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ABSTRACT Positron images generated by positron non-destructive testing technology under rapid detection
scenes such as low concentration dose, low exposure time and short imaging time, which have some
problems like low-resolution and poor definition. These issues cannot be solved for the being time. To solves
these problems, this research super-resolves the low-resolution positron images to generate images with
high-resolution and clear details. To make the generated super-resolution images more capable of restoring
the features of low- resolution images, this research proposed a positron image super-resolution reconstruc-
tion method based on generative adversarial networks. In order to improve the input information utilization
rate, long skip connections were added into the generator. In addition, the discriminant model, where
composed of an image discriminator and a feature discriminator, can stimulate the generator to generate
clearer super-resolution images which contain more details. In attempting to solve the problem of dataset
matching, a special positron image super-resolution dataset is constructed for network application scenarios.
In the adversarial training stage, perceptual similarity loss and adversarial loss are used to replace the
traditional mean squared error loss to improve the images perception quality. Experimental results show that
the proposed model can reconstruct low-resolution images by four times super-resolution in 0.16 seconds.
The super-resolution images obtained are superior to other algorithms in visual effect, which have clearer
detail structure and higher objective performance values. Hence this model can meet the requirements of
rapid non-destructive testing of industrial parts.

INDEX TERMS Super-resolution reconstruction, deep learning, generative adversarial networks, positron
image.

I. INTRODUCTION
Positron non-destructive testing technology (PNDTT) uses
γ photons’ strong penetrating and non-invasive properties,
which generated by positron annihilation, to bring about the
rapid imaging of the non-destructive testing inside cavity.
PNDTT can conduct on-site rapid testing of a hydraulic
cavity and has many advantages (i.e., low cost, wide appli-
cability, efficient, and high security). Most hydraulic parts
(i.e., hydraulic pump, hydraulic motor, hydraulic cylin-
der, hydraulic valve, and supercharger etc.) are impor-
tant executive components of modern industrial equipment
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hydraulic systems. Consequently, these are used widely in
machine tools, walking machinery, aerospace, and other
fields. Because long-term in the state of pressure, hydraulic
parts may cause some inconspicuous defects such as crack-
ing, bulging, depression, corrosion, foreign matter, wear, and
other structural damage. The defects mentioned above, which
are not easily detected, will make the whole hydraulic sys-
tem vulnerable to failure. Failure will directly affect sys-
tem safety and even cause irreversible damage to the entire
assemblage of equipment [1], [2]. At present, conventional
non-destructive testing technology includes eddy current test-
ing [3] and industrial CT testing [4], which are used in a
limited cavity represented by hydraulic parts in industry.
However, conventional non-destructive testing technology,
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which is limited by some difficulties (i.e., testing depth,
reflection characteristics of cavity structure, testing tech-
nology itself, etc.), has a series of problems such as low
efficiency, serious waste of resources and high cost. In con-
sequence, conventional non-destructive testing technology
cannot meet the increasing demands of lower-cost and faster
testing.

Currently, PNDTT is used primarily to analyse the charac-
teristics of semiconductors, metals, high temperature super-
conductors, polymers and other industrial materials, as well
as to conduct non-destructive testing of internal defects of
these industrial materials. The German Timo team [5] has
proposed a single tracer particle testing method for tracking
the density distribution of a positron at a cone angle, in order
to measure the cone angle. Yao [6] proposed a method that
uses 18F-labelled fuel to observe a combustion flow field in
a confined space. However, when PNDTT is used in industrial
detection imaging [7], the limitations of imaging sensors,
scanning time, and scattering noise [8], [9] make it difficult
to obtain high-quality images. This kind of image quality
degradation problem is difficult to eliminate by improving
the hardware design. Industrial applications of PNDTT need
high-quality images that contain more details, more details
can provide more accurate judgment for defect location, fault
diagnosis and field condition monitoring.

The details of low-quality positron image are indispens-
able for accurate judgment of test results, but it is difficult
to obtain the details by using conventional reconstruction
algorithms. Hence, this research introduces deep learning,
a new method which has rapidly developed owing to its
efficient feature extraction ability. Image super-resolution
(SR) methods are used in various computer vision applica-
tions, ranging from security and surveillance imaging [10],
medical imaging [11], [12], object recognition [13] to image
reconstruction [14]. In order to solve the problem that
the positron image is not clear enough, super-resolution
image reconstruction (SRIR) technology is used to process
the images obtained by PNDTT. Low resolution (LR) and
low-quality positron images are transformed into high res-
olution (HR) and high-quality ones, which being essential
for PNDTT.

Single image super resolution (SISR) reconstruction tech-
nology aims to use the similarity between a LR image and
a HR image to break through the inherent physical prop-
erties of the imaging system, eliminate the interference of
external factors, and obtain HR images with rich details.
Harris [15] proposed SISR technology in the 1960s by restor-
ing a single image. In recent years, the concept of generative
adversarial networks (GANs) [16] has been proposed and
gradually emerges in supervised learning. GAN has been
applied to SISR to overcome the aforementioned limitation
and produce super-resolved images with synthesized high-
frequency details. Ledig et al. [17] applied GAN to SISR
for the first time and proposed SRGAN, which uses the
perceptual similarity loss and adversarial loss to give the
super-resolution image more authenticity. Using SRGAN

significantly improves the visual effect of a reconstructed
image compared with an original image.

