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ABSTRACT A current trend of research focuses on artificial intelligence based cryptographywhich although
proposed almost thirty years ago could not attract much attention. Abadi and Anderson’s work on adversarial
cryptography in 2016 rejuvenated the research area which now focuses in building neural networks that are
able to learn cryptography using the idea from Generative Adversarial Networks (GANs). In this paper,
we survey the most prominent research works that cover neural networks based cryptography from two
main periods. The first period covers the oldest models that have been proposed shortly after 2000 and
the second period covers the more recent models that have been proposed since 2016. We first discuss the
implementation of the systems from the earlier era and the attacks mounted on them. After that, we focus on
post 2016 era where more advanced techniques are utilized that rely on GANs in which neural networks
compete with each other in order to achieve a goal e.g. learning to encrypt a communication. Finally,
we discuss security analysis performed on adversarial cryptography models.

INDEX TERMS Cryptography, deep learning, neural networks, generative adversarial networks.

I. INTRODUCTION
With the rapid expansion of communication through net-
works among multiple terminals (computers, smartphones
etc.), it is stringent to develop technologies to protect the
information exchanged in those networks. Often, when one
device communicates with one or more devices, a crypto-
graphic protocol is applied to encrypt all the transmitted
data in order to protect the communication(s). Two kinds
of cryptographic protocols are typically considered in the
literature: one to establish a common secret key, and the
other to encrypt the messages exchanged. In the practical
applications, the lightweight and secure protocols are highly
desired especially for some terminals with low performance,
such as devices with limited battery-lives. To meet the appli-
cation requirements, cryptography is consistently evolving
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through time according to the extensive development and
improvement on the security of cryptographic protocols.
Among others, the RSA cryptosystem [1] is widely used as
a standard for public-key encryption and digital signature;
and the Rijndael algorithm (also known as AES) [2] for
symmetric encryption.

Machine learning plays amajor role in cryptanalysis, a sub-
domain of cryptology [3]–[5]. Roughly speaking, cryptanal-
ysis aims to test and analyze the security of cryptographic
protocols by feeding different inputs to the cryptographic
algorithm and analyzing the outputs in order to find a com-
mon or repetitive pattern in the outputs that might help find
the secret key or even decrypt the ciphertext without access to
the key. Machine learning can help learn from the data gen-
erated by the cryptographic algorithm and detect significant
patterns [5]–[7]

In late 90’s and early 2000’s, several cryptographic proto-
cols using machine learning and deep learning models were
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proposed such as [8]–[10], but were deemed insecure and
even some concrete attacks [11] were shown subsequently.
The interest in neural network based cryptography took a dip
because of the fact that simple computations, even as basic
as exclusive-or (XOR) operation could not be computed by
simple neural networks.

However recently, Abadi and Andersen [12] initiated a
research direction on learning to protect communications
with adversarial neural cryptography. Specifically, it aims
to create neural networks that can learn to encrypt a com-
munication without being taught any specific encryption
algorithm. This technique is based on generative adversarial
networks (GANs), in which neural networks try to achieve
a goal in the presence of an adversary (i.e. another neural
network) by pitting against each other [13]. The main idea
behind GANs is to have two neural networks competing in
order to generate a new set of data that can be taken as the
real data. GANs are powerful in their ability of mimicking
various types of data, and hence broadly used especially in
image and voice generation [14]–[16] to generate synthetic
data which are indistinguishable from the true data distribu-
tion. Following Abadi and Andersen’s work [12], a flow of
research appeared in order to study the security of their model
(e.g. [17]), as well as extend it to an assumed perfectly secure
protocol [18], and many more [19]–[22].

In this paper, we aim to survey the recent progress on neural
networks based cryptography, how it evolved since the late
90s, explain the model proposed by Abadi and Andersen [12]
and how it learns to encrypt a communication. We will also
see how other researchers [19], [20] ported this model to
steganography. Finally, we will evaluate the security of the
model proposed by Abadi and Andersen [12] based on the
security analysis done by Zhou et al. [17]. We will also see
how it was improved by Coutinho et al. [18] and Li et al. [23].

The remainder of this paper is organized as follows.
In Section II, we review the technical terms and techniques
that are used in this survey by giving the essential terminology
on neural networks, deep learning (DL), generative adversar-
ial neural networks (GANs) and how neural networks work
in general.

In section III, we discuss the Tree Parity Machine which
is deemed to be the first work in neural networks based
cryptography [9]. We will see how it was broken in [11] and
some of its improvements especially in [24]. Other works
will also be discussed. We will then discuss the GANs based
encryption technique [12] and how the neural networks learn
to encrypt the communication as well as some follow up
works [19], [20], [22].

In Section IV, we will analyse the security of the GANs
based encryption model proposed by Abadi and Ander-
sen [12]. The security analysis is focused on the randomness
of the ciphertext in order to see if it reveals any information
about the key. We will finally see how it was improved by
Coutinhou et al. [18].

Finally, in Section V, we give a conclusion on the survey
as well as possible future research paths.

