire [76] proposed another approach that uses an inter-
active update of textures in which the indirect illumination
is cached. Andersson and Barré-Brisebois [77] proposed
an adapted version of the radiosity technique. They used
a dynamic set of surfels and computed the indirect dif-
fuse lighting influence between each pair of those surfels.
In order to obtain good performance, the surfels are created
and deleted interactively and remain persistent when they
are inside the camera frustum. Majercik et al. [78] proposed
a DOM-based technique, with spherical harmonics in the
grid cells. To obtain the radiance transfer in each cell, they
used a set of ray casts into the scene geometry. They took
advantage of the ray-tracing hardware accelerators developed

by Nvidia to obtain a good performance for these ray casts.
Several particular techniques have been used by companies
from the game industry, but due to the performance of current
GPUs [79], they all need to use hybrid approaches.

G. AUXILIARY PHOTOREALISTIC EFFECTS
In this section we present real-time techniques designed to
generate particular effects in global illumination. We chose
the following representative ones: the generation of glossy
reflections (Section III-G1), shadows (Section III-G2),
ambient occlusion (Section III-G3), subsurface scatter-
ing and translucency (Section III-G4), volumetric light-
ing (Section III-G5) and the simulation of area lights
(Section III-G6).
For each chosen effect we present only the more relevant

real-time techniqueswith an emphasis on those that have been
designed or can be integrated with at least one of the four
chosen classes of real-time global illumination.

1) GLOSSY REFLECTIONS
The generation of real-time reflections represents a vast field
and many techniques have been proposed for different sce-
narios and at different levels of quality and performance.
A comprehensive analysis of these techniques was performed
by Szirmay-Kalos et al. [12].

The reflections can have different levels of glossiness,
depending on the material properties of the surface on which
the light is reflected. Ideally, a technique that produces glossy
reflections should be able to produce perfect mirror reflec-
tions, because these results can be altered to obtain different
levels of glossiness.

The de facto approach adopted by the game industry to
generate reflections uses environmentmaps [80]. In particular
localized environment maps are used, acquired by rendering
the scene from the position of the object for which the reflec-
tions around it are computed. To obtain glossy reflections it is
necessary to filter [81] the map. However, a major drawback
of this approach is that the acquisition of themap is done from
a single position. When the object for which the reflections
are computed is large, a reflection direction corresponding
to the surface of the object doesn’t always produce the same
result as the same direction from the position in which the
map was acquired. To solve this problem, Brennan [82] and
Bjorke [83] computed the intersection point of the reflection
direction corresponding to the surface of the object with a
proxy geometry, a sphere. Subsequently, they computed the
direction from the acquisition point of the environment map
to the previously obtained intersection point and used this
direction to sample the map.

To obtain glossy reflections with DOM-based techniques,
Kaplanyan [39] proposed to accumulate several spherical
harmonics along the reflected direction. The voxel repre-
sentation of the scene geometry can also be used to obtain
reflections with a ray-casting process. For glossy reflections,
Crassin et al. [59] showed that the voxel cone tracing tech-
nique is appropriate.
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Another approach adopted by the game industry uses a ray-
casting process in screen space. Sousa et al. [84] proposed for
the first time to use a 2D ray-casting process to obtain the
reflections, but the approach was discovered at the same time
by several developers from the game industry. The class of
these approaches is widely known as screen space reflections
(SSR). Moreover, several optimizations were developed over
time. McGuire and Mara [85] presented an efficient GPU
implementation of the 2D ray-casting process. Uludag [86]
proposed a special representation of the screen space infor-
mation to accelerate the intersection test of the ray with
the pixels. He created sequential downsampled maps of the
depth information using a min filter. This structure was
used to skip the pixels that are not intersected by the ray.
To produce glossy reflections, Stachowiak and Uludag [87]
used a Monte Carlo approach with several rays per pixel.
To get a good performance, they used a small number of
rays per frame and temporally filtered the result. The screen
space information lacks significant geometry data, therefore
several techniques that use multi-layer [88], [89] and multi-
view [90]–[92] methods have been proposed. In particular,
Lambru et al. [92] explored the possibility of using a 2D
ray-casting process directly in the RSM pixels to produce
reflections. A comprehensive analysis of the optimizations of
this class of techniques was presented by Vasilakis et al. [93].

2) SHADOWS
The field of real-time shadows generation is vast and several
comprehensive analyses of the proposed techniques have
been performed [13], [14]. Eisemann et al. [17] also provided
a very detailed analysis focusing on the techniques used
by the game industry. Over time, the de facto techniques
for real-time rendering have become the shadow mapping
technique proposed by Williams [94] and the shadow vol-
umes technique proposed by Crow [95]. A comprehensive
analysis for all optimizations and variations of the shadow
mapping technique was provided by Scherzer et al. [15]. For
the shadow volumes technique, a similar analysis was done
by Kolivand and Sunar [16].

The shadow generation techniques tend to fall into two
major categories: those that can produce hard shadows or
soft shadows. Both shadow mapping and shadow volumes
techniques can produce hard shadows, but obtaining soft
shadows is a big challenge for which different variations and
adaptations of these techniques have been proposed.

For the particular cases of the chosen classes of global
illumination, several techniques have been proposed. It is
obvious that the RSM can be used to produce shadows,
because it contains the z-buffer used in the shadow mapping
technique. Unfortunately, the DOM-based techniques cannot
produce shadows. These techniques use a data structure that
stores information about the radiance reflected by the geom-
etry of the scene. This information alone and at a low grid
resolution cannot be used to extract information about the
scene geometry. Therefore, there is no direct approach to pro-
ducing shadows with this class of techniques. It is important

to mention that some techniques in this class use an RSM,
so for them, the shadows can be generated with the shadow
mapping technique.

Shadows can be generated using the voxel representation
of the scene with a ray-casting process [17]. However, this
approach produces aliased shadows due to the coarse approx-
imation of the scene geometry provided by the voxel volume.
Nichols et al. [96] tried to solve this with an incremental
refining process in screen space. They used a voxel repre-
sentation of the geometry visible on the screen to produce
shadows for area lights. Instead, Franke [62] used a cone-
tracing process to produce shadows in mixed reality scenes.
He traced a specialized shadow cone with a small aperture
in the direction of the light to accumulate the amount of
geometry in its path. Villegas and Ramírez [97] showed that
this approach can produce soft shadows and solve the aliasing
problem. Moreover, Kasyan [98] showed that this approach
can also produce soft shadows for area lights.

Ritschel et al. [69] used a 2D ray-casting process directly
in screen space to obtain the light occlusion with the geom-
etry. This approach depends on the available information on
the screen, which is not enough to provide shadows for all
the geometry in the scene. The geometry that is not present
on the screen cannot produce shadows on the screen, even if
it should. In addition, there are temporal coherence problems
for dynamic environments. To overcome these drawbacks,
they explored the possibility of using multi-layer or multi-
view approaches. However, this technique, as explained by
them, can enhance the results of the shadow mapping tech-
nique. The latter introduces a visual artifact due to the discrete
nature of the z-buffer which it is based on. The orientation
of the light camera projection, used to acquire the z-buffer,
introduces an error on the intersection process between the
z-buffer pixels and the screen pixels. To solve this problem,
a bias error is introduced to translate the z-buffer pixels fur-
ther into the geometry, but this process introduces other types
of artifacts according to the bias value. The 2D ray-casting
process in screen space can solve this problem using a short
ray to check the occluding geometry over short distances. The
shadows produced by the shadow mapping technique can be
enhanced for geometry details. The game industry adopted
this approach known as contact shadows [17].

