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ABSTRACT Smart electric vehicle charging stations (EVCSs) equipped with distributed energy resources
(DERs), such as photovoltaic (PV) systems and energy storage systems (ESSs), are promising entities
for maintaining voltage quality in power distribution networks through voltage regulation using the smart
inverters of DERs. This study proposes a hierarchical Volt-VAR optimization (VVO) framework that reflects
the voltage regulation capability of smart EVCSs, which consists of global and local voltage control stages.
At the global stage, smart inverters of EVCSs cooperate with conventional voltage regulators, such as an
on-load tap changer (OLTC) and capacitor banks (CBs)), and smart inverters of PV systems to minimize
the total active power losses and voltage deviations along with the determination of optimal parameters for
local droop control functions of the smart inverters. At the local stage, smart inverters of EVCSs and PV
systems quickly mitigate local voltage violations using dynamically varying local droop control functions
with their optimal parameters calculated from the global stage. Under uncertainties in PV generation outputs
and driving patterns of electric vehicle users, the deterministic optimization-basedVVOproblem at the global
stage is reformulated into the chance-constrained optimization-based VVO problem. A simulation study was
performed in an IEEE 33-bus distribution system with an OLTC, CBs, PV systems, and smart EVCSs. The
results demonstrate the effectiveness of the proposed framework in terms of total active power loss/voltage
deviation, optimized local droop control function, and probability level of chance constraints.

INDEX TERMS Volt-VAR optimization, local voltage control, smart inverter, electric vehicle charging
station, chance-constrained optimization.

NOMENCLATURE
The main notations used throughout this paper are summa-
rized here. Hat symbols represent estimates of true parameter
values. Other undefined symbols are explained in the text.

A. ABBREVIATIONS
CB Capacitor bank
CCO Chanced constrained optimization
DER Distributed energy resource
DO Deterministic optimization
EV Electric vehicle
ESS Energy storage system

The associate editor coordinating the review of this manuscript and

approving it for publication was Reinaldo Tonkoski .

EVCS Electric vehicle charging station
OLTC On-load tap changer
PV Photovoltaic
SOC State of charge
VVO Volt-VAR optimization

B. SETS
T Set of scheduling horizon.
L Set of lines in distribution network.
N Set of nodes in distribution network.
N SI Set of nodes with smart inverters in distribution

network.
N PV Set of nodes with PV systems in distribution

network.
N ESS Set of nodes with ESSs in distribution network.
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N EVCS Set of nodes with EVCSs in distribution
network.

Ei Set of EVs connected to node i with EVCS.
Ye,i Set of all possible driving pattern realizations

for EV e of EVCS at node i.

C. VARIABLES
Plossij,t Active power flow loss of line ij at time t .
P(Q)lineij,t Active (reactive) power flow of line ij at

time t .
P(Q)EVCSi,t Injected/absorbed active (reactive) power

from EVCS at node i and time t .
PESS,c(d)i,t Active charging (discharging) power

for ESS of EVCS at node i and time t .
PEV,ce,i,t Active charging power for EV e of EVCS

at node i and time t .
SOCESS

i,t SOC for ESS of EVCS at node i and
time t .

SOCEV
e,i,t SOC for EV e of EVCS at node i and

time t .
QPV(CB)
i,t Reactive power capability of PV

system (CB) at node i and time t .
Vi,t Voltage magnitude at node i and time t .
Q∗i (Vi,t ) Reactive power of smart inverter at

node i and time t with respect to Vi,t
in Q-V curve.

TapOLTCt Integer variable for determining a tap
position of OLTC at time t .

bCBi,t Binary variable for determining a switch
status of CB at node i and time t .

bESSi,t Binary variable for determining a
charging or discharging status for
ESS of EVCS at node i and time t .

bESSe,i,t Binary variable for determining a
charging status for EV e of
EVCS at node i and time t .

be,y Binary variable for realization y of the
possible driving patterns for EV e.

V q
i,{3,4} Controlled parameters of Q-V curve for

smart inverter at node i.
α
q
i,t,k Continuous auxiliary variables of Q-V

curve for smart inverter at node i and
time t (k = 1 ∼ 6).

γ
q
i,t,k Binary auxiliary variables of Q-V curve

for smart inverter at node i and
time t (k = 1 ∼ 6).

ϕ
q,min
i , ϕ

q,max
i Integer auxiliary variables for

linearization of αqi,t,3V
q
i,3 and α

q
i,t,4V

q
i,4 at

node i and time t .
κ
q,min
i,m , κ

q,max
i,m Binary auxiliary variables for binary

expansion linearization at
node i (m = 1 ∼ 5).

δ
q,min
i,t,m , δ

q,max
i,t,m Continuous auxiliary variables for big-M

linearization at node i and
time t (m = 1 ∼ 5).

D. PARAMETERS
P̂(Q̂)loadi,t Predicted active (reactive) power

demand at node i and time t .
P̂PVi,t Predicted active power output of PV

system at node i and time t .
PESS,c(d),max
i Maximum charging (discharging)

active power for ESS of EVCS at
node i.

PEV,c,max
e,i Maximum charging active power for

EV e of EVCS at node i.
PEV,de,i,t Discharging active power for EV e of

EVCS at node i and time t .
PEV,de,y,t Discharging active power for EV e on

realization y at node i and time t .
SOCESS,min(max)

i Minimum (maximum) SOC limit for
ESS of EVCS at node i.

SOCEV,min(max)
e,i Minimum (maximum) SOC limit for

EV e of EVCS at node i.
SOCESS

i,t0
Initial SOC for ESS of EVCS at
node i and time t = t0.

SOCEV
e,i,t0

Initial SOC for EV e of EVCS at
node i and time t = t0.

EESS,cap
i Maximum battery capacity for ESS of

EVCS at node i.
EEV,cap
e,i Maximum battery capacity for EV e of

EVCS at node i.
η
EV,c
e,i Charging efficiency for EV e of EVCS

at node i.
η
ESS,c(d)
i Charging (discharging) efficiency

for ESS of EVCS at node i.
bEVe,i,t Binary charging status for EV e of

EVCS at node i and time t .
bEVe,y,t Binary charging status for EV e of

EVCS on driving pattern realization y
at node i and time t

Vmin(max)
thr Minimum (maximum) threshold of

voltage magnitude.
Vmin(max) Minimum (maximum) limit of

voltage magnitude.
r(x)ij Resistance (reactance) of distribution

line ij.
V nom Nominal voltage magnitude (1 p.u.).
aOLTC Step size of change in OLTC tap

position.
QCB,nom
i Nominal reactive power of CB at

node i.
QPV,max
i Maximum reactive power capacity of

PV system at node i.
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SPV,max
i Maximum apparent power capacity of

PV system at node i.
QEVCS,max
i Maximum reactive power capacity of

EVCS at node i.
SEVCS,max
i Maximum apparent power capacity of

EVCS at node i.
V q
i,{1,2,5,6} Fixed parameters of Q-V curve for

smart inverter at node i.
vstep Step size of voltage increment in

Q-V curve.
Qq
k Breaking points in Q-V curve

(k = 1 ∼ 6).
µ(σ )PV,erri,t Mean (standard deviation) of the prediction

error of PV generation output at
node i and time t .

ψe,y Probability of realization y of all
possible driving patterns for EV e.

β Probability level in the chance
constraints.

I. INTRODUCTION
As power distribution networks are integrated with various
distributed energy resources (DERs), such as solar photo-
voltaic (PV) systems, energy storage systems (ESSs), and
electric vehicles (EVs), passive power distribution networks
are transformed into active power distribution networks [1].
DERs enhance the reliability and resiliency of active distri-
bution networks [2], [3] and provide network self-healing
capability [4], efficient demand response and load balancing
using smart meters [5], [6], and economic energy market
regulation [7], [8]. However, fluctuations in the DER power
outputs (e.g., intermittent PV generation output due to cloud
movements and uncertain charging behavior of EV users)
may lead to unstable grid conditions, thereby yielding voltage
violations owing to reverse power flow [9], [10].