II. BACKGROUND
In this section we introduce the background material that
will be used in the later sections. We begin with some basic
terminologies.

A. CRYPTOGRAPHY
Cryptography’s main aim is towards data protection and com-
munication security. Cryptographic protocols are designed in
a way that only the authorized parties are able to join read the
communication.

In the early days, the main focus of cryptology was to
design systems related to secure encryption schemes and
their analysis. However with the massive growth in commu-
nications, the field has acquired new sets of techniques and
protocols to make encryption tasks more reliable and less
dependent on physically meetings to exchange an encryp-
tion/decryption key or to change it.

In terms of security, cryptography can be broadly divided
into two main models – information theoretic security and
computational security. In the former model the adversary,
against whom a cryptographic protocol is supposed to ensure
security, is taken to be computationally unbounded and in
the latter one the adversary is assumed to be bounded with
respect to its computational power. We make a note of the
fact that any cryptographic primitive providing information
theoretic security does not depend on any kind of hard-
ness assumption and hence cannot be broken (in a prov-
able manner) even with unlimited computing power. On the
other hand, computationally secure primitives are based on
hardness assumptions e.g. integer factorization, discrete log
computation where the security is based on the infeasiblility
of obtaining any ‘‘practical’’ algorithm to break the hardness
problem(s).

Among several important existing cryptographic primi-
tives our main area of focus in this paper will be on key
exchange, symmetric key encryption and steganography.

1) ONE TIME PAD
One time pad (OTP) is a symmetric key encryption technique
which requires an n bit message to be xor-ed with a uniform
n bit key to compute the ciphertext. The recipient who is
already in possession of the n bit key can recover themessage.
It can be observed that this primitive is an information the-
oretically secure encryption scheme. However, OTP suffers
from some serious drawbacks – size of the secret key has
to be same as the message as well as the key has to be
uniformly distributed over the key space and that the key
cannot be reused. For everymessage an independently chosen
key has to be used and this makes the scheme impractical to
implement.

B. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
Artificial Intelligence is the domain that aims to build robots
and computer software that are able to mimic the human
behavior. An AI software or robot can be either explicitly
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programmed with a big stack of conditions and actions or it
can be a self learning program that learns how to do or mimic
specific tasks.

Machine learning is a subset of AI that creates computer
programs that learn to do a specific task by building a model
from many observable examples. For example, in the case
of machine learning, an algorithm builds a model based on
the features given and based on those features, the model
can perform predictions, recognition or actions depending on
the task. Machine learning also contributes in the domain of
cryptanalysis – researchers can, for example, use machine
learning algorithms to detect patterns in ciphertexts that can
help break the encryption technique or find flaws inside
it.

1) CLASSIFICATION TASKS
Classification tasks are considered to be one of the most
widely used techniques in machine learning. The machine
learning algorithm aims to predict the class of a given
input based on its training on already observed example-
inputs. For example, a machine learning algorithm that can
classify an input picture of a person into a class of facial
expressions – the class of facial expressions can be
{smile, laugh, cry, . . .} and the goal of the algorithm would
be to assign each picture to its correct class.

Another important example of classifications tasks is spam
detection, themachine learning algorithm learns to classify an
e-mail to be either spam or not. Machine learning classifica-
tion tasks are countless – besides spam detection and image
recognition some applications are used in our daily life such
as credit approval, advertising, etc.

2) NEURAL NETWORKS
Neural Networks are one of the building blocks of machine
learning algorithm and are inspired from the structure human
brain which is composed of a large number of neurons con-
nected to each other and messages (signals) transit through
each of them.

The basic structure of neural networks are organized into
layers as shown in Figure 1. The first layer (Input Layer) is
composed of the neurons that read the data without changing
it; The second layer (Contains one or more hidden Layer) is
composed of the neurons processes the data. Lastly, the final
layer is the output layer and generally the activated neuron in
the output layer is the decision, action or recognition made by
the neural network. It can either have a single neuron which
contains a value or have multiple neurons where each neuron
represents a class or a possibility. In the case of an output
layer with multiple neurons, each neuron represents will have
a value and usually the neuron with the higher value is the
neuron activated.

When dealing with machine learning, we only use one
hidden layer. But when dealing with deep learning, there is
more than one hidden layer. Each layer will have a specific
task such as features extraction, data processing, etc.

FIGURE 1. General Structure of Neural Networks.

3) SUPERVISED LEARNING AND UNSUPERVISED LEARNING
To train a machine learning algorithm, there are two main
methods: Supervised Learning and Unsupervised Learning.

In supervised learning, the model is trained with data that
is labeled. This means that the training data is already tagged
with the correct answer and the neural networks compare
their prediction with the correct answer. Supervised learning
is mainly useful when trying to predict, expect or foresee
a behavior or event based on previous data. For example
training a neural network to test if a person can get a credit or
loan based on his/her credit payment history.

However in unsupervised learning the training is done
without any labeled data: extraction is done on deterministic
features from the data before processing it. Nearest neighbor-
hood algorithm is one such example of unsupervised learning.

