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ABSTRACT The steel cord conveyor belt surface is prone to damage in mining. The worn belt surface has
acceleration characteristics, so timely and rapid repair is very necessary. To quickly and automatically repair
the worn belt surface is a core design objective of the gluing robot (GR). Based on this objective, a new
variant Traveling Salesman Problem (TSP) is put forward: after the worn segments are divided according
to the worn information and GR’s workspace, path optimization of the gluing robot (POGR) problem is
presented at a certain worn segment; then the POGR is simplified into a ‘‘double vertices’’ TSP problem by
Hamilton graph, and the mathematical model is built. An improved genetic algorithm (IGA) is proposed to
handle the POGR problem, which is called IGA-POGR. The main benefit of the proposed IGA-POGR is the
ability to solve POGR of different scales in different ways. The performance of the IGA-POGR is illustrated
on four well-known TSP problems. Numerical results show that IGA-POGR does not give any deviation
(0%) from the optimal solution. Compared with discrete particle swarm optimization (DPSO), IGA-POGR
has better performance in terms of the solving quality and time consumption when solving four idealized
POGR problems.

INDEX TERMS Mining steel cord conveyor belt, gluing robot (GR), path optimization of gluing robot
(POGR), improved genetic algorithm (IGA).

ABBREVIATION AND NOMENCLATURE
Non-Destructive Testing NDT.
Gluing Robot GR.
Total Repair Time TRT.
Vulcanization Time VT.
Natural Cooling Time NCT.
Repair Time RT.
Path optimization of gluing robot POGR.
Traveling Salesman Problem TSP.
Non-deterministic Polynomial NP.
Improved Genetic Algorithm IGA.
Path Optimization of Gluing Robot POGR.
Discrete Particle Swarm Optimization DPSO.
Simulated Annealing SA.
Ant Colony System ACS.
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Partially-Mapped Crossover PMX.
Exchange Mutation EM.
Rank-based Roulette Wheel Selection RB-RWS.
Exchange Order of Multipoint EOM.
Tournament Selection TS.
Exchange Order of Single-point EOS.
Rank-Based Roulette Wheel Selection RB-RWS.

I. INTRODUCTION
China has abundant coal resources, but the coal mining envi-
ronment is harsh. With the development of the intelligent
mine [1]–[4], new intelligent inspective devices and coal
mine robots are more widely used to improve working effi-
ciency and ensure the safety of production [5]–[10]. The
belt is mainly used for coal collection and transportation,
and it plays an important role in mining operations. Because
of complicated condition of the raw coal, relatively fixed
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point of falling materials, fatigue and other force majeure,
numerous damages of the belt such as belt aging, the worn
surface, corrosion, broken wire core, belt deviation, skidding
and fracture could occur, and even cause casualties [11]–[13].
Factually, though accidental downtime led by belt damages
is short, the coal mine enterprise may suffer from enormous
economic losses. The causes of these losses include the need
of a new custom-made belt, the interruption of mining pro-
duction and a halt to the whole technological process [14].
Hence, these conveyor belts demand an appropriate attention.
In order to ensure its safe and efficient work, it is necessary
to check the belt regularly to reduce the uncertainty in the
production process and eliminate hidden dangers.