3) AMBIENT OCCLUSION
Ambient occlusion [99] offers an acceptable approximation
of the rendering equation using a global method instead of
a localized one. In a simple description, it computes how
exposed the geometry is to the illumination of the scene.
It darkens the enclosed parts of the scene according to the
surrounding geometry and offers a more realistic image
of the scene. This effect must be computed for the entire
geometry around a point, to infinite distances, but such an
approach has a significant impact on performance. Instead,
Zhukov et al. [100] introduced the concept of obscurances,
which computes occlusion with geometry only to finite
distances.
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Pharr and Green [101] proposed to pre-process the ambient
occlusion for the geometry surfaces and cache the results in an
additional texture. Unfortunately, this approach cannot take
into account the occlusions received and made by dynamic
objects. To solve this problem, Bunnel [102] introduced a
real-time approach that uses an approximation of the scene
geometry as a set of surfels. The ambient occlusion is com-
puted using those surfels. Kontkanen and Laine [103] used
a pre-computed discrete 3D grid to approximate the objects
and introduced a real-time technique for inter-object ambient
occlusion computation.

Shanmugam and Arikan [104] and Mittring [105] simulta-
neously developed techniques that use only the geometry vis-
ible on the screen. Several techniques [106]–[109] were later
proposed to take advantage of the screen space information.
However, these techniques provide results closer to the obscu-
rances effect than to the ambient occlusion one. They use a
sampling process in screen space, a process that is limited by
the information available on the screen only in a small vicinity
around the evaluated position. Shade et al. [110] introduced
layered depth images that represent multiple renderings of
the scene at specified distances along the observer’s view
direction. Bavoil and Sainz [111] used such a set of layers
to compute the ambient occlusion. Nalbach et al. [112] intro-
duced the concept of deep screen space which represents a
set of surfels acquired from the observer position, that can
be used to compute ambient occlusion. Vardis et al. [113]
used a multi-view approach to improve the visual results.
In particular, they also explored the possibility of using the
RSM z-buffer to produce ambient occlusion.

Due to the flexibility of the voxel representation of the
scene geometry, several techniques [59], [114]–[116] were
proposed to compute the ambient occlusion using the voxel
volume.

4) SUBSURFACE SCATTERING AND TRANSLUCENCY
To compute the subsurface scattering of the light inside
the geometry of an object, Jensen et al. [117] introduced the
bidirectional scattering-surface reflectance distribution func-
tion (BSSRDF) which represents a unified model for the
approximation of the reflected and transmitted light. The
BSSRDF depends on the topology and internal properties
of the material, which requires information about the entire
object, not just locally at the evaluated position.

To simulate this effect, Dachsbacher and Stamminger [118]
introduced the concept of translucent shadow maps (TSMs).
A TSM is similar to an RSM, but instead of the reflected
flux, it stores the transmitted flux inside the geometry and is
used at the shading pass to sample the lighting information.
Børlum et al. [119] used a map similar to a TSM to inject the
transmitted radiance inside a LPV. This modified LPV can
be used to acquire the transmitted flux from inside an object.
Di Koa and Johan [120] enhanced this technique to optimize
the VPLs scattering with a ray marching process and used an
additional voxel volume to accelerate the propagation pass.

A specialized solution for human skin was proposed by
d’Eon et al. [121]. It approximates the subsurface transport
of the light with a decoupled model that uses multiple lay-
ered Gaussian filters on texture space. Jimenez et al. [122]
extended this technique in screen space. An extension
for other translucent materials was later proposed by
Jimenez et al. [123].
All the techniques previously presented are specialized

for the subsurface scattering of the light, but cannot simu-
late translucent materials. For this effect, information from
the whole scene is required. Jensen and Buhler [124] used
the BSSRDF along with a ray-tracing sampling strategy to
acquire such information. This approach follows a physi-
cally correct approximation and provides plausible results
for both subsurface scattering and translucency. It repre-
sents the basis of the simulation that real-time global illu-
mination techniques try to achieve. To approximate this
approach, Mertens et al. [125] used a multi layered screen
space to produce better results for subsurface scattering.
Also, Nalbach et al. [112] proved that both subsurface scat-
tering and translucency can be easily acquired with their
proposal of deep screen space. Ganestam and Doggett [126]
extended the SSR technique to simulate the refraction of light
behind translucent objects with a 2D ray-casting process in
the G-buffers pixels. Lambru et al. [92] proposed a similar
process for RSM pixels. Eisemann and Décoret [53], [127]
used a voxel representation of the scene with binary infor-
mation per voxel to approximate the depth of geometry. This
approach provides physically correct results for subsurface
scattering of the light and can produce plausible results for
semi-transparent materials like glass.

5) VOLUMETRIC LIGHTING
The volumetric lighting represents a particular case of a
wider field that deals with simulating the scattering of light
when it travels through different media that participate in
the light transport. Such media are represented by, but not
limited to, dust particles, smoke, atmosphere, fog or clouds.
Cerezo et al. [19] conducted a comprehensive analysis of this
field for offline techniques. The particular case of the volu-
metric lighting refers to the simulation of the visual effects
known as crepuscular rays, sunbeams or light shafts. The
transport medium in this simulation has an important impact
on the scattering of the light, but the simulation of this effect
through a general medium comes with its own difficulties.

Max [128] first proposed a technique to simulate the
volumetric lighting. He intersected epipolar slices with
shadow volumes to find the lit segments visible to the
observer. Nishita et al. [129] extended this approach and pro-
posed what is known as the air-light equation. They used light
volumes in addition to shadow volumes and analytically inte-
grated this equation with a ray-casting process. This model
was later used by other approaches, adapted and improved
for different scenarios. Wyman and Ramsey [130] proposed a
raymarching process along the epipolar lines and checked the
occlusion with geometry with the shadow volumes technique.
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Tóth and Umenhoffer [131] proposed a faster approach that
uses the shadow mapping technique to verify the occlusion
with geometry. It is obvious that RSM-based techniques
can also use this approach to produce volumetric lighting,
because the RSM contains the z-buffer used in the shadow
mapping technique.

Kajiya and Von Herzen [45] first used a spherical har-
monics grid to compute the scattering of light in clouds,
so it came naturally that this approach was used to produce
volumetric lighting. Billeter et al. [132] extended the light
propagation volumes technique to produce this effect. They
used a modified LPV in which they injected the radiance
that comes directly from the light source, together with a
propagation strategy that incorporates a light scattering and
decimation model. Unfortunately, because the LPV stores
only low frequency light, the visual results provided have
a lot of light bleeding outside the areas represented by the
volumetric lighting, which creates a general fog effect.

Wyman [133] used a voxel volume to store binary infor-
mation about the visibility of a voxel from the light source
perspective. A ray marching process can be used to simulate
the volumetric lighting. For performance reasons, Wyman
built the voxel volume in epipolar space. This construc-
tion allows the placement of epipolar lines on a single row
of voxels and facilitates the visibility check of a voxel.
This approach proved to be flexible and was extended by
Wyman and Dai [134] to simulate volumetric lighting for area
light sources.

Several techniques [135], [136] have been proposed to use
the screen space information to simulate volumetric lighting.
All of them use a directional blur to extend an initial radiance
introduced at the position of the light source. Even though
these approaches are fast, they offer very little flexibility over
the visual results provided and require the light source to be
visible on the screen.