C. TYPES OF NEURAL NETWORKS
There are several different types of neural networks and each
are designed for a specific target. We discuss the most used
ones in the following.

1) FEEDFORWARD NEURAL NETWORKS
This is one of the simplest types of neural networks. In a feed-
forward neural network, the data passes through the different
input nodes till it reaches the output node.

This means that data moves in only one direction from the
first tier until it reaches the output node. This is also known as
a front propagated wave which is usually achieved by using
a classifying activation function.

2) CONVOLUTIONAL NEURAL NETWORKS (CNN)
These neural networks are mostly used in image and video
editing, natural language processing (NLP) and recommen-
dation systems as CNNs produce very efficient results.

A CNN contains one or more convolutional layers that can
either be completely connected or pooled. Before passing
the data to the next layer, the convolutional layer uses a
convolutional operation on it.
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TABLE 1. Summary of the contributions in GANs based cryptography.

D. GENERATIVE ADVERSARIAL NEURAL NETWORKS
(GANs)
Generative Adversarial Networks [13], or GANs for short,
are an approach to generative modeling using deep learning
methods, such as convolutional neural networks.

Generative modeling is an unsupervised learning task that
involves automatically discovering and learning the regulari-
ties or patterns in input data in such a way that the model can
be used to generate or output new examples that plausibly
could have been drawn from the original data.

GAN has proven to be a useful approach to build crypto-
graphic tools in presence of a neural network considered as
an adversary.

One should note however that while adversarial learning
using GANs is generally used for image processing, it is not
limited to that. GANs-Based cryptography is an example of
that. Another example is by Dash et al. [25] where the authors
investigate whether it is possible to apply adversarial neural
networks for playing the popular hide-and-search board game
called Scotland Yard. The authors show that neural networks
can indeed learn to assess the game like humans and find the
hider.

III. NEURAL NETWORKS BASED CRYPTOGRAPHY
Deep Learning based cryptography is a fairly new way of
doing cryptography. While first attempts to design crypto-
graphic protocols based on machine learning were imple-
mented in the late 90s, the security was not satisfying. The
main idea was to use make neural networks learn a specific
cryptographic task. For example, use two neural networks and

FIGURE 2. 2-party symmetric communication general scheme.

train them to learn how to exchange a key or encrypt and
decrypt sequences of data. This is different from common
methodologies where algorithms are explicitly implemented
to perform the specified task.

As mentioned above, deep learning based cryptography is
fairly new, with very few research works especially before
the development of GANs and the advances in deep learning.
One of the first papers [9] related to this research direction
was back in 2000, showcasing a secure key exchange through
the synchronization of two neural networks. However the
model was proven to be vulnerable by Klimov et al. [11].
After the development of GANs, a research spurring paper
appeared in late 2016, featuring two neural networks learn-
ing a symmetric key encryption system in the presence of
an adversary [12]. Several follow up works performed a
study on the security [17], ported it to steganography [19],
[20] or improved its security [18]. More details and a secu-
rity analysis are summarized in Table 1 and explained in
Section IV.

Figure 2 shows the default setup of a secure symmetric
encryption between two parties. Two parties Alice and Bob
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TABLE 2. Summary of contributions in Neural Networks based Cryptography.

share a secret key K , the Encryption/Decryption algorithm is
known to all including the Eavesdropper Eve that is listening
to the communication but cannot replay messages. When
Alice wants to send amessageP, she inputs it to the algorithm
along the secret keyK in order to encrypt it. The cipher textC
is the output of the algorithm and will be sent publicly to Bob
who will use the decryption algorithm in order to decrypt the
ciphertextC using the same keyK that have been used during
encryption by Alice.

A common problem in this kind of communications is
how to share the secret key K without having to meet
physically.

There are many classical cryptography methods to share
a secret key between two parties e.g. the Diffie-Hellman
Key Agreement Protocol [26]. One can also use public key
encryption protocols such as RSA [1] to encrypt a secret key
and send it to the recepient. However our focus will be on
neural networks based protocols.

One very popular protocol by Kanter et al. [9] was pro-
posed during the year 2001 and showed how two neural
networks can learn to exchange a secret key without using
any sort of known cryptography methods. The mechanism
will be discussed in Section III. Table 2 highlights the most
prominent works.

A. SECURE EXCHANGE OF INFORMATION BY
SYNCHRONIZATION OF NEURAL NETWORKS
Kanter et al. [9], were among the first researchers to make use
ofmachine learning to learn cryptography. In their case, it was
to perform a key agreement between two neural networks.

The idea consists of having two neural networks called
Tree Parity Machines (TPMs) and synchronize them to con-
vey on a key securely in the presence of passive eavesdrop-
pers that have access to the communication but cannot change
or replay messages.

The structure of the two neural networks considered
in [9] consists of three layers. A single-neuron output layer,
K hidden neurons and K · N input neurons as shown
in Fig. 3.

The leading party (Alice) starts with generating a random
input of size N and shares it publicly with the other party
(Bob). They both pass them through their neural network and
get the output O. They compare their outputs and if they
are equal then the two neural networks are said to be syn-
chronized (have the same weights) and can use their weights
vector W as a secret key [9].