Images generated by PNDTT has fewer features, poor def-
inition and fewer sample images. Although the SISR method
based on GAN has made significant progress in image per-
ception quality, existing image super-resolution reconstruc-
tion models do not perform well on the positron images.

To solve above problems of positron images, this paper
proposes positron image super-resolution using generative
adversarial networks (PI-SRGAN), which is very suitable
for high-quality reconstruction of positron images. Through
adding long skip connections in generator, global feature
fusion is achieved by making full use of input information,
it can make up for the loss which caused by serious degrada-
tion of image detail information of the depth neural network.
To provide the generated image with more realistic texture
and the quality of the generated image, PI-SRGAN adds
image and feature discriminators to optimize the generator.
In the selection of loss function, traditional mean square
error (MSE) is used in the pre-training stage, while perceptual
similarity loss and adversarial loss are used in the adver-
sarial training stage. At the same time, the parameters of
PI-SRGAN are improved to make the network more suitable
for positron images. PI-SRGAN network can return better
to a realistic feature distribution and produce more realistic
high-frequency details. The overall network architecture of
PI-SRGAN is shown in Fig.1.

For this paper, the main contributions are as follows:
(1) To improve the utilization of image feature information

and the quality of reconstructed images, this research pro-
poses a new generator network with long skip connections.
This network can super-resolve positron images of different
sizes with achieving the generation scarce image data in
PNDTT field.

(2) To produce a more realistic HR image, this research
proposes two different discriminators that one based on the
pixel space and the other based on the feature space. They
can generate the same high-frequency features as the original
HR image.

(3) To generate high quality image in visual perception
and texture details, perceptual similarity loss and adversarial
loss are used in the adversarial training stage. Because super-
resolution images do not have corresponding high-resolution
images in practical applications, this study introduces blind
image quality assessment indices (i.e., the standard devia-
tion (SD) and average gradient (AG)) to evaluate the recon-
struction results.

(4) Since there is currently no publicly available super-
resolution dataset of positron images, this research builds a
dataset that includes 9100 pairs of positron images. We use
GATE software to simulatemultiple sets industrial parts to get
high-resolution positron images, while use data augmentation
technology to obtain enough high-resolution positron images.

Section II introduces the related work for SISR and
section III describes the proposed PI-SRGAN. Section IV
analyses experimental results and compares them with the
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FIGURE 1. Description of PI-SRGAN network architecture and data flow direction. It contains three sub-networks: generator
network, image discriminator network, and feature discriminator network. Part B is generator network, that can convert LR image
to SR image. Addition residual blocks and long skip connections are added to strengthen the spread of features in generator.
Then the SR image is obtained through two identical sub-pixel convolution layers. Part A is an image discriminator network that
input are pixel space images, it can distinguish SR images generated by part B with real HR images in image space. Part C is a
feature discriminator network uses VGG-19 to extract feature maps from SR images generated by part B and real HR images as
the input images, it can distinguish input images in feature space. Feature map contains high-frequency components and
structural components in part C. The bottom figure shows the network structure of VGG19 in Part C. The detailed implementation
of above three structs is given in section III of this article.

leading methods in the objective assessment indicators.
In Section V, this paper concludes the whole work and look
forward to the future.

II. RELATED WORK
There are three principal types of existing SRIR technologies:
interpolation-based, reconstruction-based and learning-based
SR technologies. Among them, the SR methods based on
interpolation include primarily nearest-neighbour interpola-
tion [18], [19], bilinear interpolation [20] and bicubic inter-
polation [21]. These methods can improve image resolution
to some extent, but the reconstructed image is too smooth,
and the details are not sufficiently rich. The SR algorithms
based on reconstruction include convex set projection [22],
iterative inverse projection [23], and maximum posterior

probability [24]. The learning-based super-resolution algo-
rithm was first proposed by Freeman et al. [25] in 2002.
Currently, the learning-based super-resolution algorithms
include primarily example-based super-resolution and image
super-resolution via sparse representation [26]–[28]. These
methods solve the problem of high magnification, which
could not be solved using previous algorithms, and require
only a single LR image to generated the SR image. How-
ever, these methods also have their own deficiencies. For
example, the example-based methods require averaging the
high-frequency information of the repeated region, resulting
in an excessively smooth image edge. In addition, the meth-
ods based on sparse dictionary requires many iterations and
large quantities of computation, as well as lacking sufficient
computational efficiency.
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With the development of deep learning in image recog-
nition, classification and other fields, researchers began to
apply deep learning methods to image SR tasks [29]–[31].
Image SR has greatly progressed with the development of
CNNs. Subsequently, various deep learning-based methods
with different network architectures [32]–[38] and training
strategies [39], [40] have been proposed to improve the SR
performance. These networks have obtained an improved
performance. Among them, Dong et al. [32]applied convo-
lutional neural networks (CNNs) to SR for the first time and
proposed the super-resolution convolutional neural network
(SRCNN). The end-to-end training method was adopted in
SRCNN, and the reconstruction effect was greatly improved.
Kim et al. [33]deepened the number of convolution layers,
and proposed a super-resolution model of 20 layer very
deep convolutional networks (VDSR). Combining the resid-
ual idea, adaptive gradient clipping and other techniques,
the quality of reconstructed images was improved effectively.
At the same time, Shi et al. [34] proposed an efficient sub-
pixel convolutional neural network (ESPCN), which achieved
good reconstruction results and reduced the amount of com-
putation effectively. In super-resolution, the traditional MSE
loss function is typically used to restore the texture of LR
images. MSE is used to restore the high-frequency details
lost in LR images by pixel averaging, but this typically leads
to image smoothing and poor image perception quality [35].
Johnson et al. [36] proposed using a loss function closer
to perceptual similarity to restore a more convincing HR
image, and achieved good results. However, although these
methods are flexible in generating relatively high-quality
HR images, the HR images reconstructed by them still
have problems such as insufficient definition and unclear
details.