A smart inverter connected to DERs is a crucial power
electronic device for maintaining a stable operation of the
power distribution system. Smart inverter converts the direct
current output of DERs into alternating current, and provides
grid support functions such as voltage/frequency regulation
and power factor control via advanced communication and
control [11]. To maintain a normal voltage level in the active
power distribution network, smart inverters are generally used
as new voltage regulating devices in a centralized Volt-VAR
optimization (VVO) (one of the main applications for distri-
bution management systems) that determines optimal nodal
voltage magnitudes through the coordination of traditional
voltage regulators such as on-load tap changers (OLTCs) and
capacitor banks (CBs) and the smart inverters of DERs [12].
Furthermore, the centralized VVO is integrated with smart
inverter-based local voltage control for smart inverters to
rapidly inject or absorb the reactive power of DERs by using
their local droop control function to mitigate local voltage
violations [13].

EVs are being increasingly deployed in active power dis-
tribution networks to resolve environmental concerns about
gasoline engine vehicles (e.g., greenhouse gas and car-
bon emissions) and improve the efficiency of grid energy
management by providing vehicle-to-grid applications that
support ancillary services such as voltage and frequency
regulation [14]. More recently, to support efficient charg-
ing services to EV users, maximize the profit of electric
vehicle charging station (EVCS) owners, and maintain a
stable grid operation, a traditional EVCSs are being trans-
formed into smart EVCSs equipped with PV systems and
ESSs [15], [16]. Evidently, smart inverters of PV systems and
ESSs installed in smart EVCSs hold promise for maintain-
ing high-quality voltage levels in active power distribution
networks by exploiting their voltage regulation capability.
This study propose a novel hierarchical VVO framework that
reflects the voltage regulation capability of smart inverters of
EVCSs to minimize the total active power loss and voltage
deviation in active power distribution networks. To achieve
this objective, the proposed VVO framework consists of
global and local control stages. The global control stage
includes two tasks: i) optimal operation scheduling of smart
inverters for EVCSs/PV systems and voltage regulators and
ii) calculation of optimal local droop control functions of
smart inverters. The local control stage involves the operation
of smart inverters based on the local droop control functions
optimized from the global control stage to quickly mitigate
local voltage violations.
Since the pioneering study [17] on Volt-VAR control,

which reduces the network power loss and maintains a
normal voltage profile by exploiting voltage regulators,
many studies have developed optimization-based VVO
algorithms through different approaches: advanced branch-
and-cut [18], particle swarm optimization [19], genetic
algorithm-based NSGA-II [20], and mixed-integer linear
programming (MILP) and mixed-integer nonlinear pro-
gramming (MINLP) to achieve conservation voltage
reduction [21]. Various robust VVO methods against the
uncertainty in PV power generation output were proposed.
In [22], a rule-based approach for decentralized control of
the reactive power of a PV system was presented using
chance-constrained linear programming to reduce voltage
violations owing to the fluctuations of PV power output.
A two-level chance constrained VVOmethod considering the
uncertainty in both PV active power and load demand was
developed [23] to minimize the total active power loss using
OLTC, step voltage regulators, and smart inverters of PV sys-
tems. In [24], a coordination framework between VVO and
home energymanagement system using a chance-constrained
optimization method was proposed in which uncertainties in
PV active power output and temperature were considered, and
the total electricity bill for electricity consumers was reduced
while maintaining an acceptable voltage level in unbalanced
distribution systems. Furthermore, ESSs were integrated
into VVO to minimize the total power loss of unbalanced
three-phase distribution systems using second-order cone
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programming and semidefinite programming [25], and to
reduce the total cost of energy purchased from the distribution
substation and distributed generators using mixed-integer
second-order programming [26]. In [27], a distributed voltage
regulation problem considering storage-capable loads, such
as plug-in EVs, was formulated to reduce the network loss
by dispatching active and reactive power for distributed
generators and plug-in hybrid EVs. An online distributed
model predictive control method was developed in [28] in
which the optimal EV charging process under uncertainty of
EV arrival is carried out in realistic operating conditions of
power distribution systems, including active/reactive power
flow and bus voltage constraints.

The aforementioned optimization-based VVO methods
may not conduct optimal voltage regulation in situations
where unexpected and sudden local voltage changes occur
due to intermittent DER power output because OLTCs and
CBs are not sufficiently fast to regulate voltage. To address
this challenge, a local voltage control method based on a
piecewise linear droop control curve was proposed. Using the
Volt-VAR curve [29], namely the Q-V curve, which is one
of the droop control curves, DER inverters absorb or inject
reactive power of the DER from or to the grid based on their
voltage measurements to rapidly mitigate local voltage viola-
tions. Various hierarchical VVO frameworks were presented
in which smart inverters using the Q-V curve quickly conduct
reactive power dispatch of their DERs in fast scheduling
intervals at the local stage, while the OLTCs and CBs regulate
the voltage in a slow scheduling interval at the global stage.
In [30], a three-stage VVO method was developed in which
the OLTC and CBs are scheduled in 1 h period at the first
stage, the smart inverters are scheduled in a 15 min period
at the second stage, and the local voltage control based on
the Q-V curve is executed by smart inverters in a second
period at the third stage. In [31], a two-level conservation
voltage reduction method was presented to achieve energy
saving with a lower voltage profile in which the OLTC and
CBs reduce the voltage profile at the global level, and the
smart inverters of PV systems and ESSs help to maintain
a lower voltage profile using the proposed Q-V curves at
the local level. In [32], a power factor-based droop control
curve for the smart inverter of a PV system was proposed to
mitigate voltage violations and excessive tap operations of
step voltage regulators with line drop compensation. More
recently, as opposed to the aforementioned local control
strategies using the Q-V curve with fixed parameters, novel
optimization methods that adjust the parameters in the Q-V
curve were presented; the simulation results showed that
dynamically changing Q-V curves can further reduce voltage
deviations and active power losses. They include a central-
ized method for determining the optimal parameters of the
Q-V curve for the smart inverter of a PV system [33] and soft
open point [34], and a distributed method for determining the
optimal parameters of the Q-V curve for the smart inverter
of a PV system using the alternating direction method of
multipliers algorithm [35].

However, no previous studies on the development of hier-
archical VVO methods considered smart inverters of smart
EVCSs as voltage regulators in both the global and local con-
trol stages. Furthermore, under uncertain environments asso-
ciated with PV generation output and EV driving patterns,
no performance analysis for the voltage regulation capability
of such smart inverters was conducted. A novelty of this study
is that, under the aforementioned uncertainties, the smart
inverters of smart EVCSs perform the global VVO process
by cooperating with the OLTC, CBs and smart inverters of
PV systems to reduce the total active power loss and voltage
deviation, while the local voltage control process using the
optimized Q-V curves of the smart inverters is carried out to
quickly mitigate local voltage violations. Therefore, the main
contributions of this study can be summarized as follows:
• We propose a hierarchical VVO framework where the
total active power losses and voltage deviations are
minimized through the coordination of smart invert-
ers of EVCSs and conventional voltage regulating
devices (OLTC and CBs) along with smart inverters of
stand-alone PV systems.

• The proposed VVO framework consists of two stages as
shown in Fig. 1. At the global stage, the VVO algorithm
aims to reduce the total active power losses and voltage
deviations by conducting two tasks: i) scheduling opti-
mal operations of the OLTC, CBs, and smart inverters
of EVCSs and PV systems, and ii) calculating optimal
parameters for the Q-V curves of the smart inverters.
At the local stage, the smart inverters of EVCS and PV
systems are executed to quickly mitigate local voltage
violations using the optimized Q-V curves embedded
with the parameters that are calculated at the global
stage.

• We formulate a deterministic optimization (DO)-based
VVO algorithm as a MILP model in which the nonlinear
constraints for the reactive power capability of EVCSs
and the Q-V curve, along with the nonlinear objective
function for voltage deviation are linearized.