However shortly after this proposal, Klimov et al. [11]
three working methods that can break the protocol. We
describe the three attacks in the following.
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FIGURE 3. Neural Network structure of the parity tree machine.

B. ANALYSIS OF NEURAL CRYPTOGRAPHY
Klimov et al. [11] analysed and showed that the work done by
Kanter et al. [9] is insecure and impractical as it is vulnerable
against different attacks that are explained below.

1) THE GENETIC ATTACK
This attack looked at the two neural networks from the biolog-
ical point of view to make an attack using genetic algorithms.
The general idea is to simulate a big population of neural
networks that have the same structure as Alice and Bob and
train themwith same public inputs. The neural networks from
the population whose outputs are similar to the two targeted
neural networks, are now synchronised with the targets and
can read the communication between them.

2) THE GEOMETRIC ATTACK
In this attack, the authors simulate each input of the two tar-
get neural networks as a K random hyperplanes X1, . . . ,XK
corresponding to K perceptrons and the weights of each
neural network as K pointsW1 . . .WK in the N-discrete space
U = {−L, . . . ,L}N where Wi = (wi1, . . . ,wiK ). Concretely,
an attacker constructs a neural network with random weights
but with the same neural network structure as the target and
at each step of training, the weights are updated according to
these rules:
• If the two target neural networks have different outputs,
the attacker does not update his weights.

• If the two target neural networks have the same outputs
and the attacker also has the same output, the neural
network’s weights will be updated in the normal way.

• If the two target neural networks have the same outputs
but not the attacker, then the attacker should find an i0
that minimises this formula:

∣∣∣∑N
j=0 w

C
ij · xij

∣∣∣ and updates
the weights assuming the hidden bits and the target’s
outputs.

The authors of [9] however conducted a study on the geo-
metric attack in [27] to prevent it. In their study, they deducted
that neural networks with a larger value N of the hidden
units will increase the complexity of the geometric attack
exponentially and therefore render it difficult to conduct.

Brute force attacks and similar attacks are also affected by
the size of N .

3) THE PROBABILISTIC ATTACK
In the probabilistic attack, the attacking Tree Parity Machine
is actually a probabilistic Tree Parity Machine this means that
the weights are actually probabilistic weights pi,j(l) = l ∈
[−L,+L] where each probabilistic weight is a probabilistic
distribution that represents the probability of the Tree Parity
Machine A taking l as a parameter. Then, by passively eaves-
dropping the inputs xi,j the attacker can use either the Hebbian
learning rule or the Monte-Carlo method to update pi,j(l) and
end up with identical weights to the parties communicating.
This is mainly due to the limited possible values in [−L,+L]
which makes them easy to simulate.

The work done in [9] was improved by
Prabakaran et al. [31]. The authors worked on a solution for
the probabilistic attacks that were used before to break [9].
In order to improve the security and remove the possibility of
an attacker passively synchronizing, they introduced queries:
instead of generating random inputs, Alice and Bob generate
(in turn) at every iteration a set of inputs that is correlated to
their respective weights, by doing this, the probability of an
attacker passively synchronizing is low because the input is
either linked to Alice’s weights or Bob’s weights. The inputs
are generated using a specific algorithm and do not reveal
much information about the weights of the neural network
and allow to have a mutual influence between A and B which
highly reduces the probability of a successful passive attack.

C. IMPROVEMENTS TO THE TREE PARITY MACHINE
The tree parity machine [9] has seen several improvements
and attacks since it was first introduced.

One of those improvements is the work done by
Reyes et al. [28] where the authors transformed the Tree
Parity Machine into a Permutation Parity Machine (PPM) to
improve the security.

A Permutation Parity Machine has the same overall neural
network structure as a Tree Parity Machine; however the
number of parameters and their values are different from the
TPM.

A Permutation Parity Machine is defined as a neural net-
work with K hidden units just like the Tree Parity Machine.
These units are simple perceptrons (neurons) each having its
own input. There are N units with N inputs that take binary
values (either 0 or 1).

As for the weights W , they are drawn from a state vector
S ∈ {0, 1}G where G must be greater than K · N .
The ith hidden units are calculated using an exclusive or

between the weight w and the input x. The final output is
either 1 or 0.

Reyes et al. [28] conduct comparative attacks on the TPM
and the PPM. The results show that the Permutation Parity
Machine performs better against the attacks proposed by
Klimov et al. [11] compared to the Tree Parity Machine.
The authors then demonstrate that the probability order of a
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successful attack on the Permutation Parity Machine can be
as low as 10−20 when the value of N is equal to 16 and the
value of G is equal to 128.
The probability of a successful attack is demonstrated to

be dependent on the value of G by the following formula:
PE = 1

2G−1
.

We can see that with G = 128 we have PE = 10−20.
The result is therefore lighter than the method proposed

in [27] as they use a value of 1000 for N which will signifi-
cantly increase the synchronization time and resources usage
compared to this method.