GAN is a new unsupervised learning framework with
wide application prospects, with its core idea being the
‘two-person zero-sum game’. Ledig et al. [17] proposed a
super-resolution method using a generative adverse network
(SRGAN), the first neural network that can recover images
from 4× downsampling. In recent years, Xiao et al. [41]
proposed to model the downscaling and upscaling processes
from a new perspective, that is an invertible bijective trans-
formation, which can largely mitigate the ill-posed nature of
image upscaling. However, existing SR approaches neglect to
use attention mechanisms to transfer high-resolution textures
from reference images, which limits these approaches to
some extent. Yang et al. [42] propose a novel texture trans-
former network for image super-resolution (TTSR), in which
the LR and the reference images are formulated as queries and
keys in a transformer, respectively. This year, Kong et al. [43]
proposed to combine classification and SR in a unified frame-
work (ClassSR) to helpmost existingmethods save up to 50%
floating point operations on DIVerse 8K resolution image
dataset (DIV8K), which uses a class-module to classify the
sub-images into different classes according to restoration
difficulties and then applies an SR-module to perform SR for
different classes.

Currently, GAN is widely used in computer vision
and image processing. Compared with other algorithms,
the GAN-based algorithms can make full use of image infor-
mation, and the model’s performance is better. Image SR
typically obtains the corresponding HR images by extracting
the details and reconstruction steps of LR images and has a
low utilization rate on feature information. Compared with
CNNs, SRGAN shows substantial improvement in super-
resolution image quality, but the positron image generated
by SRGAN still involves fuzziness, and the algorithm typi-
cally tends to add meaningless high-frequency noise to the
generated super-resolution image, leading to poor visual per-
ception. Consequently, the PI-SRGANmethod used GAN for
positron image super-resolution, and improved the network
structure and the loss function to generate HR images with
more realistic texture details.

III. POSITRON IMAGE SUPER-RESOLUTION USING
GENERATIVE ADVERSARIAL NETWORKS (PI-SRGAN)
In this section, we first give an overview of the proposed
positron image super-resolution using generative adversarial
networks (PI-SRGAN) and then present themodules in detail.

A. OVERVISE
The purpose of PI-SRGAN is to improve on SRGAN to
enable the network to produce clearer and more realistic
images when processing positron images. The structure of
PI-SRGAN as shown in Fig.1. In PI-SRGAN method, a gen-
erator with long skip connections is designed, and an image
discriminator network working in the pixel space and a fea-
ture discriminator working in the feature space are attached
at the same time. Generator network in PI-SRGAN uses long
skip connections to improve the utilization rate of interme-
diate feature information and enhance the generated image
quality. The image discriminator network takes the image in
the pixel space as the input, and the feature discriminator
takes the feature map extracted from the VGG-19 network
as the input.

To show this algorithm more clearly, the pseudocode of
PI-SRGAN algorithm is written and shown as follow. The
pseudocode contains forward and back propagation process
of PI-SRGAN.

B. GENERATOR ARCHITECTURE
As a deep neural network, GAN is prone to network degrada-
tion in the process of training. The so-called network degra-
dation problem is that with the increase of network layers,
the accuracy of the training set no longer increases and might
even decrease. PI-SRGAN uses residual blocks and adds
long skip connections to form a generator network. Using
residual networks to deepen the network depth and long skip
connections to make full use of the intermediate features not
only retains the forward-propagation characteristics, but also
helps to alleviate the problem of gradient disappearance. The
generator network structure of PI-SRGAN is shown in Fig. 2.
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Algorithm 1 Forward and Back Propagation Process
of PI-SRGAN

Input: pretrained model parameters Para;
model hyperparameters Hyper;
positron-image training dataset trainSet;
positron-image testing dataset testSet;

1 Initialization (Para, Hyper);
2 while not convergent do
3 // forward time - O(n2)
4 LRbatch, HRbatch = randomSelect (trainset);
5 SRbatch = generator (LRbatch);
6 Featbatch = VGG (SRbatch, HRbatch);
7 Fresult = featureDisc (Featbatch);
8 Iresult = imageDisc (SRbatch, HRbatch);
9 // back propagation
10 Loss = LossFunction (Fresult , Iresult , Hyper);
11 // update model parameters by minimizing
12 // the object:

lSR = 1
WnHnCn

Wn∑
i=1

Hn∑
j=1

Cn∑
k=1(

φn
(
IHR

)
i,j,k − φ

n
(
GθG

(
ILR
))
i,j,k

)2
+ λ

(
− log

(
DimgθD

(
GθG

(
ILR
)))

+

(
− log

(
DfeatθG

(
φn
(
GθG (I

LR)
)))))

13 updateModelParameters (Loss);
14 // Evaluate performance
15 result = forward(testSet);
16 end

Generator network in PI-SRGAN consists of one 9 × 9
convolution layer, 16 residual blocks, multiple long skip con-
nections and two sub-pixel convolution layers. The input of
the generator network is the LR image. The low-level features
are extracted through the first 9 × 9 convolution layer, and
then the high-level features with more nonlinearities and
larger receptive fields are extracted through multiple residual
blocks. Finally, the SR image is obtained by up-sampling by
a factor of four through two identical sub-pixel convolution
layers consisting of a 3× 3 convolution layer, an up-sampling
layer and a parametric rectified linear unit (PReLU) activa-
tion function.