6) AREA LIGHTS
An area light is a light source characterized by a geometry.
It emits light directly from all its surface. It might have more
properties which describe the intensity of different zones of
the geometry and the spreading behavior. The main focus of
area light simulation is the emitted lighting coming from the
surface itself to its surroundings. Heitz et al. [137] proposed
an analytical approach to compute the emitted illumination
when an area light is represented by a simple geometric shape,
like a rectangle or a disk. Kuge et al. [138] used a layered
approach to approximate more complex geometry, but they
also used an initial approximation of the entire geometry in
the form of simple shapes. Over time, several techniques have
been proposed to approximate the geometry of area lights in
various forms for analytical evaluation, but their analysis goes
beyond the scope of this article.

Due to the fact that the emitted illumination of an area
light behaves similarly to the light reflected by its surface,
many techniques designed to compute indirect illumination
can simulate the area lights. In particular, any approach based

on the instant radiosity technique, which uses a gathering
process of the VPLs, can simulate area lights. The only
change required is the generation of additional VPLs for
the emitted illumination of the area lights. A major problem
with such an approach is the real-time generation of these
VPLs, especially for dynamic area lights. One technique that
partially solves this problem is SSDO, which samples the
VPLs from the screen space. The only change required is to
take into account the emissive component when computing
the direct illumination of the geometry visible on the screen.
Unfortunately, the RSM-based techniques cannot be used for
such an approach because the RSM cannot be generated for
area light sources.

The approach described above for instant radiosity tech-
niques can be extended to other approaches, as long as the
emitted illumination of the area lights is used as an additional
source of information. Kaplanyan and Dachsbacher [48]
showed that the light propagation volumes technique can
simulate area lights by injecting in the LPV a set of VPLs
that approximate the emitted illumination of these lights.
Di Koa et al. [139] extended this approach and used a Pois-
son sampling process to obtain the initial set of VPLs.
Villegas and Ramírez [97] showed that the voxel cone tracing
technique can also simulate the area lights by inserting the
light emitted by their geometry into the voxels during the
voxelization process.

IV. IMPLEMENTATION
For each class of real-time global illumination techniques
described in the previous section, except for the one based on
ray-tracing hardware solutions, we have developed our own
implementation. These implementations closely follow the
original descriptions and where possible, introduce a certain
degree of optimization. In addition to the initial descrip-
tions that are usually limited to the production of indirect
diffuse illumination and glossy reflections, we have tried
to implement, where possible, the auxiliary photorealistic
effects described above. In this section we present these
implementations and highlight the key differences to the
initial descriptions of the authors who proposed them.

A. THE IMPLEMENTATION FRAMEWORK
All techniques were implemented in the same framework.
The decision to develop such a framework resulted from the
necessity to compare the techniques using the same exter-
nal parameters (scene geometry, material properties, cam-
era information) for more accurate quantitative results. The
frameworkwas intended from the beginning to be flexible and
to allow the rapid implementation of the global illumination
techniques. Also, the possibility to reuse functionalities was
an objective. Due to these requirements, a multi-pass ren-
dering architecture was implemented, as shown in Figure 4,
where every pass has an output that can be propagated fur-
ther to any subsequent pass. This architecture allows the
reuse of passes in several implementations. In Figure 4, the
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FIGURE 3. A screenshot of the framework used to implement all classes
of real-time global illumination techniques discussed in this paper. The
editor of the framework can be seen with most of its debug and
development windows. The scene contains the Sponza Atrium model.

G-buffers Generation pass is the same for the first three global
illumination techniques.

Also, the implementation framework provides real-time
debug functionalities. It facilitates the possibility to view and
modify the parameters in the GPU memory through the user
interface (UI). This is very important from a development
point of view, because it gives the possibility to quickly test
various parameters. This can be seen in the right window
in Figure 3. Moreover, it allows the visualization of debug
information. It provides access to GPU texture visualization
in the UI. Any output information from a rendering pass can
be visualized. Furthermore, the framework facilitates perfor-
mance evaluation and offers a visual CPU and GPU profiler.
It can be seen in the bottom window in Figure 3. It also offers
functionalities similar to those of a modern visual editor, like
interactive object manipulation, information persistence and
assets management.

Unfortunately, this approach has a disadvantage in terms
of performance because the multi-pass rendering architec-
ture requires a high level management. However, the initial
requirements of the framework to implement all the tech-
niques in the same sandbox and to compare them using the
same external parameters have been met.

The frameworkwas implemented using the C++ program-
ming language with the OpenGL 4.6 graphics API.

B. REFLECTIVE SHADOW MAP-BASED TECHNIQUES
From the class of RSM-based techniques, we chose to imple-
ment the sampling strategy proposed by Dachsbacher and
Stamminger [36] to compute the indirect diffuse illumination.
The glossy reflections were obtained with the 2D ray-casting
process into the RSM pixels used by Lambru et al. [92].
To produce shadows, we used the shadowmapping technique
with the RSM z-buffer and for the ambient occlusion we
applied the sampling strategy proposed by Mittring [105] on
the RSM buffers. To render translucent objects we applied
again the approach proposed by Lambru et al. [92] which
uses a 2D ray-casting process in the RSM pixels. The vol-
umetric lighting was produced with the technique proposed
by Tóth and Umenhoffer [131].

Unfortunately, the disadvantage of using a single sub-
set of samples instead of the entire RSM resolution is
that the indirect lighting evaluation doesn’t produce phys-
ically correct results. A large set of samples helps, but it
has a high negative impact on performance, as previously
discussed. To overcome this problem, we implemented
the screen space interpolation approach proposed by
Dachsbacher and Stamminger [36]. They used a preliminary
pass that computes the indirect lighting contribution at a
lower resolution than that of the screenwith a large set of sam-
ples. This result is later used as a source of information when
computing the indirect illumination at full screen resolution.
The pixels which have similar normal vectors and are not far
apart from the corresponding pixels in the lower resolution
buffer use the already computed indirect illumination. This
process proved to improve the performance at a cost of an
acceptable degree of blurriness on the indirect illumination
result.

Another problem was the difference between the visual
results provided by the evaluation of two different sets of
samples. Moreover, the intensity of the indirect illumination
is directly influenced by the chosen samples, so that large dis-
crepancies in brightness can be obtained between the results
from two different sets of samples. To solve this problem,
a quasi-random algorithm [140] was used to generate the
same sample set every time and also to preserve the low-
discrepancy between the samples.

To obtain soft shadowswith the shadowmapping technique
we used a filtering strategy [141]. In addition, we took advan-
tage of the shadow sampler types offered by the OpenGL 4.6
standard to improve the performance.

The sampling strategy to produce ambient occlusion can-
not be applied with a single sampling pattern for the entire
screen because visual artifacts appear. To solve this problem,
we rotated the sampling pattern, similar to Mittring [105],
using a kernel of 4×4 rotations in screen space. To eliminate
the noise provided by such an approachwe applied aGaussian
blur with a 5× 5 size kernel.
Another change was made to the RSM generation. The

approach proposed by Lambru et al. [92] computes the light
refracted by a translucent object after it has been reflected
by the scene surfaces. This is done with a 2D ray-casting
process in the RSM pixels. The translucent objects can cover
a fairly large area in the RSM, so a lot of information about
opaque objects, that are the source of light reflection isn’t
available in the RSM. To avoid such a problem, we didn’t
render the translucent objects when the RSM was generated.
More details on this approach are described in Section V-E.
The rendering pipeline of the implementation is described