However Seoane et al. [29] demonstrate a successful prob-
abilistic attack on the Permutation Parity Machine which
therefore renders the PPM discussed by Reyes et al. [28] non-
secure.

Another improvement to the Tree Parity Machine has been
done by Salguero et al. [24]. They studied the original TPM
and proposed an optimal structure that generated a 512 bits
key. This was done by doing over 10 million simulations
with different parameters and neural network sizes. All of
these simulations were accompanied by a passive adversary
trying to synchronize in a passive way along Alice and Bob.
In their simulations, the authors showed a case where the
neural networks synchronize in a maximum of 6 seconds with
a 0% success rate for the attacker. This was done by using
the values K = 8, N = 16 and L = 23 for the structure
of the TPM. The authors finally validate their results with
the heuristic rule and the results show that a small change
in the parameters would lead to a polynomial increase of the
synchronization time and therefore the authors presume that
their method is secure enough.

D. AUTOMATIC SECURITY PROTOCOL GENERATION
Another variant of ‘‘self-learned’’ cryptography is auto-
matic generation of secure protocols or automatic secu-
rity verification for protocols. Basically, these protocols are
algorithm-based and do not rely on deep learning or machine
learning. The reason they are stated here is because they
mimic human behavior by generating or evaluating secu-
rity protocols which is considered as an Artificial Intelli-
gence Behavior. The algorithm generally has as input the
security requirements for the entity and then the algorithm
generates a protocol that is conform to the security require-
ments. A good example of protocol generation is done by
Kiyomoto et al. [32]. Another work by Ota et al. [33]
showcases automatically verifying the security in exchange
schemes in a 3-party scenario. Figure 4 shows the workflow
for generating a security protocol in the model proposed by
Kiyomoto et al. [32].

E. 3D CUBE ALGORITHM FOR THE KEY GENERATION
METHOD
Jin and Kim [30] proposed a novel method where two parties
mutually generate the same secret key. The two parties syn-
chronize by shuffling and solving a 3D cube using a neural

FIGURE 4. Workflow for generating a security protocol
Kiyomoto et al. [32].

network model. The patterns obtained during the shuffles are
combined with some XOR operations to obtain the key.

F. LEARNING TO PROTECT COMMUNICATIONS WITH
ADVERSARIAL NEURAL CRYPTOGRAPHY
Abadi-Anderson [12] were the researchers that spurred the
research in the adversarial cryptography topic. Their model
shows how to train two neural networks in a GAN setup to
learn a symmetric encryption protocol without being taught
any algorithm.

Themodel consists of two neural networks (Alice and Bob)
sharing a secret key k and their goal is to establish a secure
communication in the presence of an adversary, the third
neural network (Eve).

Alice and Bob’s goal is to communicate securely by min-
imizing the error between the original plaintext and Bob’s
deciphered output text. Eve’s goal is to reconstruct the plain-
text using the cipher text only i.e. without knowing the secret
key.

While in the setup of a GAN, Eve’s goal would be to
distinguish between the cipher text C and a random value
from a certain distribution; Her goal here is the reconstruction
of the plaintext from the ciphertext only. It does not matter
if the cipher text contains some meta data that proves that it
comes from a certain plaintext.

The setup of the neural networks is the same as in Figure 2
and the training process is separated in two phases that are
explained below:

1) TRAINING PHASE
In this phase, a random key K and a random plaintext P
are generated at every iteration. The key is known to Alice
and Bob but not Eve. P and K are fed into Alice’s neural
network which is a series of convolutions and activations in
order to transform the plaintext as shown in figure 5. The

VOLUME 9, 2021 124733



I. Meraouche et al.: Neural Networks-Based Cryptography: Survey

FIGURE 5. Encryption flow through Alice’s neural network [12].

output of Alice’s neural network (the ciphertext C) will be
fed into Bob’s neural network along the key K . Bob will have
the same neural network structure as Alice and will use the
same series of convolutions and activations to decrypt C and
output Pbob. An additional malicious neural network called
Eve with the same structure as Alice and Bob will eavesdrop
the communication all the time and use every C that she
intercepts as a input to her neural network to output Peve.
The neural networks are trained until Bob’s accuracy is as
close as possible to the original plaintext and Eve’s output
is around 50%. The reason why Eve’s accuracy needs to be
around 50% is because in probabilities, when an entity is
making random guesses; the worst case scenario is to be 50%
wrong and 50% correct. In that case, you cannot tell which
guesses are correct and which are not. In the case of Eve,
she cannot know which bits are correct and which are not.
Assuming if she was trained to be 100% wrong, she can just
flip the bits and become 100% correct. The model used is
the same as in Figure 2. Figure 6 summarizes the training
process. The loss function used to train the neural networks
is as follow:

LB(θA, θB,P,K ) = d(P,DB(θB,EA(θA,P,K ),K ))

where θA, θB, θE represent the parameters of Alice, Bob and
Eve respectively.DB represents the decryption process of Bob
and EA represents the encryption process of Alice. Lastly,
P represents the plaintext and K the secret key which means
that the loss for Bob is the distance between the original
plaintext and his tentative decrypted ciphertext PBob.