• To reflect uncertainty in the PV generation outputs and
driving patterns of the EV users, we reformulate the
DO-based VVO algorithm into the chance-constrained
optimization (CCO)-based VVO algorithm by trans-
forming deterministic constraints for nodal voltagemag-
nitude and state of charge (SOC) of ESSs for EVCSs and
EVs into the chance constraints.

FIGURE 1. Architecture of the proposed two-stage hierarchical VVO
framework under uncertainty.
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• Simulation results demonstrate the effectiveness of the
proposed DO- and CCO-based VVO methods inte-
grated with optimized Q-V curves and the robustness of
the CCO-based VVO approach against uncertainties in
terms of total active power loss and voltage deviation.

The remainder of this paper is organized as follows.
Section II presents a two-stage DO-based VVO model that
includes the smart inverters of EVCSs. A CCO-based VVO
model that reflects the uncertainty of PV generation out-
puts and driving patterns of EVs is described in Section III.
Section IV reports the simulation results for the proposed
framework. Finally, conclusions are drawn in Section V.

II. TWO-STAGE DO-BASED VVO PROBLEM
Traditionally, the VVO problem involves two voltage control
stages. At the global stage, an acceptable voltage level along
the distribution feeder is maintained through the coordina-
tion of an OLTC, CBs, and the smart inverters of DERs
as an optimization problem. When local voltage violations
occur suddenly owing to intermittent PV power generation,
the smart inverters of DERs are rapidly controlled based on
their local droop control curve (i.e., Q-V curve) tomitigate the
voltage violations at the local stage. In this study, the smart
inverters of a PV system and an ESS that are connected to the
EVCS are used as the voltage regulators to solve the VVO
problem at both the global and local control stages.

A. GLOBAL CONTROL STAGE
1) OBJECTIVE FUNCTION
Let us denote the set of nodes as N = N SI

∪ (N SI)c;
N SI represents the set of nodes with smart inverters. The set
of nodes N SI is decomposed into three sets: N PV for PV
systems, N ESS for ESSs, and N EVCS for EVCSs.
For each node i, j ∈ N and each distribution line ij ∈ L

with scheduling period t ∈ T , the objective of the VVO
at the global stage is to minimize the following weighted
multi-objective function in terms of ω1 and ω2:

min
∑
t∈T

ω1

∑
ij∈L

Plossij,t + ω2

∑
i∈N

∣∣Vi,t − V nom∣∣ . (1)

In (1), the first term denotes the total active power loss for
all lines during the scheduling horizon, and the active power
loss is expressed as

Plossij,t = rij

[(
Plineij,t

)2
+

(
Qline
ij,t

)2]
. (2)

The second term in (1) represents the total deviation of
voltages from the nominal voltage (V nom

= 1.0 p.u.) for all
nodes during the scheduling horizon when Vi,t is larger than
Vmax
thr or smaller than Vmin

thr . The nonlinear second term can be
linearized using the auxiliary variable 1Vi,t as follows:

1Vi,t =
∣∣Vi,t − V nom∣∣ (3)

1Vi,t ≥ Vi,t − Vmax
thr (4)

1Vi,t ≥ Vmin
thr − Vi,t (5)

1Vi,t ≥ 0. (6)

The following subsections illustrate the equality and
inequality constraints for the VVO problem at the global
stage.

2) DISTRIBUTION SYSTEM OPERATING CONSTRAINTS
For each node h, i, j ∈ N , (7) and (8) represent the active
and reactive power balance constraints at bus i, respectively.
Equation (9) expresses the voltage drop between nodes i
and j. Equation (10) denotes the substation voltage, which is
determined by varying the OLTC tap position with a fixed
step size aOLTC. The OLTC tap position TapOLTCt has an
integer value that normally ranges from −16 to 16. Equa-
tion (11) represents the reactive power supplied by the CB
for node i at scheduling period t . In (11), a binary deci-
sion variable, bCBi,t , determines the switch status of the CB
(i.e., ‘‘1’’ for ON and ‘‘0’’ for OFF), and QCB,nom

i is the size
of the CB. Equation (12) limits the range of the allowable
voltage magnitude for node i at scheduling period t with
minimum (Vmin) and maximum (Vmax) values. In this study,
Vmin and Vmax are set to 0.9 p.u. and 1.1 p.u., respectively.

∑
hi∈L

Plinehi,t + P
EVCS
i,t + P̂PVi,t

=

∑
ij∈L

Plineij,t + P̂
load
i,t (7)

∑
hi∈L

Qline
hi,t + Q

EVCS
i,t + QPV

i,t + Q
CB
i,t

=

∑
ij∈L

Qline
ij,t + Q̂

load
i,t (8)

Vj,t = Vi,t −

(
rijPlineij,t + xij,tQ

line
ij,t

V nom

)
(9)

V1,t = V nom
+ aOLTCTapOLTCt (10)

QCB
i,t = bCBi,t Q

CB,nom
i (11)

Vmin
≤ Vi,t ≤ Vmax. (12)

3) EV CONSTRAINTS
For each EV e ∈ Ei at EVCS i ∈ N EVCS, (13) expresses
the operation of the cumulated SOC for the EV battery in
terms of charging and discharging power, i.e., PEV,ce,i,t ′ and

PEV,de,i,t ′ , charging efficiency ηEV,ce,i , battery capacity EEV,cap
e,i ,

and initial SOC SOCEV
e,i,t0

of EV e. Note that the charging
power PEV,ce,i,t ′ is a decision variable, whereas the discharging

power PEV,de,i,t ′ is a parameter. The capacity constraint of the
SOC of the EV battery is presented in (14) with which the
safe charging operation of the EV can be maintained. Equa-
tion (15) expresses the constraint on the charging power of
the EV battery where bEVe,i,t is the binary decision variable that
determines the status of EV charging (i.e., ‘‘1’’ for charging
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and ‘‘0’’ for non-charging).

SOCEV
e,i,t =

t∑
t ′=t0

(
PEV,ce,i,t ′η

EV,c
e,i

EEV,cap
e,i

−
PEV,de,i,t ′

EEV,cap
e,i

)
+ SOCEV

e,i,t0

(13)

SOCEV,min
e,i ≤ SOCEV

e,i,t ≤ SOC
EV,max
e,i (14)

0 ≤ PEV,ce,i,t ≤ b
EV
e,i,tP

EV,c,max
e,i . (15)

4) ESS CONSTRAINTS
For each ESS i ∈ N ESS, (16) illustrates the operation of
the cumulated SOC for the ESS in terms of charging and
discharging power, i.e., PESS,ci,t ′ and PESS,di,t ′ , charging and dis-

charging efficiency, i.e., ηESS,ci and ηESS,di , battery capacity
EESS,cap
i , and initial SOC SOCESS

i,t0
of ESS i. The capacity

of the SOC of the ESS is limited according to (17) because
the overcharging and undercharging of the ESS may have
a detrimental impact on the ESS lifetime. Equations (18)
and (19) provide the constraints on the charging and discharg-
ing power of the ESS, where the binary decision variable
bESSi,t ensures that the charging and discharging of the ESS
are mutually exclusive at time t (i.e., ‘‘1’’ for charging and
‘‘0’’ for discharging).