Belt detection is an issue of great importance, a great
majority of literatures focus on intelligent inspection of the
belt and presenting the results of belt tests. The ability, to get
the real-time data about the belt damages and to interpret
the information appropriately, allows to control unexpected
changes or to take measures before breakdown. As the main-
stream method, non-destructive testing (NDT) gets special
attention these years. Among the methods of NDT, X-ray
and magnetic sensors detection methods are widely used in
practice. Cui et al. designed a monitoring system based on
X-ray. The system can realize on-line and full speed detection
and provide X-ray transmission image at any location of the
conveyor belt. It can locate the areas of wire damage, and
give an alarm automatically [15]. In 2012, a fault automatic
detection method, basing on the statistical features and the
idea of regularity, was put forward to monitor the conditions
of the belt. It can distinguish the fault region from the fault-
free region more clearly [16]. The magnetic image analysis
method was proposed by the Australian A.Harrison in the
late 1970s [17]. It is mainly used to inspect broken wire
core, deformation, corrosion and joint damage. In 2018 [14],
owing to the high resolution of the magnetic probe, DiagBelt
System can detect the cuts of individual cord, the broken wire
in the cords, and even the corrosion of cords in the core.
Also, in this work, magnetic probe can detect the location
of all splices in the belt loop. In addition, all changes of the
belt segments and splices can be visualized as a 2D image.
What’s more important is the estimation of the worn belt
surface, the quantity and the total area. Maintenance work
becomes easy to do. Based on the data gathered with the
use of the DiagBelt mobile system, A Kirjanów-Błażej et al.
suggests that the already existing defects of the surface areas
grow faster than the new defects, since new defects usually
have small size. Hence, the greatest increase in the surface
area is caused by the already existing and growing defects,
not by the new ones. Early detection of the microdamage of
the belt surface allows the user to plan maintenance more
precisely [18].

The worn belt surface has acceleration characteristics, and,
more importantly, the worn belt surface should be repaired
before it gets worse. This verdict was based upon both the
literature study [18] and on-the-spot investigation. Therefore,
the worn belt surface must be repaired in time. However,

there are few studies on automatic repair of the worn belt
surface. At present, the defects of traditional manual repair
are high labor intensity and low efficiency. Depended on
present work of the belt detection and motivated by a real-
life application in mining, Conveyor Belt Research Team
of Liaoning Technical University has begun to design the
gluing robot (GR) [19]. GR has the ability to repair the worn
belt surface automatically. Meanwhile, GR will effectively
prevent the acceleration of worn belt surface. Application
of GR can reduce the probability to stop production due to
conveyor belt failure, improve repair efficiency, as well as
saving maintenance costs.

Research shows that, when repairing the worn belt surface,
the total repair time is usually determined, about 12 hours.
The total repair time consists of repair time, vulcanization
time and natural cooling time, which is shown in Eq (1).

TRT = VT + NCT + RT (1)

where TRT represents the nomenclature of Total Repair Time
parameter; VT represents the nomenclature of the Vulcan-
ization Time parameter; NCT represents the nomenclature of
the Natural Cooling Time parameter; RT is the Repair Time
index.

In order to ensure the quality of the belt, vulcanization
time and natural cooling time have strict regulations in auto-
matic repair. Repairing time is limited, so improving repair
efficiency is an important design objective of the GR. In the
limited repair time, optimizing the path of GR will repair
more worn surfaces, decrease time loss and improve repair
efficiency.

The main purpose of this article is to determine the
path optimization of the GR (POGR) problem and solve it.
According to the characteristics of the POGR, it is fairly easy
to convert into a ‘‘double vertices’’ Traveling Salesman Prob-
lem (TSP). TSP problem is an Non-deterministic Polyno-
mial (NP) complete problem. There is no solution to solve it
in polynomial time so far. As an intelligent algorithm, genetic
algorithm (GA) allows us to find optimal or nearly optimal
solutions of various problems in a very efficient way [19].
Therefore, since the basic GA appears, scholars all around
the world began to use GA to solve TSP in the last decades
and proposedmany improvements [20]–[24]. Considering the
uncertainty number of every POGR, an improved genetic
algorithm (IGA) is proposed to handle the TSP problem,
which is called IGA-POGR in this paper. The main benefit
of the proposed IGA-POGR is the ability to solve POGR of
different scales in different ways. It uses the same genetic
operators but different methods and multiplicative parame-
ters to solve the POGR. When the optimal path is got by
IGA-POGR, GR will walk on the planned path and achieve
automatic repair at the same time.