2) COMMUNICATION PHASE
After training is done, the parameters/weights that define the
state of the neural networks can be used for current and future
secure communications.

a: COMMENTS
As stated before, this model is very interesting but one might
ask ‘‘how does it differ from classical cryptography proto-
cols?’’ or ‘‘what advantages does it provide?’’. The answer

FIGURE 6. Diagram showing the training process of the neural
networks [12].

is that there is no need to build a specific algorithm with
detailed steps which is a big difference and an advantage at
the same time. The neural networks will work on learning
a method on their own without being taught or shown any
specific encryption method such as AES. The only drawback
is that it takes a considerable amount of time to synchronize
two parties for the first time as they do not have pre-saved
parameters.

Purswani et al. [34] propose the same model but use chaos
theory to generate a more random key. Their results show
that the accuracy of the model can increase up to 21% when
replacing the python built-in random function with other
techniques such as the logistic chaotic key or the Henon key.

G. STEGANOGRAPHY
Besides encryption, different researchers in two recent
papers [19], [20] pushed the idea of the model proposed by
Abadi and Andersen [12] in order to build a steganography
model based on neural networks.

In their models and similarly to the work by Abadi and
Andersen [12], Alice will use an image and a secret text
as input to her neural network. Alice’s output will be the
steganographic image that Bob is going to try to extract the
secret texts from. A different image/secret-text combination
is used at every training iteration in order to prevent Alice and
Bob from learning a model specific to one particular image
or secret text.

H. ADVERSARIAL CRYPTOGRAPHY BASED ON THE
TOPOLOGY EVOLVING NEURAL NETWORKS
The authors of this work [35] wanted to build a model based
on a new topology called Spectrum-Diverse Neuroevolution
with Unified Neural Models [22] which is basically a type
of neural network structure that can evolve by adding or
removing neurons to/from its structure. So concretely, in [35]
they do not use a fixed neural network structure but a structure
that can evolve on the go. however the training process and the
concept is the same as the original adversarial cryptography
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model proposed by Abadi and Andersen [12]. The results
from [35] show that it is possible to implement such neural
networks and they can evolve and learn a symmetric encryp-
tion protocol.

I. GAN-BASED KEY SECRET-SHARING SCHEME IN
BLOCKCHAIN
The authors of this work [36] implement a secure key sharing
scheme based onGANs. The idea consists of transforming the
text of a private key into an image which will be the original
image for the GAN. The original image is then divided into
several sub-images and each of them is encoded using DNA
coding. Finally, the proposed scheme is trained to extract the
secret key using the encoded sub-images. This scheme helps
lower the hardness of recovering a lost private key in block
chain.

J. MULTI PARTY ADVERSARIAL CRYPTOGRAPHY
Talking among multiple parties using Adversarial Cryptog-
raphy can be a useful feature to be implemented however
training multiple parties on learning the scheme might be
challenging and time consuming. The authors in [21] imple-
mented a 3-party scheme that showed how to train three
parties so that they learn the same encryption and decryption
scheme in different scenarios, and also gave a workaround for
communicating in larger groups.

K. GENERATIVE ADVERSARIAL PRIVACY
Training neural network models requires having on hand a lot
of data. This data is generally is difficult to acquire due to pri-
vacy problems. A solution that is often used is to anonymize
the data by removing any identifying details like names,
unique identifying numbers, etc. However recent attacks such
as in [37], [38] show that it is possible to deanonymize the
data and link it to its original holders.

This is where the work Chong et al. [39] comes into
play, through what they called Generative Adversarial Pri-
vacy (GAP) the authors built a model that can protect
the data and anonymize it properly while preserving its
utility.

The model is composed of two learning blocks: A pri-
vatizer that learns to process the public data in order to
output a sanitized version of it and an adversary that tries to
learn private data from the public data. This is done through
competing in a constrained minimax zero-sum game. The
privatizer trains on minimizing the adversary’s performance
and the adversary tries to find the best strategy tomaximize its
performance. A loss function is used tomeasure the efficiency
of the adversary.

L. AN APPROACH TO CRYPTOGRAPHY BASED ON
CONTINUOUS-VARIABLE QUANTUM NEURAL NETWORK
While Abadi and Andersen [12] used classic neural networks
for their setup and training, Shi et al. [40] did a similar
work but using another approach based on Quantum Neural
Networks. The neural networks learn to encrypt plaintexts

FIGURE 7. 4 Stages of communication [40].

in an adversarial setup. The training starts with creating a
classical neural network that can theoretically do the specified
task (Encryption, Classification, etc). The model is optimized
with the Adam algorithm [41] and the authors perform their
experiments using the Strawberry Fields32 tool. There are
two neural networks with the same structure, and the authors
adopted a 3-layer (Input Layer, Hidden Layer, Output layer)
structure.

The communication is between Alice and Bob and consists
of four stages as illustrated in figure 7:
• The first stage is to obtain Legitimate Measurement
bases for Alice and Bob.