SOCESS
i,t =

t∑
t ′=t0

(
PESS,ci,t ′ η

ESS,c
i

EESS,cap
i

−
PESS,di,t ′

η
ESS,d
i EESS,cap

i

)
+ SOCESS

i,t0 (16)

SOCESS,min
i ≤ SOCESS

i,t ≤ SOC
ESS,max
i (17)

0 ≤ PESS,ci,t ≤ bESSi,t PESS,c,max
i (18)

0 ≤ PESS,di,t ≤

(
1− bESSi,t

)
PESS,d,max
i (19)

5) PV CONSTRAINTS
For each PV system i ∈ N PV, the reactive power output
of the PV system is limited by the predicted active power
output P̂PVi,t and the maximum apparent power SPV,max

i of the
PV system in (20). Equation (21) represents the normalized
PV reactive power output associated with the time-varying
voltage magnitude in the local control droop curve of the PV
system, which is described in Section II-B.(

QPV
i,t

)2
+

(
P̂PVi,t

)2
≤

(
SPV,max
i

)2
(20)

QPV
i,t

QPV,max
i

= Q∗i (Vi,t ). (21)

6) EVCS CONSTRAINTS
We consider a smart EVCS i ∈ N EVCS that is equipped
with a PV system and an ESS. Equation (22) expresses the
net power consumption of the EVCS, i.e., the difference
between the total charging power (

∑
e∈Ei P

EV,c
e,i,t ) of EVs at

EVCS i with the charging power (PESS,ci,t ) of the ESS and the

predicted PV active power output (̂PPVi,t ) with the discharging
power (PESS,di,t ) of the ESS. The reactive power output of the

EVCS is bounded by its net power consumption PEVCSi,t and
its maximum apparent power SEVCS,max

i in (23), which deter-
mines the allowable active and reactive powers of the EVCS
to prevent its overcapacity. Similar to the constraint (21),
the relationship between the reactive power of the EVCS and
the time-varying voltage magnitude in the local control droop
curve of the EVCS is expressed in (24).

PEVCSi,t =

∑
e∈Ei

PEV,ce,i,t + P
ESS,c
i,t − P̂PVi,t − P

ESS,d
i,t (22)

(
QEVCS
i,t

)2
+

(
PEVCSi,t

)2
≤

(
SEVCS,max
i

)2
(23)

QEVCS
i,t

QEVCS,max
i

= Q∗i (Vi,t ). (24)

In contrast to the linear constraint (20) of the reactive
power capacity for the PV system, (23) defines a nonlinear
constraint with two quadratic decision variables. The non-
linear constraint can be linearized using the polygon-based
realization method [36] as follows. Using the radius of the
polygon SEVCSi in (25), where n, which is set to 6, denotes
the number of sides of the polygon, three linear inequality
constraints (26)–(28) are obtained:

SEVCSi = SEVCS,max
i

√
(2π/n)/ sin(2π/n) (25)

−
√
3
(
PEVCSi,t + SEVCSi

)
≤ QEVCS

i,t ≤ −
√
3
(
PEVCSi,t − SEVCSi

)
(26)

−

√
3
2
SEVCSi ≤ QEVCS

i,t ≤

√
3
2
SEVCSi (27)

√
3
(
PEVCSi,t − SEVCSi

)
≤ QEVCS

i,t ≤
√
3
(
PEVCSi,t + SEVCSi

)
. (28)

B. LOCAL CONTROL STAGE
The smart inverters of the PV system and EVCS at node
i ∈ N PV

∪ N EVCS initiate local voltage control process
when a voltage violation is detected using the local voltage
measurements collected by their inverter. Local voltage con-
trol can be conducted based on the dynamically varying Q-V
curve shown in Fig. 2, where the reactive power outputs of
the PV system and EVCS are locally injected or absorbed
according to the values of the collected voltagemeasurements
in the Q-V curve.

As shown in Fig. 2, the Q-V curve for the smart inverter
i consists of six break points: four fixed points, V q

1 = 0.8
p.u., V q

2 = 0.9 p.u., V q
5 = 1.1 p.u., and V q

6 = 1.2 p.u.,
and two varying points, V q

i,3 and V q
i,4, at node i ∈ N PV

∪

N EVCS. Note that the optimal Q-V curve can be constructed
according to the optimal values of V q

i,3 and V q
i,4, which can
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FIGURE 2. Dynamic Q-V curve for the smart inverters of the PV system
and EVCS at node i .

be written as [35]

Q∗i (Vi,t )=



1, Vi,t ∈
[
V q
1 ,V

q
2

)
1

V q
2 − V

q
i,3

Vi,t+
V q
i,3

V q
i,3 − V

q
2

, Vi,t ∈
[
V q
2 ,V

q
i,3

)
0, Vi,t ∈

[
V q
i,3,V

q
i,4

)
1

V q
i,4 − V

q
5

Vi,t+
V q
i,4

V q
5 − V

q
i,4

, Vi,t ∈
[
V q
i,4,V

q
5

)
−1, Vi,t ∈

[
V q
5 ,V

q
6

]
.

(29)

Using the approach reported in [33], the aforementioned
piecewise Q-V curve can be embedded as linear constraints
into the VVO problem at the global control stage. With
additional continuous variables, i.e., αqi,t,k (k = 1 ∼ 6),
and binary variables, i.e., γ q

i,t,k (k = 1 ∼ 5), (29) can be
reformulated as

Vi,t =
6∑

k=1

α
q
i,t,kV

q
k (30)

Q∗i (Vi,t ) =
6∑

k=1

α
q
i,t,kQ

q
k (31)

α
q
i,t,1 ≤ γ

q
i,t,1, α

q
i,t,6 ≤ γ

q
i,t,5 (32)

α
q
i,t,k ≤ γ

q
i,t,k + γ

q
i,t,k−1, k = 2, 3, 4, 5 (33)

α
q
i,t,k ≥ 0. (34)

The voltage magnitude at node i ∈ N PV
∪ N EVCS is

expressed in (30). The controlled amount of reactive power
injection or absorption is shown in (31) where Qq

k represents
the y-position of the six breaking points in the Q-V curve with
Qq
k = {1, 1, 0, 0,−1,−1} (k = 1 ∼ 6). Equations (32)–(34)

are used to form the linear functions corresponding to the
piecewise linear curves in (29). However, (30) is still a non-
linear constraint because it includes the terms of the multipli-
cation of two variables, αqi,t,3V

q
i,3 and αqi,t,4V

q
i,4. To linearize

the nonlinear constraint, a binary expansion method along
with auxiliary integer variables, ϕq,min

i and ϕq,max
i , is used

as follows [35]:

α
q
i,t,3V

q
i,3 = α

q
i,t,3

(
V q
2 + v

stepϕ
q,min
i

)
(35)

0 ≤ ϕq,min
i ≤

V q
5 − V

q
2

vstep
(36)

α
q
i,t,4V

q
i,4 = α

q
i,t,4

(
V q
2 + v

stepϕ
q,max
i

)
(37)

0 ≤ ϕq,max
i ≤

V q
5 − V

q
2

vstep
(38)

ϕ
q,min
i ≤ ϕ

q,max
i . (39)

The variables V q
i,3 and V

q
i,4 are incremented by the param-

eter vstep in (35), (36) and (37), (38), respectively, where
vstep modifies the upper bound of integer variables ϕq,min

i and
ϕ
q,max
i . Equation (39) enables V q

i,3 and V
q
i,4 to meet at a point.

To further linearize the nonlinear terms αqi,t,3ϕ
q,min
i in (35)

and αqi,t,4ϕ
q,max
i in (37), the binary expansion method is first

applied to ϕq,min
i and ϕq,max

i as follows:

ϕ
q,min
i =

5∑
m=1

2m−1κq,min
i,m (40)

ϕ
q,max
i =

5∑
m=1

2m−1κq,max
i,m . (41)

After substituting (40) and (41) into (35) and (37) and
linearizing them using the big-M method with the auxiliary
variables δq,min

i,t,m = α
q
i,t,3κ

q,min
i,m and δq,max

i,t,m = α
q
i,t,4κ

q,max
s,m ,

the following inequality constraints are obtained:

α
q
i,t,3 −

(
1− κq,min

i,m

)
M ≤ δq,min

i,t,m ≤ α
q
i,t,3 (42)

0 ≤ δq,min
i,t,m ≤ κ

q,min
i,m M (43)

α
q
i,t,4 −

(
1− κq,max

i,m

)
M ≤ δq,max

i,t,m ≤ α
q
i,t,4 (44)

0 ≤ δq,max
i,t,m ≤ κ

q,max
i,m M . (45)

Then, δq,min
i,t,m and δq,max

i,t,m are substituted into (35) and (37),
which in turn become

α
q
i,t,3V

q
i,3 = V q

2 α
q
i,t,3 + v

step
5∑

m=1

2m−1δq,min
i,t,m (46)