in Figure 4a. The RSM Sampling Pattern represents a set
of 2D samples with coordinates in the [−1, 1] interval. For
temporal coherency, the sample set is the same for all frames.
The AO Sampling Pattern represents a set of samples uni-
formly distributed inside a hemisphere of radius 1. The same
set was also used for all frames. The RSM Generation pass
renders the scene from the position of the light and acquires
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the buffers needed for the indirect lighting computation:
world space positions, world space normal vectors, the radi-
ance flux and the z-buffer. The G-buffers Generation pass
is similar to the previous one and renders the scene from
the observer position to acquire the following G-buffers:
view space positions, view space normal vectors, material
properties and the z-buffer. The G-buffers Mipmap Genera-
tion pass creates the mipmap pyramids of all the G-buffers
obtained in the previous pass. The RSM AO Generation pass
and the Gaussian Blur pass implement the ambient occlu-
sion technique described above. All these passes produce
the information source for the direct and the indirect light-
ing computations, which are done in the RSM Interpolated
Indirect Lighting Computation pass and the RSM Lighting
Computation pass. The last two passes implement the screen
space interpolation approach previously presented. The RSM
Interpolated Indirect Lighting Computation pass acquires the
indirect illumination at a lower resolution than the screen
with the previously produced mipmaps. The RSM Lighting
Computation pass is used to compute both the direct and the
indirect illumination at the full screen resolution using the low
resolution version of the indirect lighting buffer computed
in the previous pass. In addition, this pass computes glossy
reflections, shadows and volumetric lighting and uses the AO
Buffer to produce the final image.

C. DISCRETE ORDINATE METHOD-BASED TECHNIQUES
From the class of DOM-based techniques, we chose to
implement the light propagation volumes technique to com-
pute indirect diffuse illumination and glossy reflections.
The implementation follows the initial description and the
extensions proposed by Kaplanyan and Dachsbacher [48].
To render translucent objects we used an approach similar to
Børlum et al. [119], but we used the already available LPV
which contains the light reflected by the scene surfaces, used
to compute the indirect illumination. To simulate the area
lights, we initially inserted in the LPV a set of VPLs that
describe the emitted illumination of these lights.

The initial description of the light propagation volumes
technique introduces a visual artifact called light bleeding.
The LPV Propagation pass, described in Figure 4b, attempts
to propagate the initial radiance inside the whole vol-
ume, but doesn’t take into account the occlusion with the
geometry. This approach allows the radiance to be propa-
gated through walls and introduces lighting in areas where
it’s not physically possible. However, even if this artifact
can provide unpleasant visual results, it can sometimes
provide plausible results represented by over-illumination
of some areas of the scene. The proposed extensions of
Kaplanyan and Dachsbacher [48] prove to partially solve
this visual artifact. They used a geometry occlusion vol-
ume, which contains the scene geometry, probabilistically
approximated as a grid of spherical harmonics. The process
of constructing the occlusion volume from the whole scene
geometry is not efficient enough and is usually not required.
The areas that need the most attenuation are the ones which

are visible by the observer, so the only scene geometry which
was included in the geometry occlusion volume is the one
from the RSM and the G-buffers.

The glossy reflections were obtained with a ray march-
ing process in the reflected direction, as proposed by
Kaplanyan [39].

To compute the light refracted by translucent objects after
being reflected by the scene surfaces, we modified the RSM
generation process so as not to render the translucent objects
for the same reasons described in the previous section. At the
shading pass, we used a ray marching process of spherical
harmonics, similar to that of obtaining the glossy reflections,
in the refracted direction.

To generate the initial set of VPLs that approximate the
emitted illumination of area lights, we used a stochastic
sampling process on the surface of these lights. For each
sample, a VPL is created with the position, normal vector
and radiance that correspond to the position of the sample
on the surface. These VPLs are subsequently injected into
the LPV.

One important problem was the LPV cell data precision.
The LPV Radiance Injection pass, described in Figure 4b,
requires atomic operations. Unfortunately, the OpenGL
4.6 standard doesn’t accept atomic operations on float data
types. For this reason, the LPV cell can’t store an RGBA32F
data type. It could store an R32F thanks to intelligent type
castings, but this approach offers only 8 bits per spherical
harmonic coefficient, which are not enough. To solve this
problem, a total of 4 different LPVs were used, one LPVwith
R32F per cell for each coefficient.

The rendering pipeline of this technique is described
in Figure 4b. The RSM Generation pass and the G-buffers
Generation pass are described in the previous section. The
Area Lights Geometry Voxelization pass implements the
acquisition process of the VPLs that approximate the area
lights, described above and injects these VPLs into the LPV.
The LPV Radiance Injection pass extracts the VPLs from the
RSM and inserts them into the LPV. The Geometry Injection
pass implements the extension proposed by Kaplanyan and
Dachsbacher [48], presented above. It takes the RSM and the
G-buffers and extracts the attenuation spherical harmonics
from the existing geometry in those buffers. The actual pro-
cess is split in two sequential passes, one for the RSM and
one for the G-buffers, but for simplicity it is described as one
pass. The LPV Propagation pass is an iterative process of N
iterations. It takes each cell from LPV and gathers the radi-
ance from the neighboring cells. To occlude the propagation
between two adjacent cells separated by geometry, the geom-
etry volume is used. This pass uses the LPV created by the
LPV Radiance Injection pass for the first iteration and for the
next ones it uses the LPV created in the previous iteration.
This process is implemented on the GPU and uses a compute
shader to process the LPV. The LPV Lighting Computation
pass takes the LPV and the G-buffers and computes both
the direct and the indirect illumination. Also, at this pass,
the translucent objects are rendered.
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D. VOXEL-BASED TECHNIQUES
From the class of voxel-based techniques, we chose to imple-
ment the voxel cone tracing technique to produce indirect
diffuse illumination, glossy reflections, shadows, ambient
occlusion, subsurface scattering, translucency and to simulate
area lights.

Using a single color information per voxel introduces the
light bleeding artifact. Any voxel that is illuminated only on
one face stores the lighting information for the entire voxel.
This approach can bleed the light through thin walls that
are illuminated only on one side. Any zone of the geome-
try that is voxelized into a single layer of voxels is poten-
tially affected by this artifact. Moreover, the visual impact of
this artifact increases as the resolution of the voxel volume
decreases. A low resolution generates more areas affected by
this effect and produces a higher intensity of indirect lighting.
This effect appears as a better illumination result, but in
fact it is just an error which provides a physically incorrect
result. To solve this problem, Crassin et al. [59] proposed an
anisotropic representation of the voxel volume with 6 color
information per voxel, one for each main direction. In the
shading pass, the voxel color is obtained with an interpola-
tion between the three closest voxel directions to the cone
direction. Unfortunately, this approach has a negative impact
on the memory consumption, therefore it is not used for the
highest mipmap level at full resolution. Instead, this approach
is used for the second mipmap level to create 6 versions that
are linearly filtered to obtain the subsequent mipmap levels.

To compute the light refracted by the translucent objects
after it was reflected by the scene surfaces, we stored the
transparency of the geometry in each voxel. At the shad-
ing pass, we accumulated the geometry from the refracted
direction. Similar to the previous sections, the translucent
objects were not rendered when the RSM was generated.
Instead, the albedo of the voxelized geometry was associated
with the voxels for a coarse approximation of the transmitted
radiance inside the translucent objects. More details about
this approach are presented in Section V-E. In addition,
to simulate the area lights, the light emitted by the voxelized
geometry was associated to each voxel.