• The second stage preprocesses and transforms the data
into quomodes.

• The third stages handles the key preparations.
• The last stages is the communication stage where data is
encrypted and decrypted.

IV. SECURITY ANALYSIS OF GANS-BASED
CRYTOGRAPHY SCHEMES
In this section, we will see a security analysis conducted
by Zhou et al. [17] to see how the secure are the cipher-
texts generated by the neural networks in the model pro-
posed by Abadi and Andersen [12]. We will then see how
the model has been improved by Coutinho et al. [18] and
Li et al. [23].

A. SECURITY ANALYSIS AND NEW MODELS ON THE
INTELLIGENT SYMMETRIC KEY ENCRYPTION
Zhou et al. [17] proposed a security analysis as well as a
follow up work on the new way to do encryption based
on GANs as proposed by Abadi and Andersen [12]. The
authors start by investigating the security of the ciphertexts
generated by Alice by testing the randomness of the output
to see if it can be distinguished from a randomly picked one.
Next, they perform different experiments that will push Alice
to generate more complicated and therefore more secure
ciphertexts.
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FIGURE 8. Setup of model 1: Eve has a part of the key [17].

FIGURE 9. Results of experiment 1:Eve gets 4 bits of the key and Bob
converges to 100% accuracy [17].

1) TEST OF THE RANDOMNESS OF THE CIPHERTEXTS
In this phase, the authors want to evaluate the randomness
of the ciphertexts generated by Alice. To do this, the authors
trained Alice in a normal setup as the one proposed by Abadi
and Andersen [12]. After the training is done, Alice is fed a
large number of keys and plaintexts that she will encrypt and
output. The output is saved in a local file for analysis.

The authors used three different methods for analysing the
randomness of the output: the χ2 approach, the Kolmogorov–
Smirnov (KS) approach and finally the NIST statistical test.
All the results show that the majority of ciphertexts are not
secure which makes this model insecure in terms of distin-
guishability.

2) MODEL IMPROVEMENTS
To get more secure ciphertexts, [17] proposed other setups
for the model proposed by Abadi and Andersen [12]. Instead
of giving Eve the ciphertext only, they train Alice in different
scenarios where in each scenario has a part of the key and/or
a part of the original plaintext.

When Eve gets more information, the authors noticed that
the behavior of Alice changes as Eve starts getting more
accuracy. Figure 8 shows the setup of the model where Eve
gets a part of the key.

We can see in figure 9 and 10 that when Eve has only 4 bits
of the key, Alice andBob can beat her and the synchronization
is successful with 100% accuracy for Bob and a little less
than 50% accuracy for Eve. However with 8 bits of key,

FIGURE 10. Results of experiment 2: Eve gets 8 bits key and Bob cannot
converge [17].

FIGURE 11. Results of experiment 3: Eve gets 16 bits plaintext and the
key [17].

Eve is much more accurate in her decryption which pushes
Alice to make the encryption method so complicated that
Bob even cannot converge and get a perfect decryption of the
ciphertexts sent by Alice. Eve’s accuracy is also a little higher
than the goal of 0.5 after some iterations.

The authors wanted to push Alice and Bob further and
made another experiment where Eve gets rich information
about the key and the plaintext. In such a case and as shown
in Figure 11, Alice and Bob will give up the security and only
focus on ensuring the communication. We can see that Bob
has a 100% accuracy while Eve has a little less than that.

3) OVERALL RESULTS
The overall experiments and results in this work show that
the security can be improved by training against stronger
adversaries by giving them for example a part of the key
and/or a part of the plaintext. However the randomness of
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FIGURE 12. Structure used for Alice and Bob in order to Generate a
onetime pad [18].

the output needs to be improved in a way that does not leak
information on the plaintext or key.

B. LEARNING PERFECTLY SECURE CRYPTOGRAPHY TO
PROTECT COMMUNICATIONS WITH ADVERSARIAL
NEURAL CRYPTOGRAPHY
Coutinho et al. [18] propose a solution to solve the problem
of randomness of the ciphertexts generated by Alice. The
authors change the structure and the function of the model in
order for the neural networks to learn the one time pad with
the use of a stronger Eve. The neural networks will do this
by learning the One Time Pad (OTP). Concretely, learning
the XOR operation and encrypting each given plaintext with
a unique key.

1) STRUCTURE FOR ALICE AND BOB
In order to learn the one time pad, the neural network structure
of Alice and Bob has to be changed. The new structure is
shown in Figure 12 and was used by Coutinho et al. [18].
As we can see in Figure 12, the neural network takes

as input the plaintext (represented by p0 . . . pn−1) and
the secret key (Represented by k0 . . . kn−1) where n is
the size of the plaintext and the key k. the function f
transforms the input into an angle and is represented as
follow:

f (b) = arccos(1− 2b)

A fully connected layer combines the angles to form the
variables h0 . . . hn−1. Finally, the function f −1 reverts back
the angles to continuous bits (real numbers in the interval
[0, 1]). f −1 is defined as follow:

f −1(a) =
1− cos(a))

2

FIGURE 13. Structure used for Eve [18].