Each residual block (as shown in Fig.3) in the generator
network consists of a 3× 3 convolution layer, a batch normal-
ization (BN) layer, a leaky rectified linear unit (LeakyRELU)

activation function, a 3 × 3 convolution layer and a BN
layer. The gradient of LeakyReLU can only take two values,
negative with a tiny gradient when the input is less than zero,
the gradient is 1 when the input is greater than 0. The equation
of LeakyReLU is shown in Eq.1.

LeakyReLU (x)=max (0, x)+ negative_slope ∗min (0, x)

(1)

The short skip connection used in the residual block can
effectively alleviate the problem of gradient disappearance
in the process of deep network training. The residual block
retains the signal from the previous layer of the network
through the short skip connection, with the network needing
to learn only the changed parts (residuals), highlighting the
small changes, increasing the sensitivity of the network, and
not increasing the network parameters. It will not greatly
increase the complexity of generator network calculations.

Generator network in PI-SRGAN uses long skip connec-
tions to aggregate the features from different residual blocks,
connecting the output feature map of each residual block
directly to the end of all residual blocks. The long skip
connections can further encourage back-propagation of gra-
dients, and give potentials to re-use intermediate features to
improve the final feature. At the same time, to extract the
feature map from the residual block and obtain the SR image
with the same size as the real HR image, the sub-pixel convo-
lution layer is used to up sample the feature map to the target
resolution. The sub-pixel convolution layers obtain feature
maps through the convolution layer with r2c filters, where
c is the channel number of the original LR image and r is the
image super-resolution magnification. Then, the resolution
of the feature map is expanded by the shuffling layer that
rearranges data from channels into different spatial locations.
Two sub-pixel convolution layers are used in the genera-
tor network in a row with each sub-pixel convolution layer
enlarging an input feature map by the scale factor 2 because
the goal of PI-SRGAN is to conduct super-resolution on the
LR positron image with quadruple resolution.

C. DISCRIMINATOR ARCHITECTURE
The discriminant network in GAN distinguishes between the
generated data and the real data. Continuous training and opti-
mization of the discriminant network to modify and optimize
the generation network results in the generated image having
better clarity and more image details. SRGAN consists of a

FIGURE 2. Generator network of PI-SRGAN.
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FIGURE 3. Residual block.

generator and a discriminator. Compared with convolutional
neural networks, the quality of images obtained by SRGAN
has been greatly improved, but the image perception qual-
ity still requires improvement owing to the lack of realis-
tic texture details. For this reason, two discriminators are
designed in PI-SRGAN. One image discriminator and one
feature discriminator are used for discriminative adversarial
at the same time. The inputs of the image discriminator
are the SR image generated by the generator and the real
HR image, which distinguishes the two kinds of images in
the pixel space of the images. The SR image generated by
the generator and the real HR image are extracted feature
maps by a VGG-19 network as the inputs of the feature
discriminator. The feature discriminator distinguishes the two
kinds of images in the feature space. Through the adversarial
training between the two discriminators and the generator,
the generator can generate SR images with realistic structural
features and texture details.

The image discriminator and feature discriminator of
PI-SRGAN use the same network structure, which consist of
multiple convolution layers, BN layers and LeakyReLU acti-
vation functions. The structure of the discriminator network
is shown in Fig. 4.

D. LOSS FUNCTION
Since the pixel is the smallest unit of a digital image, reducing
the gap between pixels can ensure the accuracy of image
information more quickly and effectively. To reduce the gap
between pixels and improve image generation, PI-SRGAN
uses pre-training and adversarial training to train the network,
with different loss functions being used in different training
stages.

The MSE loss is closer to that of human visual perception
and more sensitive to abnormal pixels with large numerical
differences, and this improves the recovery of the low fre-
quency content of images. Therefore, this paper selects the
traditional MSE loss function in pre-training stage and. the
MSE definition is as follows:

lSRMSE =
1

WHC

W∑
i=1

H∑
j=1

C∑
k=1

(
IHRi,j,k − GθG

(
ILR
)
i,j,k

)2

(2)

where, IHRi,j,k is the pixel value of the real HR image at its
location (i, j, k), GθG

(
ILR
)
is the SR image generated by the

generator network, and GθG
(
ILR
)
i,j,k is the pixel value of the

generated SR image at position of (i, j, k). HereW , H and C
describe the dimensions of the respective feature maps within
the VGG-19 network.

It is difficult to capture the difference in image perception
because MSE loses part high-frequency information of the
image. When takes MSE as the loss function, the image
generated by the networkmodel tends to be smooth. Although
the pre-trained image can have a better peak signal to noise
ratio (PSNR), but it cannot produce a pleasant effect on
visual perception because of the lack of high-frequency
details. To overcome the above problems, this paper trains
the pre-trained generator network with discriminators, a loss
function defined is minimized as:

lSR = lSRp + λl
SR
gen (3)

where, lSR is the loss function of generator, lSRp is the per-
ceptual similarity loss that enforces SR results to look similar
to the ground real HR images in the training set, lSRgen is the
GAN loss for the generator, and λ is a weight for the GAN
loss terms. The calculation process of this method is shown
in Fig. 5.