The pipeline of this technique is described in Figure 4c.
The RSMGeneration pass and the G-buffers Generation pass
are described in the previous sections. The Voxelization pass
uses the approach proposed by Crassin et al. [56] to acquire
a voxel representation of the scene. The Voxel Volume gener-
ated at this pass represents the highest mipmap level of the
anisotropic volume presented above. It is represented by a
3D texture with a single color information per voxel. The
Voxel Radiance Injection pass inserts the reflected radiance
flux of each pixel from the RSM in the corresponding voxel
inside the Voxel Volume. The Voxel Anisotropic Mipmap
Generation pass creates anisotropic downsampled versions
of the Voxel Volume, as previously explained. This pass is
implemented on the GPU and uses a compute shader to
process the Voxel Volume. The Voxel Lighting Computation

pass takes the Voxel Volume and the G-buffers and com-
putes direct illumination, indirect diffuse illumination, glossy
reflections, shadows, ambient occlusion, subsurface scatter-
ing and translucency.

E. SCREEN SPACE TECHNIQUES
From the class of screen space techniques, we chose to imple-
ment the screen space directional occlusion technique to com-
pute the indirect diffuse illumination and to simulate the area
lights. To produce glossy reflections, we used the SSR tech-
nique and for the shadows we used a ray casting process in
screen space. The ambient occlusion was produced using the
screen space sampling strategy proposed by Mittring [105],
previously detailed in Section IV-B. The translucent objects
were renderedwith an extension of the SSR technique, known
as screen space refraction [126]. Volumetric lighting was
produced with the technique proposed by Mitchell [135].

In order to compute the light refracted by translucent
objects using the information available in screen space, it is
necessary to obtain the geometry behind the translucent
objects. A simple option for this approach is to generate two
sets of G-buffers, one for opaque objects, which is used in
the screen space refraction technique and one for translucent
objects for which the refraction of light is computed. More
details about this approach are presented in Section V-E.
The pipeline of the implementation is described in

Figure 4d. The SSDO Sampling Pattern represents a set
of samples uniformly distributed inside a hemisphere of
radius 1. For temporal coherency, the sample set is the same
for all frames. The G-buffers + Transparency G-buffers
Generation pass is similar to the G-buffers Generation pass,
described in the previous sections, except that it generates
two sets of G-buffers, one for opaque objects and one for
translucent objects. The G-buffers Mipmap Generation pass
is applied only to the set of G-buffers for the opaque objects
and is the same as in the previous sections. The SSAO Sam-
pling Pattern, the SSAO Generation pass and the Gaussian
Blur pass are used to implement the ambient occlusion tech-
nique proposed by Mittring [105] and whose pipeline was
previously described in Section IV-B. The Direct Lighting
Computation pass generates a buffer with the direct illumi-
nation for the opaque geometry visible on the screen. This
is the only global illumination implementation for which it is
impossible to compute the direct and the indirect illumination
at the same pass. The SSDO technique uses the direct lighting
information as the source to calculate the indirect illumina-
tion of the second bounce of the light. The SSDO Interpolated
Indirect Lighting Computation pass and the SSDO Lighting
Computation pass implement the screen space interpolation
approach proposed by Dachsbacher and Stamminger [36]
and described in Section IV-B. The sampling process in both
passes takes the Direct Lighting Buffer and the SSDO Sam-
pling Pattern and acquires the indirect diffuse illumination
for each pixel. Furthermore, the SSDO Lighting Compu-
tation pass uses the resulted indirect lighting information,
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FIGURE 4. Rendering pipelines of all real-time global illumination implementations.
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TABLE 1. Comparative analysis of the classes of real-time global illumination techniques, based on qualitative criteria.

the Direct Lighting Buffer, the G-buffers and the Trans-
parency G-buffers to compute indirect diffuse illumination,
glossy reflections, shadows, translucency and volumetric
lighting. Together with the AOBuffer, generated at a previous
pass, it creates the final image.

V. COMPARATIVE ANALYSIS BASED ON
QUALITATIVE CRITERIA
In this section, we analyze the possibility of the chosen
classes of real-time global illumination techniques to produce
the photorealistic effects that we have chosen as comparison
criteria: indirect diffuse illumination (Section V-A), glossy
reflections (Section V-B), shadows (Section V-C), ambient
occlusion (Section V-D), subsurface scattering, translucency
(Section V-E) volumetric lighting (Section V-F) and the sim-
ulation of area lights (Section V-G).
Our assessments for the ability of each class of techniques

to produce these effects are presented in Table 1. We consid-
ered that a class of techniques can fully produce an effect,
marked with Yes in the table, if it provides complete visual
results at an acceptable level of detail, otherwise it can only
partially produce the effect. For each scenario in which an
effect can only be partially produced, we marked the prob-
lems in the table and described them in the sections below.
Additionally, we offer visual results of our implementations
for each approach and analyze them from a qualitative point
of view.

A. INDIRECT DIFFUSE ILLUMINATION
The diffuse component of the indirect illumination doesn’t
require to be very precise, so it can be computed using a
lower resolution than that of the screen. Unfortunately, this is
not true for the high frequency details visible on the screen,
where the blurriness created by a low resolution can pro-
duce unpleasant visual results. The screen space interpolation
approach proposed by Dachsbacher and Stamminger [36]
removes the blurriness for these high frequency details. This
approach can be used with any shading technique at the cost
of an acceptable blurriness only for low frequency details.
However, even if this blurriness is visible for the visual results
provided by the indirect diffuse component alone, when these

results are combined with those provided by the direct illu-
mination, the blurriness becomes less visible. Furthermore,
another problem is that it’s not always possible to achieve
the desired level of light intensity, so a light intensity scale
factor (fs) is required.
The RSM can be used to produce indirect diffuse illu-

mination using any sampling approach. Several sampling
strategies were proposed, as described in Section III-B.
We chose to implement the sampling strategy proposed by
Dachsbacher and Stamminger [36] along with the screen
space interpolation approach. The visual results can be seen
in Figure 5. The advantage of this technique is that it does
not produce any light bleeding, as it can be seen, compared to
the other techniques. Unfortunately, this technique provides
only a single bounce of light, so it is not possible to indirectly
illuminate the floor in Figure 5. However, it is possible to
obtain further light bounces using the approach proposed
by Ritschel et al. [42]. They extended the initial proposal of
ISMs, used to compute the occlusion for VPLs. This approach
requires the generation of low resolution RSMs for each
VPL chosen from the initial RSM. These low resolution
RSMs can be sampled to compute the indirect illumination
for the second bounce of light. This process can be applied
iteratively to obtain the i-th bounce of light by generating
low resolution RSMs for the VPLs created and evaluated in
step i−1. Unfortunately, this approach has a negative impact
on performance, but could theoretically provide an infinite
number of light bounces.

One important problem is the presence of a visual effect
called banding artifact. This is described as the presence
of several bands of pixels with similar values of indirect
illumination, which appear along the directions from which
the light comes. This phenomenon occurs because all pixels
that are along the same direction of light are projected in
the same position in the RSM. Therefore, for all these pixels
the same RSM samples are chosen and evaluated, so that
almost the same value of the indirect illumination is obtained.
Moreover, a large discrepancymay occur between the indirect
illumination values for two close bands when the sampling set
is not large enough.
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The light propagation volumes technique was designed to
produce indirect diffuse illumination with a single spheri-
cal harmonic evaluation. The spherical harmonics can store
information with any degree of precision, but due to memory
constraints, the low frequency diffuse lighting is the only
component suitable for this data structure. The visual results
can be seen in Figure 5b. Unfortunately, the results are highly
dependent on the resolution of the LPV and on the number
of propagation iterations. A high resolution LPV requires
additional iterations to propagate the radiance, compared to a
low resolution one. However, even if a high resolution and a
large number of propagation iterations have a negative impact
on performance, they can greatly improve the visual results.
The disadvantage of a low resolution LPV is represented by
the presence of the light bleeding artifact. Due to a low reso-
lution, the size of a cell is bigger, so that a spherical harmonic
must approximate the light transport for a larger size. Thus,
the accuracy of the light transport becomes lower and usually
an over-illumination of the scene occurs because the radiance
is introduced in areas where it shouldn’t be present. It is
possible to obtain multiple bounces of light. Kaplanyan and
Dachsbacher [48] proposed a modification of the propagation
pass in order to obtain a coarse approximation of the indirect
illumination after several bounces of light. The geometry
volume used for occlusion checks in the propagation pass is
used as a bounce media inside the LPV. Unfortunately, this
approach requires even more propagation iterations, as these
bounces occur during the propagation process and require
additional iterations to reach the rest of the cells in the LPV.