TABLE 3. Number of successful communications and the number of OTPs
learned [18].

TABLE 4. Number of successful trials when using three Eves [23].

The output will be c0 . . . cn−1 and will represent the cipher
text.

By processing the inputs this way, the authors show that
the neural networks were able to communicate but were not
able to learn the one time pad. A new structure for Eve was
needed in order to get a fully working one time pad for Alice
and Bob. The new structure used for Eve is shown in Fig. 13

Eve receives as input two plaintexts P0 and P1 as well as
a cipher text C1. The same equation f used by Alice will
be used by Eve to transform the input into angles which is
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TABLE 5. Table that summarizes the contributions in security analysis done on the model by Abadi and Andersen [12].

followed by a fully connected layer to obtain the hidden layer
containing the values h0 through h1R−1. Then, the function
f −1 used by Alice previously will also be used by Eve in
order to revert the angles into real numbers. The real numbers
will go through a Softmax layer outputting two probabilities:
π0 is the probability that P1 is a plaintext for the cipher text
and π0 is the probability that P1 is a plaintext for the cipher
text.

By using this method, the authors were able to get up
to 100% successful communications during their trials and
between 95% and 100% learned OTPs. Table 3 illustrates the
number of trials and successful communications.

C. INFORMATION ENCRYPTION COMMUNICATION
SYSTEM BASED ON THE ADVERSARIAL NETWORKS
FOUNDATION
Zhengze et al. [23] proposed training the model in another
way. Instead of using just one Eve, they used three Eves. The
three Eves differ from each other in the following manner:

• The first Eve has access not only to the ciphertext but
also the full key. The authors assumed the attacker got
the key in advance.

• The second Eve is the same as in [12] and has only access
to the ciphertext.

• The third Eve is a little similar to the one used
by Coutinho [18]. She receives a plaintext and two
ciphertexts one being the real ciphertext and the second
randomly generated. She has to decide which ciphertext
corresponds to the plaintext.

The rest of the model is the same as by Abadi and Ander-
sen [12] but the data goes through 6 convolutions instead of
just 4.

The authors conducted trials with two Eves and three Eves
separately and the results are pretty impressive. In their trials
with two Eves (Eve 1 and Eve 2), the maximum number of
successful trials was around 77%. But with the 3 Eves, they
got between 97 and 100% successful communications and
OTPs learned.

Table 4 illustrates the number of trials and the successful
rate of communications. The results reconfirms our intuition
that by training against stronger opponents, Alice and Bob
can perform better in terms of encryption in order to outper-
form the attackers.

D. SUMMARY
We presented a variety of cryptography techniques that are
based on neural networks; Most of them are based on deep
neural networks, GANs and the work done by Abadi and
Andersen [12].
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The most important and prominent techniques were:

• The GANs based encryption model [12] where two
neural networks can synchronize and learn to encrypt a
communication in the presence of eavesdroppers.

• The GANs based steganography models [19], [20], [42]
which are based on [12] and enable neural networks to
learn steganography by hiding a text inside an image and
send it through an open network subject to eavesdrop-
ping.

• The introduction of the OTP by Coutinho et al. [18]
and Zhengze et al. [23] that solves the problem of
randomness and improving the model by Abadi and
Andersen [12].

• The Tree Parity Machine and the various improvements
it has seen especially by Salguero et al. [24].

E. USAGE CASES OF NEURAL NETWORKS BASED
CRYPTOGRAPHY
As Neural Network models are usually lightweight, fast and
efficient, the first possible usage case is to apply the learned
protocols between IoT devices. As IoT devices work on time-
limited batteries, using neural networks based models for
encryption is expected to provide substantial security with
reduced CPU usage of the devices.
On the other hand, as the security is not based on any
computational hardness assumption, neural networks based
cryptographic models (with suitable enhancements and
modifications) may be expected to provide a lightweight
post-quantum secure primitive.

Table 5 summarizes the most important works in the secu-
rity of GANs based encryption.

V. DISCUSSION AND TREND
We presented the advances of AI-based cryptography during
the last two decades especially with GANs.We also presented
the importance of GANs in developing cryptosystems and
observed that GANs-based neural networks can learn sym-
metric encryption as well as privacy preserving. We have also
discussed several attack models which scrutinize the security
of the developed systems.

Neural network based cryptography has drawn significant
attention with the hope that it could provide post-quantum
cryptographic primitives. However, the research in this field
is still in a nascent stage and several developments in dif-
ferent fronts are observed on a regular basis. One impor-
tant direction that researchers are trying to explore include
public key cryptography and secret sharing – both of these
act as fundamental building blocks for several cryptographic
tasks. Moreover, for realizing real world secure NN based
distributed systems friendliness with low-capacity devices is
also a current trend of research.

Another interesting research area focuses on quantum-
enhancing the neural networks which requires writing a
quantum circuit of the neural network and running it on a
quantum machine simulator or on an online available quan-
tum machine [43], [44].
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