α
q
i,t,4V

q
i,4 = V q

2 α
q
i,t,4 + v

step
5∑

m=1

2m−1δq,max
i,t,m . (47)

In summary, the DO-based VVO problem considering the
construction of the optimal Q-V curve for the smart inverters
of the PV system and EVCS can be formulated as the follow-
ing optimization problem:

min
∑
t∈T

ω1

∑
ij∈L

Plossij,t + ω2

∑
i∈N

∣∣Vi,t − V nom∣∣
s.t Eqn. (2), (4)–(22), (24)–(28), (30)–(34),

(36), (38)–(47). (48)
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III. CCO-BASED VVO MODEL UNDER PV AND EV
UNCERTAINTIES
We consider two types of uncertain sources with prediction
errors for i) the PV active power generation output, and ii) the
EV user’s driving pattern. The uncertainty of the PV genera-
tion output influences the constraints of the DO-based VVO
model, including the voltage magnitude limit given by (9)
and (12) via the active power flow expressed by (7) and the
constraint of the SOC limit for the EVCS expressed by (16)
and (17). The uncertainty of the EV user’s driving pattern
impacts the constraints of the SOC of the EV battery and the
charging limits for the EV in (13)–(15). The derivations of
the chance constraints for the PV and EV uncertainties are
presented in Sections III-A and III-B, respectively.

A. PV UNCERTAINTY
1) CHANCE CONSTRAINTS FOR VOLTAGE MAGNITUDE LIMIT
The PV power generation output PPVi,t is modeled in terms
of the predicted PV output P̂PVi,t and its prediction error
PPV,erri,t [37]:

PPVi,t = P̂PVi,t + P̂
PV
i,t P

PV,err
i,t . (49)

Using the voltage drop equation (9), the chance constraints
on the upper and lower limits (12) of the voltage magnitude
for node i at time t are expressed as

Pr

Vmin
≤ Vh,t −

(
rhiPlinehi,t + xhiQ

line
hi,t

)
Vh,t −

(
rhiPlinehi,t + xhiQ

line
hi,t

)
≤ Vmax

≥ β. (50)

where, with a probability of at least β, the voltage magnitude
Vi,t should be maintained within the range [Vmin, Vmax].
Let us assume that 1V,min

hi,t = Vmin
− [Vh,t − (rhiPlinehi,t +

xhiQline
hi,t )] and1

V,max
hi,t = [Vh,t − (rhiPlinehi,t + xhiQ

line
hi,t )]−V

max.
Then, (50) is rewritten as follows:

Pr

{
1

V,min
hi,t ≤ 0

1
V,max
hi,t ≤ 0

≥ β. (51)

Using the expression Plinehi,t in (7) and the expression of the
PV generation output in (49), 1V,max

hi,t can be rewritten as

1
V,max
hi,t = Vh,t −

[
rhi
(∑
ij∈L

Plineij,t − P̂
load
i,t − P

EVCS
i,t

− (̂PPVi,t + P̂
PV
i,t P

PV,err
i,t )

)
+ xhiQline

hi,t

]
. (52)

The prediction error PPV,erri,t of the PV generation output is
assumed to follow a normal distribution with mean µPV,err

i,t

and variance (σ PV,err
i,t )2. Then, the mean µ1

V,max

hi,t and variance

(σ1
V,max

hi,t )2 for 1V,max
hi,t are respectively calculated as

µ1
max

hi,t = Vh,t −
[
rhi
(∑
ij∈L

Plineij,t − P
load
i,t − P

G
i,t − P

EVCS
i,t

− P̂PVi,t (1+ µ
PV,err
i,t )

)
+ xhiQline

hi,t

]
− Vmax (53)

(σ1
max

hi,t )2 = r2hi (̂P
PV
i,t )

2(σ PV,err
i,t )2. (54)

Using the results in (53) and (54) and the inverse cumu-
lative distribution function 8−1(·) of the standard normal
distributionwith zeromean and unit variance, the chance con-
straint for 1max

hi,t can be rewritten as the following analytical
constraint:

µ1
max

hi,t ≤ σ
1max

hi,t 8−1(β). (55)

The chance constraint for 1min
hi,t can also be derived in the

same manner as the analytical constraint.

2) CHANCE CONSTRAINTS FOR SOC LIMIT OF ESS IN EVCS
The prediction error of the generation output of the PV system
installed at the smart EVCS may result in an incorrect SOC
level of the ESS in the EVCS because the PV generation
output is preferentially charged to the ESS. To reflect the
impact of the PV prediction error on the SOC of the ESS in
the EVCS, PESS,ci,t ′ in the deterministic SOC constraint (16)

is replaced by the sum of PESS,ci,t ′ and P̂PVi,t ′P
PV,err
i,t ′ , and the

deterministic constraints (16) and (17) are formulated as the
following chance constraints:

Pr



SOCESS,min
i,t ≤

∑t

t ′=t0

[(PESS,ci,t ′ +P̂
PV
i,t ′P

PV,err
i,t ′

)
η
ESS,c
i

EESS,cap
i

−
PESS,di,t ′

η
ESS,d
i EESS,cap

i

]
+ SOCESS

i,t0∑t

t ′=t0

[(PESS,ci,t ′ + P̂
PV
i,t P

PV,err
i,t

)
η
ESS,c
i

EESS,cap
i

−
PESS,di,t

η
ESS,d
i EESS,cap

i

]
+ SOCESS

i,t0

≤ SOCESS,max
i,t

≥ β. (56)

Defining

1
ESS,min
i,t = SOCESS,min

i,t −

t∑
t ′=t0

[(PESS,ci,t ′ + P̂
PV
i,t P

PV,err
i,t

)
η
ESS,c
i

EESS,cap
i

−
PESS,di,t ′

η
ESS,d
i EESS,cap

i

]
− SOCESS

i,t0 (57)

1
ESS,max
i,t =

t∑
t ′=t0

[(PESS,ci,t ′ + P̂
PV
i,t P

PV,err
i,t

)
η
ESS,c
i

EESS,cap
i

−
PESS,di,t ′

η
ESS,d
i EESS,cap

i

]
+ SOCESS

i,t0 − SOC
ESS,max
i,t ,

(58)

and using the results in (57) and (58), the chance con-
straint (56) can be rewritten as

Pr

{
1

ESS,min
i,t ≤ 0

1
ESS,max
i,t ≤ 0

≥ β. (59)

Similar to the derivation of the chance constraints of the
voltage magnitude limits associated with PV uncertainty, the
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chance constraint for1ESS,max
i,t is reformulated as the follow-

ing analytical constraint:

µ1
ESS,max

i,t ≤ σ1
ESS,max

i,t 8−1(β) (60)

where the mean µ1
ESS,max

i,t and variance (σ1
ESS,max

i,t )2 for
1

ESS,max
i,t are respectively calculated as

µ1
ESS,max

i,t =

t∑
t ′=t0

[(PESS,ci,t ′ + P̂
PV
i,t µ

PV,err
i,t

)
η
ESS,c
i

EESS,cap
i

−
PESS,di,t ′

η
ESS,d
i EESS,cap

i

]
+ SOCESS

i,t0 − SOC
ESS,max
i,t

(61)

(σ1
ESS,max

i,t )2 =
t∑

t ′=t0

( P̂PVi,t ηESS,ci

EESS,cap
i

)2

(σ PV,err
i,t )2. (62)

Using the same procedure followed above, the chance
constraint for 1ESS,min

i,t can also be readily reformulated as
an analytical constraint.