The perceptual similarity loss measures the difference
between the SR image and the HR image in the feature space.
During training process, minimizing the perceptual similarity
can achieve the visual perception consistency between the SR
image and the real HR image. PI-SRGAN use the trained
VGG-19 network to extract features, IHR and ISR(that is
GθG (I

LR) in Eq. (4)) are put into VGG-19 network, then
the feature maps of the two images at the nth layer are
extracted. The perceptual similarity loss between IHR and ISR

FIGURE 4. Discriminator network of PI-SRGAN.

121334 VOLUME 9, 2021



F. Xiong et al.: PI-SRGAN

FIGURE 5. Calculation process diagram of PI-SRGAN.

is expressed as follows:

lSRp =
1

WnHnCn

Wn∑
i=1

Hn∑
j=1

Cn∑
k=1

×

(
φn
(
IHR

)
i,j,k
− φn

(
GθG

(
ILR
))

i,j,k

)2

(4)

where, φn is the output of the ReLU layer after the convolu-
tion before the nth pooling in VGG-19 network. As well, Wn
is width, Hn is height, and Cn is channel number of the nth

feature map.
To get SR image with more realistic structure and texture

details, the adversarial loss is added, as follows:

lSRgen = l imggen + l
feat
gen (5)

where, l imggen is the image GAN loss term for the generator,
corresponding to the loss function l imggen for the image discrim-
inatorDimgθD . And l featgen is the feature GAN loss of the generator,

corresponding to the loss function l featgen of the feature discrim-
inator DfeatθD

. The generator and discriminators are trained by

alternatingly minimizing lSR, l imgdis , and l
feat
gen .

The adversarial loss of image l imggen is used to synthe-
size high-frequency texture details in the pixel space of SR
images, as follows:

l imggen = − log
(
DimgθD

(
GθG

(
ILR
)))

(6)

The loss function of the image discriminator can be
expressed as follows:

l imgdis =− log
(
DimgθD

(
IHR

))
− log

(
1− DimgθD

(
GθG

(
ILR
)))

(7)

where, GθG
(
ILR
)
is the SR image generated by generator,

DimgθD
(
GθG

(
ILR
))

is the probability that the image GθG
(
ILR
)

is an image sampled from the distribution of real HR images,
and DimgθD

(
IHR

)
is the probability that the image IHR is an

image sampled from the distribution of real HR images.

The GAN loss of feature l featgen is used to synthesize struc-
tural details in the feature space of SR images, as follows:

l featgen = − log
(
DfeatθG

(
φn
(
GθG (I

LR)
)))

(8)

The loss function of the feature discriminator can be
expressed as follows:

l featdis = − log
(
DfeatθD

(
φn
(
IHR

)))
− log

(
1− DfeatθD

(
φn
(
GθG

(
ILR
))))

(9)

where GθG
(
ILR
)
is the SR image generated by genera-

tor, φn
(
GθG

(
ILR
))

represents the feature map obtained by
inputting the generated SR image into the VGG19 network
and passing the nth convolution layer and activation func-
tion, DfeatθD

(
φn
(
IHR

))
is the probability that the feature map

DfeatθD

(
φn
(
IHR

))
is sampled from the distribution of the real

HR image feature maps, DfeatθD

(
φn
(
GθG

(
ILR
)))

is the prob-
ability that the feature map φn

(
GθG

(
ILR
))

is sampled from
the distribution of the real HR image feature maps.

E. PARAMETERS OF PI-SRGAN NETWORKS
The accuracy of the selection of neural network parame-
ters has an effect on the complexity of network calculation,
network training time and the accuracy of the target task;
in particular the selection of generator network parameters
plays a vital role in the quality of the generated image.
Consequently, PI-SRGAN choose primarily the adjustable
weight coefficient λ in Eq. (2) and the number n in Eq. (3) of
residual blocks in the generator loss function, and the paper
will discuss the necessity of long skip connections.

In this process, the ImageNet dataset, which contains
1,000 categories of images, with each category containing
millions of images, is used as the training e dataset. Select-
ing randomly 10,000 images in the ImageNet dataset with
width and height greater than 400 pixels and cut them to
224 × 224 as real HR images, and then using bicubic interpo-
lation to downsample these HR images to obtain the 56× 56
low-resolution input training images One hundred images
were selected randomly from the Set5 dataset. The real HR
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images were obtained by clipping and the LR images were
obtained by downsampling as the test dataset.

TABLE 1. Impact of different values on network performance.

1) ADJUSTABLE WEIGHT COEFFICIENT λ
The adjustable weight coefficient λ is used to balance
the overall visual perception and high-frequency structural
details of a reconstructed image. In this paper, the weights
are set to 0, 1, 10, 100 respectively. The extracted images in
the ImageNet dataset are used for training, and the images
in the Set5 dataset are used for testing. Currently, the com-
monly used full reference objective evaluation criteria for
image quality are the PSNR and structural similarity index
measurement (SSIM). The PSNR reflects the error between
the corresponding pixels of two images. The higher the value
of PSNR is, the less distortion the output image has and
the better the quality of image reconstruction is. SSIM is
an evaluation index of similarity between two images. The
closer the value of SSIM is to one, the closer the output
image is to the original HR image, that is, the better the
reconstruction effect is. Therefore, when testing images, the
PSNR and SSIM of all tested images are calculated and their
sum is averaged. The results are shown in Table 1.