The rest of the paper is organized as follows: In Section II,
related work will be reviewed and give a brief introduction
of the proposed IGA-POGR algorithm. In section III, firstly,
repairing the belt by GR is divided into four steps (as shown
in Fig.1 1∼4). Then the concept of path optimization of
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gluing robot (POGR) is introduced. In Section IV, a new
variant TSP problem (‘‘double vertices’’ TSP) is put for-
ward. The POGR problem is simplified into a ‘‘double ver-
tices’’ TSP problem by Hamilton graph. Then build the
mathematical modeling. The novelty and improvement of
the IGA-POGR are presented in Section V. In Section VI, The
performance of the IGA-POGR is illustrated on four well-
known TSP problems. A comparative experimental study
between IGA-POGR and discrete particle swarm optimiza-
tion (DPSO) will be covered which is followed by the exper-
imental conclusion. The comparative experiment is based
on four idealized POGR problems. Finally, conclusions and
future work are given in Section VII.

II. RELATED WORK
POGR is a ‘‘double vertices’’ TSP. TSP is a typical NP-hard
problem. In literature search, there are many evolutionary
computations used to solve TSP, such as particle swarm
optimization (PSO) [25], simulated annealing (SA) [26], ant
colony system (ACS) [27] and some others. Furthermore,
Goldberg first applied GA for TSP, and achieved a short
tour [28].

GA is optimization algorithm. The main idea of GA is
to mimic biological evolution [29]. Studies on the appli-
cation of GA to optimization problems and the effect of
operators on the behavior of GA are presented [30]–[32].
In literature, many GAs have been proposed and improved
to solve TSP [20]–[24]. The path representation is probably
the most natural representation of a tour [33]. Hui [34] used
path representation to encode the path of the TSP problem
and found the global optimum. Yifei et al. [35] used the
natural number coding genetic algorithms for welding robot
path optimization. Through consulting from the related opti-
mization literature [36], [37], when meeting the maximiza-
tion problems, the roulette wheel method is more preferred.
When meeting the minimization problems, the tournament
selection method is more efficient. Also, Stern et al. gave a
same suggestion about the three popular selection operators:
proportional selection, ranking selection [38] and tournament
selection [39], [40]. The partially-mapped crossover (PMX)
operator passes on ordering and value information from the
parent generation to the offspring generation [34]. As the
literature [41], [42] described, PMX tries to preserve the abso-
lute positions of the integers. The exchange mutation (EM)
operator randomly selects two cities in the tour and exchanges
them [43]. So does the partheno-genetic operator [44], [45].

The POGR problem has uncertainty number of worn
blocks in each worn segment. Through the investigation of
the worn belt surface in the coal mines of Shanxi, China, com-
bined with GR’s workspace, the POGR problem is divided
into small-scale POGR and large-scale POGR. The num-
ber 20 is the dividing line. In most studies, when GA is
used to solve TSP, a fixed representation scheme and a
fixed set of operators are chosen. Due to the complexity
of the POGR, it is important to choose a suitable solution.
Thus, IGA-POGR is proposed. The main purpose of the

IGA-POGR is to use the same genetic operators but differ-
ent methods and different parameters to solve the POGR.
The genetic operators of IGA-POGR are selection operator,
crossover operator, and partheno-genetic operator. If the scale
is greater than or equal to 20, selection operator selects Liner
Rank-based Roulette Wheel Selection (RB-RWS), crossover
operator selects the PMX and partheno-genetic operator
selects Exchange Order of Multipoint (EOM) [44], [45]; if
the scale is less than 20, selection operator selects Tourna-
ment Selection (TS), crossover operator selects PMX and
partheno-genetic operator selects Exchange Order of Single-
point (EOS) [44], [45].

III. PROBLEM DESCRIPTION
Path optimization steps of GR to repair the worn belt surface
are shown in Fig. 1.

FIGURE 1. Steps of GR to repair the worn belt surface.