B. EV UNCERTAINTY
The chance constraints on the upper and lower limits
(13)–(15) of the SOC and charging power for EV e at EVCS
i and time t are expressed as [38]

Pr



SOCEV,min
e,i ≤

∑t

t ′=t0

(PEV,ce,i,t ′η
EV,c
e,i

EEV,cap
e,i

−
PEV,de,i,t ′

EEV,cap
e,i

)
+ SOCEV

e,i,t0∑t

t ′=t0

(PEV,ce,i,t ′η
EV,c
e,i

EEV,cap
e,i

−
PEV,de,i,t ′

EEV,cap
e,i

)
+ SOCEV

e,i,t0

≤ SOCEV,max
e,i

0 ≤ PEV,ce,i,t ≤ b
EV
e,i,tP

EV,c,max
e,i

≥ β. (63)

In (63), the uncertainty of the driving pattern for the EV
user is associated with the stochastic parameters PEV,de,i,t ′ and
bEVe,i,t ; in general, these parameters do not follow a normal
distribution. Furthermore, bEVe,i,t is a stochastic parameter with
a binary value. To transform the above chance constraints
into analytical constraints, we generate the realizations of
various driving patterns associated with the parameters PEV,de,y,t ′

and bEVe,y,t along with the probability ψe,y of each realization
y ∈ Ye,i [38]. Using an auxiliary binary variable be,y for each
realization y, the chance constraints (63) can be rewritten as

SOCEV,min
e,i ≤

t∑
t ′=t0

(PEV,ce,i,t ′η
EV,c
e,i

EEV,cap
e,i

−

PEV,de,y,t ′

EEV,cap
e,i

)

+ SOCEV
e,i,t0 + be,y

t∑
t ′=t0

PEV,de,y,t ′

EEV,cap
e,i

(64)

t∑
t ′=t0

(PEV,ce,i,t ′η
EV,c
e,i

EEV,cap
e,i

−

PEV,de,y,t ′

EEV,cap
e,i

)
+ SOCEV

e,i,t0

≤ SOCEV,max
e,i

+ be,y
t∑

t ′=t0

(PEV,c,max
e,i

EEV,cap
e,i

−

PEV,de,y,t ′

EEV,cap
e,i

)
(65)

PEV,ce,i,t ≤ bEVe,y,tP
EV,c,max
e,i + be,yP

EV,c,max
e,i (66)∑

y∈Ye,i

(
ψe,ybe,y

)
≤ 1− β. (67)

To further constrict the constraints (64)–(67) alongwith the
reduction in the number of binary decision variables, the set
Ye,i of possible driving realizations for EV e at EVCS i can be
divided into the following two subsets: i) Y+e,i = {y ∈ Ye,i :
ψe,y > 1 − β} and ii) Y−e,i = {y ∈ Ye,i : ψy ≤ 1 − β.
Based on the two subsets Y+e,i and Y

−

e,i (y1 ∈ Y+e,i, y2 ∈ Y−e,i),
the constraints (64)–(67) are reformulated as

SOCEV,min
e,i ≤

t∑
t ′=t0

(PEV,ce,i,t η
EV,c
e,i

EEV,cap
e,i

−
PEV,de,y1,t

EEV,cap
e,i

)
+ SOCEV

e,i,t0 (68)

t∑
t ′=t0

(PEV,ce,i,t η
EV,c
e,i

EEV,cap
e,i

−
PEV,de,y1,t

EEV,cap
e,i

)
+ SOCEV

e,i,t0

≤ SOCEV,max
e,i (69)

PEV,ce,i,t ≤ bEVe,y1,tP
EV,c,max
e,i (70)

SOCEV,min
e,i ≤

t∑
t ′=t0

(PEV,ce,i,t η
EV,c
e,i

EEV,cap
e,i

−
PEV,de,y2,t

EEV,cap
e,i

)

+ SOCEV
e,i,t0 + be,y2

t∑
t ′=t0

PEV,de,y2,t

EEV,cap
e,i

(71)

t∑
t ′=t0

(PEV,ce,i,t η
EV,c
e,i

EEV,cap
e,i

−
PEV,de,y2,t

EEV,cap
e,i

)
+ SOCEV

e,i,t0

≤ SOCEV,max
e,i

+ be,y2

t∑
t ′=t0

(PEV,c,max
e,i

EEV,cap
e,i

−
PEV,de,y2,t

EEV,cap
e,i

)
(72)

PEV,ce,i,t ≤ bEVe,y2,tP
EV,c,max
e,i + be,y2P

EV,c,max
e,i (73)∑

y2∈Y−e,i

(
ψe,y2be,y2

)
≤ 1− β (74)

In (68)–(70), the realization y1 for the driving pattern is
satisfied in the original charging constraints (13)–(15). When
be,y2 = 0, the realization y2 for the driving pattern is satisfied
in constraints (71)–(73). Constraint (74) guarantees that the
failure probability of the realization is below the error level
1− β. In summary, the original constraints (13)–(15) for EV
charging can be replaced by (68)–(74) along with the lower
limit for the EV charging in (15) (i.e., PEV,ce,i,t ≥ 0).
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IV. SIMULATION RESULTS
A. SIMULATION SETUP
We quantified the performance of the proposed approach
in the modified IEEE 33-node test feeder [17], as shown
in Fig. 3. The test feeder operates at 12.66 kV with 3715 kW
and 2300 kVAr of active and reactive power loads, respec-
tively. The maximum and minimum limits of the allowed
voltage range were set to Vmax

= 1.1 and Vmin
= 0.9,

respectively. The OLTC was connected to the substation, and
the tap position of the OLTC ranged from −16 to 16 with a
step change aOLTC = 0.00625. The six CBs were installed
at nodes 6, 12, 18, 21, 25, and 33, and QCB,nom

i was set to
100 kVAr. The stand-alone PV systems were connected to
nodes 6 and 18. Fig. 4 presents the profile of the predicted
coefficients for PV power generation output and load. The
two smart EVCSs equipped with the PV system and ESS
were connected to nodes 22 and 23. The capacities for the
apparent and reactive powers of the stand-alone PV system
and the PV system integrated in the EVCS were identically
set to SPV,max

i = 500 kVA and QPV,max
i = 500 kVAr,

respectively. The capacities for the apparent and reactive
powers of the EVCS were set to SEVCS,max

i = 500 kVA and
SEVCS,max
i = 500 kVAr, respectively. For the ESS in each
EVCS, the battery capacity was set to EESS,cap

i = 500 kWh,
and the maximum and minimum charging power of the ESS
were both 100 kW. Themaximum,minimum, and initial SOC
of the ESS were set to SOCESS,max

i = 1, SOCESS,min
i = 0.2,

FIGURE 3. Modified IEEE 33-node test feeder.

FIGURE 4. Predicted coefficients for PV power generation output and
load.

TABLE 1. Probabilistic driving patterns for EVs [38].

TABLE 2. Classification for case studies.

and SOCESS
i,t0
= 0.5, respectively. The charging and discharg-

ing efficiencies ηESS,ci and ηESS,di of the ESS were set to 0.95.
We assumed that each EVCS charged 10 EVs featuring the
same specification defined next. The battery capacity of the
EV was set to EEV,cap

e,i = 60 kWh, whereas the maximum
charging power PEV,c,max

e,i of the EV was set to 10 kW. The
maximum, minimum, and initial SOC of the EV were set to
SOCEV,max

e,i = 1, SOCEV,min
e,i = 0.2, and SOCEV

e,i,t0
= 0.2,

respectively. The charging efficiency ηEV,ce,i was 0.95. The
step size vstep in (35)–(38), which determines the incremental
voltage step of the Q-V curve, was set to 1. Table 1 includes
10 probabilistic driving patterns of EVs. Based on the results
in this table, each EV consumes 150 Wh/km during the trip
between the start and end times. The power consumption
PEV,de,i,t for EV e at EVCS i and time t in (13) is calculated
as follows:

PEV,de,i,t =
Energy consumption per km× Driving distance

Ending time− Starting time
.

(75)

Initially, the weightsω1 andω2 in the objective function (1)
for the proposed VVO problem were set to 0.7 and 0.3,
respectively.