As can be seen from Table 1, the PSNR and SSIM of an
SR image are the lowest when λ was set to zero. At this
time, the loss function of the generator includes only the
perceptual similarity loss. The PSNR and SSIM are improved
after adding the adversarial loss, but with increasing values
of λ, the PSNR and SSIM decrease. It can be seen that with
the increasing of the λ value, the network pays increasingly
more attention to the high-frequency details of the image and
ignores the overall quality of the image, thereby reducing the
performance index of the image. Therefore, the adjustable
weight coefficient λ was be set to one.

2) RESIDUAL BLOCK NUMBER n OF GENERATOR
The more residual blocks there are, the more accurate the
features extracted by the residual blocks are and the closer SR
images are to the real HR images. However, toomany residual
blocks will result in the saturation of accuracy and an increase
in network computational complexity. Consequently, choos-
ing the appropriate number of residual blocks can reduce both
the computation amount and the training time of the network
on the premise of ensuring the SR image quality.

The SRGAN algorithm uses 5 residual blocks in the gen-
erator network. With referring to this value, setting 5 to
20 residual blocks are set for the generator, respectively. The
images from the ImageNet dataset are extracted for training
and the images in the Set5 dataset are used for testing. The
PSNR and SSIM of all SR images were calculated and their
sum averaged. The results are shown in Table 2.

It can be seen from Table 2 that when the number of
residual blocks is small, both the PSNR and SSIM improved
with the increase in the number of residual blocks. How-
ever, the improvement range of the performance indicators
decreases with the increase in the number of residual blocks.
Until the number of residual blocks is increased to 16, both
the PSNR and SSIM reach the best values. Subsequently, the
continuous increase in the number of residual blocks had no
obvious effect on performance. When the number of residual
blocks is 16, the generator network of PI-SRGAN achieves
the best performance. Therefore, the number of residuals in
the generator network of PI-SRGAN is set to 16.

3) THE NECESSITY OF LONG SKIP CONNECTIONS
To verify the necessity of long skip connections, the genera-
tion network with long skip connections is shown in Fig.6(a),
and the generation network without long skip connections is
shown in Fig.6(b).

The images in the ImageNet dataset are extracted to train
the GANs that remove the long skip connections and retain
the long skip connections, respectively. The images in the
Set5 dataset are used for testing. The PSNR and SSIM of all
testing images are calculated and their sum is averaged. The
results are shown in Table 3.

It can be seen from Table 3 that the generator network with
long skip connections has higher values of PSNR and SSIM
than the generator network without long skip connections.
Because long skip connections can indeed improve the qual-
ity of SR image generation, the generator in PI-SRGAN adds
the long skip connections.

IV. EXPERIMENT AND ANALYSIS
In Section III.B, Section III.C and Section III.D, the network
structures and parameters have been determined. However,
to apply PI-SRGAN method to super-resolve the positron
images, it is necessary to train the network parameters with
the positron images dataset. The trained network is used for
super-resolving experimental images. In this section, the net-
work training process and experimental processing will be
described in detail, and the comparison results between PI-
SRGAN and other image SR algorithms will be shown.

A. DATA PRE-PROCESSING
Different learning-based SISR methods use different training
sets. For example, SRCNN uses ImageNet as its training
set, ESPCN uses VDCL as its training set, SRGAN uses
ImageNet as its training set. SolidWorks was used to design
a group of industrial components to obtain positron images
to train final PI-SRGAN network. As shown in Fig.7, all ten
of the models can be regarded as foreign objects with differ-
ent shapes placed in the inner cavity of circular pipes. The
ten models are simulated by GATE to obtain the projection
data. Then, the positron images of the ten groups of models
are reconstructed by using the OSEM algorithm, as shown
in Fig.8.
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TABLE 2. Influence of the number n of residual blocks on network performance.

FIGURE 6. Comparison of generated networks with and without long skip connections.

TABLE 3. Impact of long skip connections on network performance.

A training network requires a large number of LR and
HR images. However, the number of designed models is
limited. The research cut, rotated, panned and zoomed the
positron images to expand the positron images dataset and to
increase the generalization ability of PI-SRGAN model and
avoid overfitting. Then, the study obtained the HR images
dataset with 224 × 224 pixels, and down sampled (4×) the
HR images to obtain the corresponding 56 × 56 LR images
dataset.

For each group of models, 1,170 positron images were
selected randomly and down sampled to obtain 1,170 sets
of datasets consisting of HR and LR images. Eighty percent
of the dataset is used as the training set, and the remaining
20% is used as the verification set. The dataset is used to
train PI-SRGAN network, and the TensorBoard tool is used
to visualize the change in the loss function of the training
process of the generator, as shown in Fig. 9.

Fig.9(a) shows the change in the loss function of the image
generated by the generator in the pixel space, and Fig.9(b)
shows the change in the loss function of the image generated
by the generator in the feature space. It can be seen from
Fig.9 that the loss of PI-SRGAN network tends to converge
in both the pixel space and the feature space, with the result
that the obtained SR image gradually approaches the real HR
image from the pixel space and the feature space.

B. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the SR effect of the PI-SRGAN algorithm for
positron images, two groups of PET simulation experiments
and two groups of PET actual experiments were designed.
And the research used different experimental models to ver-
ify the effects and advantages of PI-SRGAN from different
aspects.

To verify the performance of PI-SRGAN, two groups of
simulation experiments were designed. The first model is the
classical Derenzo model, as shown in Fig.10(a). The second
model is a hydraulic cylinder model. A small nut was put
in the inner cavity of the hydraulic cylinder for simulation
experiments, as shown in Fig.10(b).

The two groups of models are simulated byGATE to obtain
the projection data. Then, the projection data is reconstructed

VOLUME 9, 2021 121337



F. Xiong et al.: PI-SRGAN

FIGURE 7. Ten groups of solidworks simulation models.

FIGURE 8. Partial positron images of the ten models.

FIGURE 9. Loss function changes of generator.

by OSEM to obtain the positron images of the two models.
The resolution of the positron image of the Derenzo model
is 128 × 128, as shown in Fig.11(a). The resolution of the
positron image of the cavity of the hydraulic cylinder model
is 278 × 278, as shown in Fig.11(b). In Fig.11, it can be
seen that the phenomenon of the positron image being very
fuzzy; it is impossible to see the details clearly. Therefore,
it is necessary to SR the images in Fig.11 to improve image
clarity and enhance image quality.

To test whether PI-SRGAN is superior to other SR algo-
rithms in positron image, the paper use Bicubic algorithm,
SRCNN algorithm, ESPCN algorithm, SRGAN algorithm
and PI-SRGAN algorithm to super-resolve (4×) the positron
images in Fig.11. The positron images of the Derenzo

FIGURE 10. (a) Derenzo model, (b) Hydraulic cylinder model.

model and the cavity in hydraulic cylinder model are recon-
structed using these methods, and the reconstructed images
are shown in Fig.12 and Fig.13, respectively. From these
figures, it can be seen that compared with other SR algo-
rithms, the SR image reconstructed using PI-SRGANmethod
has improved visual perception after zooming in on details,
the texture of the image is clearer, there are almost no fuzzy
or high-frequency artefacts and the high-frequency structure
details are better.
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FIGURE 11. (a) Positron image of the derenzo model, (b) Positron image
of the hydraulic cylinder model.

Subjective assessment might have visual differences as a
result of individual differences. To evaluate the results more
objectively, two common testing indices were used in image
processing: PSNR and SSIM, which show the superiority
of the PI-SRGAN algorithm more accurately in compari-
son with other SR algorithms. When the SR factor is four,
the PSNR and SSIM values of SR images reconstructed
using these two models are calculated. Table 4 shows the

PSNR and SSIM values of Derenzo model positron images
and hydraulic cylinder model positron images. The results
of PI-SRGAN method are better than the comparison algo-
rithms in PSNR and SSIM, and the SR images generated by
PI-SRGAN have the best performance index. Consequently,
these results show that PI-SRGAN is superior to other SR
algorithms.

To verify the effect of PI-SRGAN on the positron image in
actual experiments, two groups of intracavity defect detection
experiments were designed. In the first group, the defect
detection experiment of the inner cavity of the U-shaped pipe
was designed. The object of the first experiment is a model
with grooves in the U-shaped pipe; the figure in Fig.14 (a) is
the solid model drawn by SolidWorks. To further verify the
effectiveness of PI-SRGAN in practical applications, the sec-
ond group of experimental models adds expansion and irreg-
ular crack defects that the narrowest crack defect is 1 mm on
the annular pipe to verify the imaging effect of PI-SRGAN
for small defects. The second model is shown in Fig.14(b).

FIGURE 12. SRIR results of the positron image of the derenzo model.

FIGURE 13. SRIR results of the positron image of the inner cavity in hydraulic cylinder model.
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TABLE 4. Quantitative comparison of different SR algorithms for positron images in simulation.

TABLE 5. Quantitative comparison of different SR algorithms for positron images in actual experiment.

FIGURE 14. (a) Experimental model of inner cavity in a U-shaped pipe,
(b) Experimental model of a crack.

The two groups of experiments used Trans-Pet Explorer-
180 to detect and sample the gamma photons in a short scan
time and low count state. The experiments used a deoxyglu-
cose solution labelled by 18F with a total activity of 1mCi as
radionuclides, and the scan time was set for 2 minutes. The
study used OSEM to reconstruct the experimental projection
data quickly and obtained the corresponding positron image,
as shown in Fig.15. Fig.15(a) is the positron image of the
defect detection experiment in the inner cavity of the pipeline,
and the pixel size of the image is 128× 128. Fig.15(b) shows
the positron image of the crack experiment. The pixel size of
the image is 398 × 398.
As can be seen from Fig.15, the positron image recon-

structed by fast sampling has problems such as low resolution
and fuzziness. It is difficult to see the specific texture details
inside the image and to identify the specific shapes of the
parts, which cannot meet industrial testing standards. Con-
sequently, SRIR processing is required for Fig.15 to enrich
image details, to improve image clarity and to enhance image
quality.

The paper used the Bicubic, SRCNN, ESPCN, SRGAN
and PI-SRGAN algorithms to SRIR the images in Fig.15,
respectively. These SR images are compared from the sub-
jective effect and objective indexes. To ensure objective and
accurate comparison, all network models are set to the ampli-
fication factor of four, and the resolution of the reconstructed
imagewas four times the original image. The results of the SR
images of Fig.15 (a) are shown in Fig.16, and the SR images
of Fig.15 (b) are shown in Fig.17.