As the main conveying tools, the length of the belt is
generally more than 2000 m. The worn location of the
belt is random. It may concentrate on a certain area or
disperse in different positions of the belt. After determin-
ing the worn position, according to certain conditions, such
as the worn information [14], [18] and the GR’s workspace,
the worn segments are divided in order to repair the worn belt
surface efficiently. Then, on the basis of the forward direction
of the belt, the GR sequentially handles the worn segments
and achieves automatic repair.

There may be N worn blocks in each worn segment. After
dividing the belt, schematic diagram of the worn blocks in
worn segments is shown in Fig. 2. Fig. 2a is a schematic
diagram of the worn segments. Fig. 2b is a series of pictures
relating to N worn blocks in a certain worn segment. Path
optimization of gluing robot (POGR) is used to determine
the walking path among N worn blocks in a certain segment.
(The worn segments in Fig. 2 have different number of worn
blocks, each of which is a real picture of the worn belt).

The lines in Fig. 3 show the feasible walking path of the
GR in worn segment 1. The repairing process of GR starts
with one worn block. The process will not stop until all worn
blocks are repaired in the same worn segment. GR will go
back to the starting point at last. The blue solid line is the
walking path of the GR in the worn blocks, and the red dotted
line is thewalking path of theGR among theworn blocks. The
blue solid lines are seen as length invariant and not considered
in the POGR. The red dotted lines are the object of the POGR.
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FIGURE 2. a Schematic diagram of the worn segments after dividing the
belt; b five worn blocks in worn segment 1.

FIGURE 3. A feasible path of GR in worn segment 1.

Completing the gluing work in the shortest path will
improve work efficiency of GR. The essence of POGR is to
get the shortest path which GR walks among worn blocks in
the certain worn segment. The red dotted line in Fig. 3 is a
feasible optimization path.

IV. MODELING
POGR is very similar to RPP problem. RPP is to find a
loop with the shortest distance, when a postman passes

through all edges and each edge is passed only once in
the graph [46]. It belongs to the combinatorial optimization
problems. According to the principle of graph theory, in an
undirected graph G(V ,E, ω), where V = {V1,V2, . . .Vn}
represents a collection of points, E represents the collection
of edges in the graph, ω represents the weight of the edges
(the actual length of GR’s walking path, including the length
in each worn block and the length among worn blocks).

FIGURE 4. The schematic diagram of a feasible path.

Because of the characteristic of POGR, the path in every
worn block can be seen as a fixed value. To simplify the
problem, in Fig. 3, consider the path in each worn block
as an edge, as shown in the blue solid line in Fig. 4. For
example, the walking path of worn block A is represented
by aa’, the walking path of worn block B is represented by
bb’, the walking path of worn block C is represented by cc’,
the walking path of worn block D is represented by dd’, and
the walking path of worn block E is represented by ee’. The
paths among worn blocks are shown in the red dotted-line.

As shown in Fig. 4, the shortest distance D = {dij} (i =
1, 2, . . . n; j = 1, 2 . . . n), between vertex i and vertex j, dij
is calculated according to the Floyd. Set D is composed of
the shortest distance between vertex i and vertex j that are not
on one edge. In practice, the distance between two points is
calculated by the Euclidean distance formula as (2). Before
executing, these distances of all edges have calculated and
stored as a distance matrix.

dij =
(
(xi − xj)2 + (yi − yj)2

)1/2 (2)

The Hamilton graph proposed by Kang et al. [47] repre-
sents the RPP problem. So does POGR. As shown in Fig. 5,
a vertex is used to represent a solid-line edge of a worn block
in Fig. 4. Also, the edge sets the initial direction. That is,
point 1 represents aa’ (worn block A), point 2 represents bb’
(worn block B), point 3 represents cc’ (worn blockC), point 4
represents dd’ (worn block D), and point 5 represents ee’
(worn block E). At the same time, the POGR is transformed
into a ‘‘double vertices’’ TSP problem. For a TSP problem,
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FIGURE 5. The Hamilton graph of the POGR.

there are several paths to traverse the undirected graph from
one of the cities and go back to the starting city. How to find
the shortest one from these paths is the TSP problem [20].
So does POGR. POGR problem in Fig. 5 is to find the shortest
path that passes through five vertices and each vertex passes
only once.