Table 2 classifies our simulation study in a total of eight
cases. Case1, includingCases1-1∼1-4, represents VVOusing
the Q-V curve with fixed parameters (i.e., V q

3 = 0.96 p.u.
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TABLE 3. Active power loss (MW) in the IEEE 33-node test feeder
throughout the day for all cases.

and V q
3 = 1.04 p.u.), whereas Case2, including Cases2-

1∼2-4, represents VVO using the optimized Q-V curve with
adjusted parameters (V q

i,3 and V q
i,4). Case1 and Case2 are

divided into four subcases according to the existence of PV
andEVuncertainties. In caseswithout EV uncertainty, the EV
driving pattern was selected as scenario 3 from Table 1. The
mean and standard deviation of the prediction error PPV,erri,t

of the PV generation output were set to µPV,err
i,t = 0 and

σ
PV,err
i,t = 0.15, respectively. Three probability levels in the

chance constraints were selected as β = 0.68, 0.85, and 0.95.
The simulation study was conducted inMATLAB 2020a with
the CPLEX optimization solver 12.10.

B. PERFORMANCE ASSESSMENT OF THE PROPOSED
APPROACH
1) IMPACT OF OPTIMIZED Q-V CURVE AND PV
UNCERTAINTY ON VVO RESULTS
Table 3 presents the results of total active power loss for all
nodes throughout the day in eight cases. In this subsection,
we consider cases without EV uncertainty (i.e., Cases1-1,
1-2, 2-1, and 2-2). Note from Table 3 that Case2-1 yields less
active power loss than Case1-1; the relative reduction of the
active power loss in Case2-1 to Case1-1 is 8.1861%. In addi-
tion, for three different values of β, the active power losses
in Case2-2 are smaller than those in Case1-2, and the relative
reductions in the active power losses in Case2-2 to Case1-2
are 8.1384%, 7.5718%, and 7.3995%, respectively, corre-
sponding to β = 0.68, 0.85 and 0.95. The aforementioned
observations demonstrate that VVO using the optimized Q-V
curve can further reduce the active power loss compared to
VVO using the Q-V curve with fixed parameters. Another
observation from Table 3 is that the CCO approach results
in an increasing active power loss as the probability level
β increases. This is because the chance constraints related
to the probability level become further constricted and the
feasible region of the CCO problem becomes narrower with
an increasing probability level, thereby increasing the value
of the objective function in the CCO problem.

Table 4 presents the results for the minimum and maxi-
mum voltage magnitudes for all nodes throughout the day

TABLE 4. Maximum and minimum voltage magnitude (p.u.) in the IEEE
33-node test feeder throughout the day for all cases.

FIGURE 5. Q-V curves of EVCSs and PV systems in Case2-2 with varying β.

in eight cases. From this table, we verify that the minimum
andmaximum voltagemagnitudes for Cases2-1 and 2-2 using
the optimized Q-V curves are higher than the minimum and
maximum voltage magnitudes for Cases1-1 and 1-2 using
the fixed Q-V curves. This is because a trade-off relationship
exists between the active power loss and voltage magnitude.
That is, given the fixed apparent power, a higher voltage
magnitude owing to an increasing β generally leads to a lower
current magnitude and subsequent decreasing active power
loss, which is consistent with the results in Table 3.

Fig. 5 shows the results of the optimized Q-V curves for
the smart inverters of two PV systems and EVCSs in Case2-2
with varying β. Using the optimized Q-V curves along with
the local voltage measurements, the smart inverters dynami-
cally adjust their reactive power; they provide reactive power
to increase the voltage when the voltage is lower than the
minimum limit of the dead band of the Q-V curve, and
absorb reactive power when the voltage is higher than the
maximum limit of the dead band of the Q-V curve. Note
from Fig. 5 that the dead bands for all Q-V curves are shifted
to a higher voltage range than 1 p.u. This is because most
of the nodal voltages are below 1 p.u., as shown in Fig. 6,
in which the smart inverters aim to prevent voltage violation
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FIGURE 6. Voltage profile for 33 nodes during 24 h in Case2-2 with
varying β.

FIGURE 7. Tap positions of the OLTC during 24 h in Cases1-1 and 1-2 with
varying β.

at its minimum limit by supplying reactive power to the grid
more frequently than absorbing reactive power from the grid.

Figs. 7 and 8 show the OLTC tap positions for Cases1-1,
1-2, and Cases2-1, 2-2, respectively. We can see from the
comparison of Figs. 7 and 8 that, in general, the OLTC tap
positions for Cases2-1 and 2-2 (−3 ≤ TapOLTCt ≤ 5) fluctu-
ate more than for Cases1-1 and 1-2 (−4 ≤ TapOLTCt ≤ 8).
We conjecture from this phenomenon that the optimized
Q-V curves enable the OLTC to operate more actively for
minimizing the total active power loss while maintaining an
acceptable voltage level.

Fig. 9 depicts the reactive power of two EVCSs and PV
systems for Cases1-2 and 2-2 with β = 0.85. Note from this
figure that the smart inverters in Case2-2 inject more reactive
power into the grid than the smart inverters in Case1-2. This
demonstrates that the optimized Q-V curves with higher dead
bands than the fixed Q-V curves enable the smart inverters
to further supply reactive power to the grid to maintain a
stable grid operation. In addition, it can be observed from
Fig. 9 that the optimized Q-V curve-based smart inverter
for EVCS23 supplies reactive power to the grid without
absorbing the reactive power from the grid during the day.
This is because the ESS in EVCS23 reduces the active power
consumption of EVCS23 through the discharging process,

FIGURE 8. Tap positions of the OLTC during 24 h in Cases2-1 and 2-2 with
varying β.

FIGURE 9. Reactive power dispatch of EVCSs and PV systems during 24 h
in Cases1-2 and 2-2 with β = 0.85.

FIGURE 10. Switch positions of CB18 during 24 h in Cases1-2 and 2-2.

thereby increasing the capability of the reactive power sup-
port for the smart inverter of the EVCS23.

Figs. 10 and 11 show the switch positions for CB18 and
CB21 in Cases1-2 and 2-2, respectively. In the simula-
tion, the switches of other four CBs (CB6, CB12, CB25,
and CB33) always turn on for 24 h. Compared to the
switch positions of these four CBs, it can be observed from
Figs. 10 and 11 that CB18 and CB21 are frequently switched
on and off during 24 h. This observation derives from the fact
that the nodes 18 and 21 equipped with CB18 and CB21 are
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FIGURE 11. Switch positions of CB21 during 24 h in Cases1-2 and 2-2.

FIGURE 12. SOC of ESS23 during 24 h in Cases2-1 and 2-2 with varying β.

i) almost end nodes of the test system, in which the CBs
dynamically operate to maintain an acceptable voltage level,
and ii) nodes adjacent to the PV system and EVCS, whose
inverters significantly inject or absorb reactive power, which
in turn leads to the frequent change in the switch positions of
the CBs.

Fig. 12 compares the SOC results of ESS23 in Cases2-1
and 2-2 with varying β. Note from this figure that the val-
ues of the SOC remain at their minimum limit during the
time period [12:00 a.m., 5:00 a.m.] because ESS23 dis-
charges power to the EVs connected to EVCS23 at this
time period. After 5:00 a.m., the SOCs gradually increase
as the EVCS load and PV generation output increase as
shown in Fig. 4. Approximately 10:00 a.m., the EVCS
load decreases, whereas the PV generation output increases,
thereby leading to a sharp increase in the SOCs. Then,
the level of the SOC reaches its maximum approximately
2:00 p.m. owing to the charging, with significant increase
of the PV generation output. Afterwards, the level of the
SOC decreases while the ESS supports the load demand
of the EVCS. Another observation from Fig. 12 is that the
upper bound of SOC in Case2-1 is larger than in Case2-2.
This is because the CCO approach (Case2-2) yields a more
conservative solution under uncertainty than theDO approach
(Case2-1). In addition, in Case2-2, note that an increasing
probability level β results in a decreasing upper bound of

the SOC because the limits of chance constraints associated
with the SOC are further constricted. As shown in the results
shown in Table 3, a more restricted charging capability of the
ESS owing to a higher β leads to an increase in the active
power loss.