The voxel representation can be easily used to compute
the indirect diffuse illumination. There are several techniques
that gather information from the voxel volume, as presented
in Section III-D. We chose to implement the voxel cone
tracing technique. The visual results can be seen in Figure 5c.
Unfortunately, the light bleeding artifact is present, due to
the use of a single color information per voxel at the highest
mipmap level. It is possible to obtainmultiple bounces of light
using an approach that accumulates the indirect illumination
of several light bounces directly inside the voxel volume. This
approach offers only a coarse approximation of indirect illu-
mination, but it can theoretically provide an infinite number
of light bounces.

The screen space directional occlusion technique was
designed to produce indirect diffuse illumination. Unfortu-
nately, the screen space nature of this approach produces
several artifacts. It cannot provide acceptable visual results
when the direct lighted areas, used as the sources of the
indirect lighting, cover small areas on the screen. This artifact
also appears for a large number of samples and produces dif-
ferent degrees of noise. This problem is visible in Figure 5d.
However, this approach could produce acceptable visual
results when the direct lighted areas are large enough. Unfor-
tunately, a major drawback is the lack of temporal coher-
ence. The indirect illumination changes when the camera
moves and the direct lighted areas are not consistent in two
consecutive frames. It is possible to theoretically obtain an

FIGURE 5. Indirect diffuse illumination comparison. Stanford Lucy and
Sponza Atrium models rendered with direct illumination together with
the indirect diffuse illumination, shadows and ambient occlusion.

infinite number of light bounces with multiple iterations of
this technique, so that at each iteration, the input is the output
of the previous iteration.

B. GLOSSY REFLECTIONS
As presented in Section III-G1, glossy reflections can be
obtained by modifications of techniques that obtain mirror
reflections. However, in order to obtain perfect mirror reflec-
tions, high frequency lighting must be used, which leads to a
significant impact on performance. Moreover, the lower the
lighting frequency, the lower the level of glossiness obtained
and the visually closer it is to the diffuse reflections.

The RSM can be used to approximate the glossy reflec-
tions. Lambru et al. [92] explored the possibility of using a
2D ray-casting process directly on the RSM to acquire them.
The visual results can be seen in Figure 6a. The disadvantage
of this technique is that the results are highly dependent on
the information visible from the position of the light. The
geometry that is not present in the RSM cannot be reflected.
This problem is visible in Figure 6a, where Lucy’s reflection
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is only partially obtained, because not all of its geometry
is present in the RSM. It is theoretically possible to obtain
an infinite number of bounces with successive 2D rays cast
inside the RSM.

The LPV stores low frequency details, due to the
use of spherical harmonics. However, it is possible to
acquire a coarse approximation of the glossy reflections.
Kaplanyan [39] proposed to accumulate several spherical
harmonics along the reflected direction. The visual results of
this approach can be seen in Figure 6b. However, the visual
results of the glossy reflections are close to those of the
diffuse reflections. Moreover, their calculation introduces a
certain level of self illumination. These phenomena occur due
to the fact that each spherical harmonic in the LPV covers
a large volume and cannot provide a high level of accuracy
for the entire geometry that is present inside this volume.
To improve the visual results, a high resolution of the LPV or
a layered approach [48] can be used, but they come with an
impact on performance. Using the same approach described
in the previous section, the approach that computes several
bounces of light for the indirect diffuse illumination inside
the LPV, it is possible to obtain multiple bounces of light for
the indirect specular illumination.

The voxel representation contains a detailed geometry.
To obtain a mirror reflection, a ray-casting process can be
used inside the voxel volume at the highest resolution. The
visual results of this approach can be seen in Figure 6c.
These results can be altered later to obtain different levels
of glossiness. It is possible to obtain several light bounces
using the same approach described in the previous section,
the approach that accumulates the indirect illumination after
several light bounces directly inside the voxel volume.

The screen space information offers the most detailed
geometry compared to the other data structures. The glossy
reflections can be computed using a 2D ray-casting process in
the G-buffers pixels, after the computation of the direct light-
ing, as proposed by Sousa et al. [84]. The visual results of this
approach can be seen in Figure 6d. Unfortunately, the results
are highly dependent on the geometry that is visible on the
screen. The geometry that is not visible from the observer
position cannot be reflected. However, this approach could
offer acceptable results and can be controlled when the cam-
era moves, so that the temporal coherence is preserved. Also,
it has a minor impact on performance. It is visible in Figure 6
that this approach provides the sharpest results compared to
the other techniques. It is theoretically possible to obtain an
infinite number of light bounces with several iterations of this
technique, as described in the previous section.

C. SHADOWS
The z-buffer in the RSM can be used to obtain shadows with
the shadow mapping technique. The visual results can be
seen in Figure 7b. Unfortunately, for good shadows qual-
ity, the z-buffer needs to have a high resolution, therefore
all maps of the RSM must have the same high resolution
even if it is not required for all. However, a low z-buffer

FIGURE 6. Glossy reflections comparison. The scene is rendered using
direct illumination together with glossy reflections affected by the Fresnel
effect.

resolution may provide acceptable visual results. As pre-
sented in Section III-G2, the DOM-based techniques cannot
produce shadows by themselves. In particular, the light prop-
agation volumes technique uses the RSM as the source of
information for the LPV, so it can produce the same results
as the RSM-based techniques.

Shadows can be generated using the voxel representation
of the scene as presented in Section III-G2. The visual results
of using a cone-tracing process in the voxel volume can be
seen in Figure 7c. Unfortunately, these results are highly
dependent on the resolution of the voxel volume. Moreover,
a high resolution provides good visual results, but has a
negative impact on performance and memory consumption.
It can be seen that the shadow obtained with this approach
(7c) has a slightly different shape than the one obtained with
shadow mapping (7a). This ‘‘boxy’’ shape occurs due to the
low resolution of the voxel volume.

The screen space cannot always provide all the information
needed to produce shadows. Ritschel et al. [69] proposed a
ray-casting process in screen space, but this approach may
produce incomplete and unusable results, as can be seen
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FIGURE 7. Shadows comparison.

in Figure 7d and explained in Section III-G2. However,
this approach can be used to improve the shadow mapping
technique.

D. AMBIENT OCCLUSION
The RSM can be used to provide limited results for the ambi-
ent occlusion. Vardis et al. [113] explored the possibility to
use the RSM z-buffer to enhance the ambient occlusion map
produced with screen space techniques. They proved that the
geometry visible from the light position can offer an accept-
able degree of precision to compute ambient occlusion, but
the RSM cannot cover all areas visible to the observer, so it
cannot provide the entire ambient occlusion map by itself.
The results produced with the sampling strategy proposed by
Mittring [105] on the RSM can be seen in Figure 8a. Similar
to shadow generation, discussed in the previous section,
the DOM-based techniques cannot provide information about
the scene geometry. For this reason, the techniques in this
class cannot produce ambient occlusion.