POGR is a new variant of the TSP. POGR is a ‘‘double
vertex’’ TSP— In Fig. 5, each vertex represents a worn
block shown in Fig. 4. Each worn block has a starting point
and an ending point. Hence, each vertex in Fig. 5 has two
points inside it. So POGR is a ‘‘double vertex’’ TSP. When
repairing each worn block, the starting point and the ending
point are interchangeable. Take the worn block A in Fig. 4 as
an example. The path aa’ is the GR’s initial path. a is the
starting point and a’ is the ending point. However, when the
GR works, the actual path may be a’a, a’ is the starting
point and a is the ending point. The starting point and the
ending point are interchanged in the actual repairing, which
provides the possibility for the path optimization. For exam-
ple, from worn block A to worn block B, worn block A has
two points a and a’, worn block B has two points b and b’.
There are four possible paths between the two worn blocks.
In Fig. 5, the weight of each edge is not fixed, and its value
is determined by the selection of the starting point of each
worn block in Fig. 4. Actually, POGR is also a symmetrical
TSP—the distances between the two points do not rely on the
trajectory direction. For example, dab represents the distance
between a and b, and dba represents the distance between b
and a.When travelling from a to b, that is dab.When travelling
from b to a, that is dba. If dab = dba, it is symmetrical. And
in POGR, dab = dba, so POGR is symmetrical TSP.

Assuming in the Hamiltonian G’ (V ’, E’, ω’), where V ’
represents the set of vertices, E’ represents the set of edges,
ω’ represents the weight of the edges and ω’∈ D. In G’,
the order of the vertex set V ’ is

T = (t1, t2, . . . tn), ti ∈ V ′. (3)

Definition 1: In the Hamilton graph G’, starting from any
vertex, all the other vertices are visited and each vertex is
visited only once. And then go back to the starting point. The
sequence of vertices formed is defined as ab. dist , which is a
feasible approach to the POGR problem.
Definition 2: In the Hamilton graph G’, starting from any

vertex, visiting all the other vertices, each vertex is visited
only once. And then go back to the starting point. The vertex
sequence of the shortest path is defined as ag. dist , which is
the optimal approach of POGR. That is minTd .

minTd =
∑n

i=1
ωi +

∑n

j=1
ω′j (4)

Among them, ωi represents the length of path in each worn
block that the GR passed, which is considered to be a fixed
value in the POGR; ωj’ represents the length of path among
worn blocks that GR passed. POGR can be simplified to:

minTd =
∑n

j=1
ω′j (5)

V. IGA-POGR ALGORITHM
Since the TSP is an NP-hard problem, exact programming
algorithms can merely find an optimal solution for the
instances due to limited computational resource. GA has
shown its superiority in convenient modeling and easy imple-
mentation, meanwhile, found a satisfactory solution [48].
In the light of the characteristics of the POGR, a novel algo-
rithm called IGA-POGR is proposed. Considering the uncer-
tainty of the number of worn blocks in the worn segment,
the operator in the IGA-POGR selects different methods
according to the scale of the problem. It uses the same genetic
operators but different methods and different parameters to
solve the POGR. The genetic operators of IGA-POGR are
selection operator, crossover operator, and partheno-genetic
operator. If the scale is greater than or equal to 20, selection
operator selects Liner Rank-based Roulette Wheel Selec-
tion (RB-RWS), crossover operator selects the PMX and
partheno-genetic operator selects Exchange Order of Mul-
tipoint(EOM) [44], [45]; if the scale is less than 20, selec-
tion operator selects Tournament Selection(TS), crossover
operator selects PMX and partheno-genetic operator selects
Exchange Order of Single-point(EOS) [45], [46]. In this way,
the efficiency of the IGA-POGR and the ability to find the
global optimal approach are greatly enhanced.