2) IMPACT OF OPTIMIZED Q-V CURVE AND EV
UNCERTAINTY ON VVO RESULTS
In this subsection, we consider cases with EV uncertainty for
Cases1-3 and 1-4 using the fixed Q-V curves and Cases2-3
and 2-4 using the optimized Q-V curves. Similar to the results
in Section IV-B1, Table 3 shows that Cases2-3 and 2-4 result
in less active power loss than Cases1-3 and 1-4, respectively,
and the relative reductions in the active power losses for
Cases2-3 and 2-4 with respect to Cases1-3 and 1-4 under dif-
ferent β = 0.68, 0.85 and 0.95 are calculated as {8.9815%,
8.9%, 8.7684%} and {9.1182%, 7.8252%, 7.9738%}, respec-
tively. In addition, note from Table 4 that Cases2-3 and
2-4 yield higher minimum andmaximum voltage magnitudes
than Cases1-1 and 1-2. Based on the aforementioned obser-
vations, we conclude that the optimized Q-V curves under PV
uncertainty and/or EV uncertainty can successfully reduce
the total active power loss at the expense of increasing voltage
magnitudes.

Fig. 13 shows the EV charging schedules at the time
period [1 a.m., 5 a.m.] for Case2-1 and Case2-4 with vary-
ing β. In this figure, EV1∼EV10 and EV11∼EV20 charge
at EVCS22 and EVCS23, respectively. Note from Case2-4 in
Fig. 13 that, in general, the number of charging EVs and their
charging power increase as the probability level β increases.
This phenomenon is due to the fact that an increasing β leads
to a larger number of realizations for the EV driving patterns,
thereby providing the EVCS with the capability of flexible
adaptation to the EV charging demand. A higher charging
power from the EVCS owing to a higher β yields a greater
active power loss, which is verified in Cases2-3 and 2-4 in
Table 3.
Fig. 14 shows the results of the Q-V curves for the smart

inverters of two PV systems and EVCSs in Case2-4 with
varying β. A similar phenomenon shown in Fig. 5, in which
only the PV uncertainty is considered, is observed in Fig. 14,
which considers both PV and EV uncertainties; the dead
bands for all Q-V curves are shifted to a voltage higher than
1 p.u. We conjecture that a higher EV uncertainty leads to a
voltage violation at its minimum limit with decreasing volt-
age owing to a larger EV charging demand, thereby enabling
the smart inverters to supply more reactive power to the grid
to mitigate such voltage violation.

3) IMPACT OF DIFFERENT WEIGHTS IN THE OBJECTIVE
FUNCTION ON VVO RESULTS
Table 5 shows the results of the total active power loss and
voltage deviation in terms of weights ω1 and ω2 in the objec-
tive function of the VVO problem. As expected, the results
show a trade-off relationship between the total active power
loss and voltage deviation according to changes in ω1 and
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FIGURE 13. EV charging schedules between 1 a.m. and 5 a.m. in Cases2-1 and 2-4 with varying β.

FIGURE 14. Q-V curves of EVCSs and PV systems in Case2-4 with
varying β.

TABLE 5. Results with varying weights in the objective function of the
proposed VVO model.

ω2. As shown in Table 5, a higher (or lower) ω1 leads to a
lower (or higher) total active power loss, whereas a higher (or
lower) ω2 leads to a lower (or higher) total voltage deviation.
Based on this trade-off relationship, system operators may
adaptively adjust the weightsω1 andω2 to situations in which
they aim to further reduce the active power loss or maintain
better voltage quality.

C. SCALABILITY
To verify the scalability of the proposed algorithm, the per-
formance of the proposed algorithmwas assessed in the IEEE
69-node test feeder [39]. The test feeder operates at 12.66 kV
with 3802 kW and 2695 kVAr of active and reactive power
loads, respectively. The six CBs were installed at nodes 6,
22, 34, 40, 60, and 69. The stand-alone PV systems were
connected to nodes 7 and 27 and two smart EVCSs with the
PV system and ESS were connected to nodes 35 and 65.
The weights ω1 and ω2 in the objective function were set
to ω1 = 0.7 and ω2 = 0.3, respectively. For the sake of
simplicity, the values of other parameters in the IEEE 69-node

TABLE 6. Active power loss (MW) in the IEEE 69-node test feeder for
Cases1-4 and 2-4.

TABLE 7. Comparison of computation time (s) of the proposed algorithm
between the IEEE 33-node and IEEE 69-node feeders for Case2-4.

test feeder are the same as those in the IEEE 33-node test
feeder.

Table 6 compares the results of the total active power loss in
terms of β between Case1-4 and Case2-4. Similar to the result
in the IEEE 33-node test feeder, we verify from this table that
Case2-4 yields less active power loss than Case 1-4 under
different β. The relative reduction of the active power loss
in Case2-4 to Case1-4 are 8.1210%, 8.0345%, and 7.598%,
respectively, corresponding to β = 0.68, 0.85, and 0.95.

Table 7 compares the computation time of the proposed
approach between the IEEE 33-node and IEEE 69-node feed-
ers for Case2-4 under different β. As expected, this table
shows that the computation time increases as the size of the
test system becomes larger. Note that these computation times
in Table 7 can be acceptable because the proposed approach
conducts day-ahead scheduling with one-hour resolution.

Finally, the novelty of the proposed approach and mean-
ingful observations from the simulation study can be summa-
rized as follows:
• Compared to existing hierarchical VVOmethods, which
did not consider the voltage regulation capability of
smart EVCSs under uncertainties of the PV generation
output and EV driving pattern, the proposed hierarchi-
cal VVO approach reflects the voltage control of smart
EVCSs in both the global and local control stages, which
are integrated with the optimized Q-V curves for smart
inverters of PV systems and smart EVCSs.

• The results in Tables 3 and 4 show that the optimized
Q-V curves (Cases2-1∼Cases2-4) for the smart inverters
of the PV system and EVCS significantly reduce the
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total active power loss compared to the fixed Q-V curves
(Cases1-1∼Cases1-4) at the cost of increasing the max-
imum and minimum voltage magnitudes.

• In contrast with the DO-based VVO approach, the
CCO-based VVO approach improves the robustness of
the PV generation output and EV driving pattern against
uncertainties at the cost of increasing the total active
power loss and maximum/minimum voltage magnitude.

• In the CCO-based VVO approach, an increasing proba-
bility level β in the chance constraints leads to a larger
total active power loss and maximum/minimum voltage
magnitude owing to a further restriction of the reactive
power capability of the smart inverters while maintain-
ing the robustness of the CCO-based VVO approach
against uncertainty.

V. CONCLUSION
This study proposes a hierarchical framework to conduct the
VVO process that involves global and local voltage controls
of smart EVCSs integrated with PV systems and ESSs. In the
proposed framework, the total active power loss and voltage
violation can beminimized at the global control stage through
i) the coordination of the smart inverters of the EVCSs
and PV systems and conventional voltage regulators, and
ii) parameter adjustment for the Q-V curves of the smart
inverters of the EVCSs and PV systems. At the local con-
trol stage, the Q-V curves optimized at the global control
stage are exploited by the smart inverters to rapidly mitigate
local voltage violations owing to intermittent PV generation
output. To incorporate the uncertainties in PV generation
outputs and driving patterns of EV users into the proposed
framework, the DO-based VVO problem at the global control
stage was reformulated into the CCO-based VVO problem
with probability constraints. The simulation results show that,
compared to the VVO framework with fixed Q-V curves,
the proposed framework based on the optimized Q-V curves
can successfully reduce the total active power loss and voltage
deviation. Furthermore, the robustness of the CCO-based
VVO problem against uncertainties in PV generation outputs
and driving patterns of EV users was verified with varying
probability levels of chance constraints.

The proposed VVO framework at the global control stage
is implemented in a centralized manner, which may signifi-
cantly increase the computational complexity in larger power
distribution networks with various DERs. In future studies,
the centralized DO- and CCO-based VVO approaches will be
extended to the distributed VVO approaches that include the
global and local voltage control capability of smart EVCSs,
and a performance comparison between the centralized and
distributed VVO approaches will be conducted in large power
distribution systems.
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