The voxel-based techniques can simply use a ray march-
ing algorithm to approximate the amount of geometry that
exists in the upper hemisphere of a point. Several variants of
this approach were proposed, as presented in Section III-G3.
The ambient occlusion map produced with the technique
proposed by Crassin et al. [59] can be seen in Figure 8b.
Their approach uses the cone-tracing strategy inside the
voxel volume to obtain the amount of geometry that resides
in the upper hemisphere. To approximate the entire hemi-
sphere, 5 coneswithwide apertures are enough. However, this
approach cannot produce plausible results for short-distance

FIGURE 8. Ambient occlusion map comparison.

occlusion due to the coarse approximation provided by the
voxel volume. For this reason, it requires much longer dis-
tances and the results are considerably darker than the other
approaches visible in Figure 8, which are limited to short
distances.

Several techniques have been proposed to produce ambient
occlusion using the screen space information, as presented
in Section III-G3. The results obtained with the sampling
strategy proposed by Mittring [105] can be seen in Figure 8c.
Unfortunately, this particular technique has some shortcom-
ings. It produces noise due to stochastic sampling, so it
requires a subsequent filtering process. Because the ambi-
ent occlusion is not viewed directly, expensive filtering that
preserves the edges, such as bilateral filtering, isn’t required.
Instead, a Gaussian blur is enough. The resulting blurriness
can be seen in Figure 8c, but in general it is no longer visible
in the final image. In addition, the sampling is limited to a
very small vicinity around the evaluated position. Even if the
vicinity is enlarged, the results don’t improve because not all
the geometry between the evaluated position and the sample
is taken into account.

E. SUBSURFACE SCATTERING AND TRANSLUCENCY
The RSM can be used to provide good visual results for
the subsurface scattering of the light with a modified RSM
that stores the transmitted light inside the geometry, as pre-
sented in Section III-G4. In fact, several variants of this
approach were proposed, but none of these approximations
can render translucent objects. Lambru et al. [92] proposed a
2D ray-casting process directly in the RSM to render them.
Because of the potential low frequency of the geometry
inside the RSM, it is necessary to use a very permissive
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FIGURE 9. Subsurface scattering and translucency comparison.

intersection check. Moreover, as detailed in Section IV-B,
the translucent objects must not be rendered in the RSM.
Unfortunately, this approach implies that light is no longer
reflected by translucent objects. The results of this approach
can be seen in Figure 9b.

The light propagation volumes technique has several exten-
sions to compute the subsurface scattering of the light, as pre-
sented in Section III-G4. These approaches produce plausible
results for subsurface scattering, but cannot render translu-
cent objects. In addition, these approaches require the cre-
ation and use of a LPV that stores the radiance that comes
directly from a light source. This LPV is different than the
one used to compute the indirect illumination, which stores

the radiance reflected by the scene surfaces. This implies
that in order to produce both indirect illumination and sub-
surface scattering, it is necessary to create and store two
LPVs at the same time, which leads to a significant impact
on performance.

However, it is possible to render translucent objects with
the LVP used for indirect illumination. Using the ray march-
ing process proposed by Kaplanyan [39] to produce glossy
reflections, it is possible to gather the VPLs along the
refracted direction, inside the LPV. This approach provides
plausible visual results (Figure 9c), but lacks flexibility. It is
not possible to simulate a wide range of translucent materials
because the LPV stores only low frequency lighting. This
is visible in Figure 9c where the visual results from the
left image provide a higher intensity of the refracted light
compared to the intensity from the right image. This happens
due to the larger lighted area on the ground, from behind the
object on the left, that can be better approximated by the LPV
compared to geometry details like the red decoration behind
the object on the right.

Both subsurface scattering and translucency can be pro-
duced with the voxel representation of the scene geometry
using a cone-tracing process. With color and opacity infor-
mation per voxel, it is possible to use a specialized cone with
a small aperture to accumulate both the direct and the indirect
light behind the geometry. However, it is necessary to take
into account the subsurface scattering phenomenon when the
direct light is computed for the voxel volume. Still, a coarse
approximation can be represented by the albedo of the vox-
elized geometry. The visual results can be seen in Figure 9e.
The differences between the three results (ranging from low
to high translucency) are represented by a variation in the
opacity (ρ) of the geometry and the aperture (φ) of the cones
used to accumulate the information in the refracted direction.

The screen space cannot provide enough information to
obtain the subsurface scattering of the light. This hap-
pens because the required geometry is not present on the
screen. Several multi-layer approaches were proposed to pro-
duce subsurface scattering and translucency, as presented in
Section III-G4, but they no longer use only screen space infor-
mation and require changes that have a significant impact on
performance. However, for the particular case of rendering
translucent objects, the screen space refraction technique was
proposed with a minimum of modifications. It separates the
opaque and the translucent objects into two sets of G-buffers.
The implementation has been detailed in Section IV-E. This
technique uses a 2D ray-casting process in the pixels of
the G-buffers generated for opaque objects to compute the
light refracted by the translucent objects in the other set
of G-buffers. The results can be seen in Figure 9d. This
approach is very limited and can’t produce subsurface scat-
tering. Moreover, the translucent objects can no longer reflect
light, because they are not present in the G-buffers generated
for the opaque objects, which are used to compute the indirect
illumination.
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FIGURE 10. Volumetric lighting comparison.

F. VOLUMETRIC LIGHTING
The RSM can be used to produce volumetric lighting,
as presented in Section III-G5. The visual results of the
approach proposed by Tóth and Umenhoffer [131] can be
seen in Figure 10a.

A DOM-based approach can produce volumetric lighting,
but requires a modified LPV than that used to compute the
indirect illumination. To simulate the volumetric lighting,
the radiance that comes directly from the light source is
injected into the LPV, in contrast to the LPV used in the
light propagation volumes technique, which uses the radiance
reflected by the geometry. In addition, the propagation strat-
egy requires to incorporate a light scattering and decimation
model. Such an approach introduces a significant impact on
performance, because the passes of radiance injection and
propagation, the most consistent in terms of time perfor-
mance, must be performed for each LPV.

Similar to the DOM-based techniques, those that use the
voxel volume require substantial modifications to produce
volumetric lighting. These approaches must store in the voxel
volume information about the visibility of a voxel from the
light source perspective. This is a different voxel volume
than the one designed to compute the indirect illumination,
which stores information about the geometry in the scene.
For this reason, the use of this approach has a great impact
on performance because both voxel volumes must be built.

As presented in Section III-G5, there are several techniques
that use the screen space information to produce volumet-
ric lighting. The visual results of the approach proposed
by Mitchell [135] can be seen in Figure 10b. However, all
of these approaches are limited and cannot produce results
as flexible as the techniques presented above. Moreover,
the light source must be visible on the screen.

G. AREA LIGHTS
As presented in Section III-G6, the techniques that produce
indirect illumination can also simulate the area lights by
treating the light emitted by them as direct illumination. Such
approaches require a process of approximating the light emit-
ted by the area lights. Unfortunately, as previously presented,
the RSM-based techniques cannot simulate them. In contrast,
all the other technique classes can simulate the area lights
with little modification.

The DOM-based techniques only require that the emit-
ted illumination of the area lights be injected in the LPV.
We used a stochastic sampling process to approximate this
illumination.More details about this approachwere described
in Section IV-C. The visual results obtained with the light
propagation volumes technique can be seen in Figure 11a.
For the voxel-based techniques, it is only necessary to intro-
duce the emissive component into the voxels during the vox-
elization process of the scene geometry. The visual results
obtained with the voxel cone tracing technique can be seen
in Figure 11b.