A. ENCODING
Whenever, we apply GA for TSP, it runs over thousands
of chromosome, each represents a solution. The chromo-
some needs encoding, when the IGA solves POGR. Since
the POGR is a ‘‘double vertices’’ TSP problem, two sets of
chromosome encodings are used.

In the Hamilton graph, which represents a POGR problem,
each vertex represents an edge. The edge which represents a
certain worn block includes the starting point and the ending
point. Both the starting point and the ending point are initial
settings. In order to express not only the vertex information
but also the direction of the edge that represented by the
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FIGURE 6. The same vertex, different path.

vertex, two sets of chromosome encodings are proposed.Pi as
a real number encoding represents the vertex information [20]
(path representation), in addition, Psi as a binary number
encoding represents the direction of each edge. The length
of the chromosome encoding is

∣∣V ′∣∣.For example, when∣∣V ′∣∣ = 5, two individual encoding Pi = 31254, Psi = 00101,
and encoding Pi = 31254, Psi = 11010 are randomly
generated. In Psi, 1 means the direction of the edge, which
is the same as the initial setting; 0 means the direction of
the edge, which is opposite to the initial setting. As we can
see from Fig. 6, everything seemed same-same vertex, same
path, because of the same Pi (31254). But actually, because
of the different Psi (00101,11010), there are different paths:
c’c→ a’a→ bb’→ e’e→ dd’ and cc’→ aa’→ b’b→
ee’→ d’d .

B. DETERMINE THE FITNESS FUNCTION
Fitness function measures the matching degree between fea-
sible approach and optimal approach. The value of fitness
function indicates the distance between the two. In this
paper, the fitness function adopts a distance-based matching
idea [49].

fdist (ab, ag) = 1/
(ab.dist − ag.dist) (6)

T = (
∑n

i=1

∑n

j=1
d(i, j))/2n (7)

Since ag.dist is unknown, a parameter T is given according
to POGR, which represents the optimal approach. In (6),
d(i, j) is the distance between vertex i and vertex j. The value
of d(i, j) is obtained from setD or (2). Obviously, T ≤ ag.dist.
When ab.dist is closer to T , it must be closer to ag.dist.
Formula of fitness function:

fdist (ab, ag) = 1/
(ab.dist − T ) (8)

C. GENETIC OPERATOR
The genetic operators of IGA-POGR are selection operator,
crossover operator, and partheno-genetic operator. POGR has
the characteristics of the uncertainty number of worn blocks
in each worn segment. Through the investigation of the worn

belt surface in the coal mines of Shanxi, China, combined
with GR’s workspace, the POGR problem is divided into
small-scale POGR and large-scale POGR. The number 20 is
the dividing line. If the scale N is greater than or equal
to 20, the POGR is the large-scale POGR. If the scale N
is less than 20, the POGR is the small-scale POGR. For
solving POGR problem efficiently and obtaining the global
optimal approach, genetic operators select different meth-
ods according to the scale of POGR. As shown in Fig. 7,
if the scale is greater than or equal to 20, selection oper-
ator selects Liner Rank-based Roulette Wheel Selection
(RB-RWS), crossover operator selects the partially matched
crossover (PMX) [41], [42] and partheno-genetic operator
selects Exchange Order of Multipoint(EOM) [44], [45]; if
the scale is less than 20, selection operator selects Tour-
nament Selection (TS), crossover operator selects PMX
and partheno-genetic operator selects Exchange Order of
Single-point(EOS) [44], [45].

D. THE FLOWCHART OF IGA-POGR
The flow chart of the IGA-POGR is shown in Fig. 7.

FIGURE 7. The flowchart of IGA- POGR.