FIGURE 15. (a) Positron image of the U-shaped pipe cavity defect
experiment, (b) Positron image of the crack experiment.

As shown in Fig.16, the image obtained by PI-SRGAN
shows the shape marked by the red box clearly, and the
shapes are consistent with the model. As shown in Fig.17,
the crack details of the image reconstructed using PI-SRGAN
can be seen clearly. In addition, it can be seen from
Fig.16 and Fig.17 that the SR image obtained by PI-SRGAN
is improved significantly in visual perception, the tex-
ture details of the image are clearer, and there are almost
no fuzzy and high-frequency artefacts. This further shows
that PI-SRGAN can enrich the details of the image, can
improve the quality of the image and is superior to other SR
algorithms.

Generally, the original reference images cannot be
obtained in many practical applications. PSNR and SSIM
are not suitable for evaluating actual experimental images.
The study used the blind image quality assessment
indices [44], [45] such as the standard deviation (SD) and
average gradient (AG) to evaluate the quality of these positron
images. The SD is the degree of dispersion of grey values
of image pixels relative to the average value. The larger the
SD is, the more scattered the grey level is in the image and
the better the image quality is. The AG is the expressive
ability of the image for the contrast of small details and the
texture features. The greater the average gradient value is,
the clearer the image will be. The SD and AG of the SR
images reconstructed by the five algorithms are calculated
respectively. The results are shown in Table 5.
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FIGURE 16. SRIR results of positron image of the U-shaped pipe cavity defect experiment.

FIGURE 17. SRIR results of positron image of the crack experiment.

From the calculation results in Table 5, it can be seen
that the SD and AG of the SR image reconstructed by
PI-SRGAN are higher than the corresponding values of the
images obtained by the comparison algorithms. It can be
seen that the SR images generated by PI-SRGAN have better
performance in the sense quality. The experiment shows that
PI-SRGAN algorithm is helpful in restoring high-frequency
information such as texture details to obtain better visual
effect and enhance image quality effectively, and it is also
better than the other algorithms in practical application.

V. CONCLUSION
This research proposes a deep neural network (PI-SRGAN)
for super-resolution of low-resolution positron images based
on GANs, which can perform 4× super-resolution recon-
struction of positron images of industrial parts. For positron
images in simulation experiments, the evaluation values (i.e.
PSNR and SSIM evaluation indexes) of SR positron images
generated by PI-SRGAN are higher than evaluation values of
other methods.Meanwhile, the SR images have better subjec-
tive perception which was judged by professionals. In actual

experiments, directly generating HR positron images will
incur high costs. Existing quantitative assessment measures,
such as PSNR and SSIM, are not appropriate to mea-
sure the SR images when the input of PI-SRGAN is LR
positron image obtained in actual experiments. Thereby, this
research evaluates the SR images about actual experiments
by the standard deviation (SD) and average gradient (AG)
of the blind image quality assessment indexes. The subjec-
tive effect and objective data of this work are superior to
other comparison methods. PI-SRGAN method introduces
additional residual blocks and adds long skip connections,
which strengthen feature propagation and accelerate feature
reuse, thereby improving feature utilization. Furthermore,
an image discriminator and a feature discriminator simulta-
neously distinguish between generated SR images and real
HR images from pixel space and feature space. In conse-
quence, the discriminators can render the generator to pay
more attention to high-frequency texture and structural details
to reconstruct high quality SR positron images. Compared
with other super-resolution algorithms such as SRGAN,
PI-SRGAN can extract the features of LR positron images

VOLUME 9, 2021 121341



F. Xiong et al.: PI-SRGAN

more comprehensively, improve the utilization of feature
information, and restore the texture information of images
more fully. PI-SRGAN further improves the quality of the
reconstructed image while accelerating the convergence of
the model. This research fully proves the effectiveness and
practicability of the PI-SRGAN. Thus, it can improve the
ability of positron rapid non-destructive testing in industrial
applications.

In the future, this research can be expanded in the fol-
lowing parts. First of all, due to the limitation of the size
of dataset, the performance of PI-SRGAN in image supe-
resolution of unknown industrial parts may not up to the
part that has already appeared in dataset. For increasing
the generalization ability of the model, researchers could
collect more high-resolution positron images and they can
conduct transfer learning based on the dataset and weights
provided by this research. What’s more, by the reason of the
positron images dataset is relatively pure dataset, noise can
be added into the training dataset to improve robustness of
the model. Similarly, the proposed model can be applied in
various scenarios to improve flexibility and robustness of the
model. Second, as self-attention [46], [47], transformer [46]
and brand new MLP [48] come to the stage of CV field,
the original pure CNN structure can be replaced by a new
neural network module, or extra neural network layer can be
added in the original network. This practice may improve the
capacity and performance of themodel, such as improving the
quality of the super-resolution images, reducing the amount
of computation required in model training, and increasing the
authenticity of the super-resolution images inferred by the
model. Thirdly, aiming to making the model super-resolve
video stream data, model pruning algorithm can be applied on
PI-SRGAN to remove redundant parameter branches, reduce
the computational amount required by the model forward
reasoning, and then speed the super-resolution of positron
image up.
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