The screen space techniques only need to take into account
the emissive component when generating the direct illumina-
tion buffer. The visual results obtained with the SSDO and
SRR techniques can be seen in Figure 11c. However, there are
some observations to be made for this approach. The results
depend on the amount of geometry of the area lights that is
present on the screen. The problems caused by this limitation
can be seen in Figure 11, where the back face of the quad
emits light, but its influence is not present in Figure 11c.
In contrast, this influence can be observed in the figures cor-
responding to the other techniques (Figure 11a, b).

Furthermore, all analyzed classes of real-time global illu-
mination techniques, except for the one based on the RSM,
produces both indirect diffuse illumination and glossy reflec-
tions for the emitted illumination of the area lights, without
other changes. This is visible, with different degrees of glossi-
ness of the reflections, in all cases in Figure 11.

VI. COMPARATIVE ANALYSIS BASED ON
QUANTITATIVE CRITERIA
We evaluated the implementations of the real-time global
illumination techniques described in Section IV on a machine
with a GTX1070 GPU at 1280×720 and 1920×1080 screen
resolutions. The evaluation scene is Sponza Atrium, com-
posed of 262k triangles. The comparison criterion is the frame
rate, evaluated with different parameters that are particular
for each technique. It is important to mention that for a more
correct comparison between techniques, only the computing
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TABLE 2. The results of the performance evaluation for real-time global illumination techniques.

of the indirect diffuse illumination, the shadows and the ambi-
ent occlusion were considered. The reason for this decision is
the fact that all initial descriptions of the techniques contain

the computing of the indirect diffuse component. None of the
approaches implemented for the calculation of glossy reflec-
tions or other effects was evaluated quantitatively because
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FIGURE 11. Area light comparison.

the qualitative results, where they exist, are not homogeneous
between the approaches. The results are presented in Table 2
and are analyzed below.

The RSM-based technique has been evaluated together
with the shadow mapping technique, with the RSM z-buffer,
allowing shadows computation, and the sampling approach
in screen space, proposed by Mittring [105] to obtain the
ambient occlusion. We evaluated this technique with two
parameters: the RSM resolution and the size of the sample set.

We used the same 4 sets of samples for various screen and
RSM resolutions. It is visible that a larger sample set has a
negative impact on performance and the reasons are obvious.
On the other hand, it is more difficult to explain the con-
nection between a higher resolution and the big impact on
performance. In addition to the time required to obtain the
RSM at a higher resolution, there is a more subtle impact on
the Texture Mapping Unit (TMU) of the GPU. The caching
mechanism of the TMU has more misses when the sampling
texture, the RSM, has a higher resolution. All those misses
have a negative impact on performance and this impact is
even more visible when the sample set is larger and there are
more cache misses.

The light propagation volumes technique was evaluated
together with the shadow mapping technique that uses the
RSM generated at an intermediary pass and the ambient
occlusion technique proposed by Mittring [105]. The only
particular parameter is the LPV resolution. The impact on
performance is represented by the radiance injection and
propagation passes more than by the shading one, which has
similar performance for both LPV resolutions.

The voxel cone tracing technique uses a shadow cone to
obtain the light occlusion together with 5 short occlusion
cones to obtain the ambient occlusion. The evaluation of
this technique was done for various resolutions of the voxel
volume in the scenario in which the volume is recreated at
each frame (Continuous voxelization: on) and in the one in
which it is created only once and after that it is only used.
The voxel volume resolution has a big impact on performance
due to the additional samplings along the traced cone. Also,
the impact of continuous voxelization is visible in Table 2
where the recreation of the voxel volume uses more than the
shading pass alone. However, the impact is lighter for smaller
voxel volume resolutions.

The screen space directional occlusion technique was eval-
uated with the ambient occlusion approach proposed by
Mittring [105] along with an additional shadow mapping
technique. The only particular parameter for this technique
is the size of the sample set. To obtain similar visual results
as the other techniques, the SSDO have to accumulate the
direct lighting information from big distances in world space.
This process has a massive negative impact on performance
due to a huge overload on the caching mechanism of the
TMU. Also, it is visible that a higher screen resolution has
a higher negative impact on performance. The results show-
cased in Table 2 prove that the SSDO technique is not suitable
to obtain indirect diffuse illumination from huge distances
and it only provides acceptable results for geometry details.

VII. CONCLUSION
We described several classes of real-time global illumina-
tion techniques used in current game engines and our own
implementations with detailed rendering pipelines. We tested
the capability of these classes of techniques to produce the
indirect diffuse illumination along with a set of auxiliary
photorealistic effects that are usually decoupled from the
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illumination process. We offered visual results and technical
details to obtain them where possible and explained why
some effects cannot be produced. We offered and analyzed
the performance of the implemented real-time global illumi-
nation techniques.

The real-time global illumination field is complex and
provides a set of flexible techniques. Over time, several
approaches that allowed only interactive times took advan-
tage of the advances of GPUs to obtain real-time perfor-
mance. Our results provide several conclusions about each
class of techniques.

We start our discussions with the class of screen space
techniques because it is the only one that was partly accepted
by almost the entire game industry. It could provide the
most correct results for some effects and scenarios, but it
hasn’t proven suitable for several other effects. The use of
screen information as a simplified geometry representation
offers good results for approaches that require high frequency
details. It provides the sharpest results for glossy reflections,
acceptable results for the ambient occlusion and subsurface
scattering and it could also enhance the direct light occlusion
results provided by decoupled shadow techniques. Unfortu-
nately, it proved to be unsuitable to compute indirect diffuse
illumination for long distances. It also introduces temporal
coherence problems. However, the advantages offered by this
class of techniques represent the reason why it was partly
accepted by the game industry.

The RSMhas proven to be an extremely flexible data struc-
ture which unfortunately provides information about only the
first bounce of the light. It offers plausible results for sev-
eral effects, including the diffuse component of the indirect
lighting, but the previously mentioned limitation makes it a
better choice as the source of photons for other classes of
techniques. It was used in the implementations of both light
propagation volumes and voxel cone tracing techniques. The
sampling of the RSM has been shown to offer acceptable
performance and could be used as a plausible source of
radiance for other techniques.

The LPV with spherical harmonics coefficients stored in
the cells has certain limitations. High frequency details can-
not be stored, and therefore the technique cannot provide
precise results. However, it has proven to provide plausible
results for the indirect diffuse illumination, the effect for
which it was designed. It produces brighter images overall,
but also thanks to good performance, it has shown to be a
good choice for effects that require low frequency details,
like the diffuse component of lighting or the rendering of low
translucent materials.

The voxel-based techniques represent the class that accom-
modates most of the chosen effects. Furthermore, in most
scenarios, it has proven to provide the most plausible visual
results. For this reason, it was recently accepted as a
good choice to produce ambient occlusion. Unfortunately,
it requires the voxelization of the scene geometry, which
is a complex process with a significant impact on perfor-
mance. The approach that produces ambient occlusion takes

advantage of the use of occlusion voxels, which require less
memory and have a faster voxelization time. The voxel rep-
resentation of the scene has proven to be a very flexible data
structure that can accommodate several purposes.

All classes of global illumination techniques analyzed in
this paper present disadvantages from the point of view of the
unitary production of all the chosen illumination effects and
phenomena. Some classes may produce a larger set of these
effects, but they aren’t always practical and don’t provide
good visual results for all scenarios. Certain offline global
illumination techniques produce superior visual results for
many of the chosen effects. Therefore, one of the important
research topics in the near future will be the implementation
of these techniques in real-time. This topic has been of great
interest so far, but with the growing computing power that has
been presented byGPUs, it will become evenmore important.
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