The steps of IGA-POGR:
Step 1: The initial population S1 is generated. The larger

the problem is, the bigger the initial population S1 becomes.
It’s well known that large population size needs more com-
putation search time in finding an optimal or near optimal
solution, but compared with small population, it has larger
search space and good solutions can be easily got. So it is
essential to choose different number of population according
to the scales of the problem.

Step 2: According to the fitness function, calculate the
fitness function value of each chromosome;
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Step 3: Determine whether the loop termination condition
is satisfied. That is, whether the iteration meets the pre-set
value, or when the highest fitness chromosome no longer
grows or grows slowly, the loop ends. Otherwise, go to Step 4;

Step 4: Selection operator: generate population S2. If
N ≥ 20, select the method of RB-RWS. If N < 20, select the
method of TS. As can be seen from the optimization works
[36], [37], the roulette wheel method is more preferred for
maximization problems. In the minimization problems, the
tournament selection method is more efficient method;

Step 5: Crossover operator: The operators which define
the child production process are called the crossover oper-
ator. Crossover should increase the average quality of the
population. According to certain rate of crossover (Pc)
and crossover method, new chromosomes are generated;
IGA-POGR selects the method of PMX;

Step 6: Partheno-genetic operator: It is needed to explore
new states and helps the algorithm to avoid local optima.
According to certain rate of mutation (Pm) and mutation
method, new chromosomes are generated; If N ≥ 20, Psi
which is number encoding select the method of EOM; If
N < 20,Pi which is binary number select themethod of EOS;

Step 7: Generate a new population S3 by crossover and
partheno-genetic operators, and return to Step 2. The per-
formance of IGA-POGR largely depends on the crossover
and partheno-genetic operators. Hence, adapting the suitable
value of Pc and Pm is very important because it guides the
search process and maintains the diversity in the population.

E. METHOD OF THE GENETIC OPERATOR
1) THE SCALE GREATER THAN OR EQUAL TO 20
a: SELECTION OPERATOR
RB-RWS is shown in Fig. 8.

FIGURE 8. RB-RWS.

In the rank-based roulette wheel selection, the probability
of a chromosome being selected is based upon its fitness rank
relative to the entire population. RB-RWS is the selection
strategy where the biasness could be under control through
the selective pressure SP. It can avoid premature convergence
and eliminate the need to scale fitness values. In RB-RWS,

Rank (Pos) is defined as follow:

Rank(Pos) = 2− SP+ (2 · (SP− 1) · (Pos− 1)/(n− 1))

(9)
In (9), n is the sum of individuals in the population, Pos is

the position of an individual in the population (if Pos = 1,
it represents the least fit individual; if Pos = n, it represents
the fittest individual), SP is the selective pressure.

b: CROSSOVER OPERATOR
Usually, one-point crossover is selected. First, randomly
choose one crossover point and then recombine the gene
fragment of a pair of chromosomes to form two new chro-
mosomes. The one-point crossover is suitable for the random
keys encoding, but in order to preserve the permutation when
dealing with natural encoding, another special crossover
operators must be used.

As the literature [41], [42] says, PMX tries to preserve
the absolute positions of the integers. The PMX needs two
crossover points. A and B as two parent chromosomes,
offspring chromosome A will inherit the sub-sequence out-
side these two points from A and offspring chromosome B
will inherit the respective sub-sequence from B. Between the
two points, the genes of A and B are copied from the other
parent chromosome. The PMX operator tries to preserve their
position as seen in Fig. 9.

FIGURE 9. PMX.

After the yielding of offspring chromosome A and off-
spring chromosome B, for those genes between the two
crossover points, if the values already present in the sequence,
components are assigned through a procedure based on the
mapping 1 ↔ 3, 4 ↔ 3. As for the third position of A,
the value 1 (from B) cannot be assigned to it, because it is
already present in the place of 1, but 3 is already present
in the place of 4, which is not yet present (1 → 3 → 4).
The number 4 can therefore be assigned to position 3 of A.
Then, new offspring chromosome A (12 |43 |5 ), new
offspring chromosome B (42 |31 |5 ). The crossover method
of Pi selects PMX, Psi doesn’t change.
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FIGURE 10. Schematic diagram of EOM.

c: PARTHENO-GENETIC OPERATOR
Partheno-genetic operators are used to implement the func-
tion of mutation, and the operators are executed on one
chromosome. The partheno-genetic operators used in POGR
only change the order of the chromosome but never change
the numbers of 0 and 1. EOM implementation process is as
follows in Fig. 10, chromosome (10110), random positions
are 1 and 5, 2 and 4. In swap operator, the new chromosome
is (01101). From the example we can see that the operator
just changes the initial direction of some edges in the POGR.
Psi selects EOM, Pi doesn’t change.

2) THE SCALE LESS THAN 20
a: SELECTION OPERATOR
The algorithm of TS is shown in Fig. 11. TS is the selection
strategy where r chromosomes are randomly chosen from the
population and copy the best one from this group into the
intermediate population, and repeat N times.

FIGURE 11. Schematic diagram of TS.

b: CROSSOVER OPERATOR
The crossover method of Pi selects PMX, which is shown in
Fig. 9. Psi doesn’t change.

c: PARTHENO-GENETIC OPERATOR
Select two genes from the chromosome randomly, and swap
the position of the two genes to generate a new chromosome.
Psi selects EOS,which is shown in Fig. 12.Pi doesn’t change.

FIGURE 12. Schematic diagram of EOS.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS
The POGR problem is divided into small-scale POGR and
large-scale POGR. The number 20 is the dividing line.
IGA-POGR algorithm chooses different operators according
to the scale of the POGR. In this Section, a number of well-
knownTSP instances are selected to evaluate the performance
of the proposed IGA-POGR algorithm. For the verification of
the performance of the IGA-POGR algorithm, well-known
TSP instances are employed from TPSLIB library [50].
Burma14 and ulysses16 were chosen as examples, the scales
of them are less than 20; ulysses22 and dantzig42 were cho-
sen, because the scales of them are more than 20.

Next, IGA-POGR algorithm is used to the POGR problem.
The collection of POGR consists of four idealized worn
segments: 5 worn blocks (including ten coordinate points),
8 worn blocks (including sixteen coordinate points), 11 worn
blocks (including twenty-two coordinate points), 14 worn
blocks (including twenty-eight coordinate points). This col-
lection has been solved by IGA-POGR algorithm effectively.

At last, comparison between IGA-POGR and DPSO are
made in the essay. The experiments showed that both
IGA-POGR and DPSO method are good when dealing with
the small-scale POGR. The obtained results also show that
the IGA-POGR has better performance when meeting large-
scale POGR.

A. EXPERIMENTAL SET-UP
The IGA-POGR algorithm is coded in Python Version 3.8.
One objective of the experiment is to investigate the per-
formance of IGA-POGR with different methods in terms of
number of generations to come out with the optimal approach
for several well-known TSP instances. Another objective
of the experiment is to obtain the optimal approach of the
POGR problem by IGA-POGR algorithm. Also, comparison
between IGA-POGR and DPSO are made in the essay.

There are two kinds of instances. One is the well-
known optimal approach TSP instances: burma14, ulysses16,
ulysses22 and dantzig42. The other is idealized four worn
segments which respectively consist of 5 worn blocks,
8 worn blocks, 11 worn blocks and 14 worn blocks. The
four worn segments with different worn blocks are the POGR
problem.Whether the well-known TSP problem or the POGR
problem, if the scale is less than 20, the selection operator

124880 VOLUME 9, 2021



Y. Zhang et al.: POGR Based on IGA

of IGA-POGR algorithm selects TS, the crossover operator
selects PMX and the partheno-genetic operator selects EOS.
In the TS, the tournament size is set to 2. If the scale is greater
than or equal to 20, the selection operator of IGA-POGR
algorithm selects RB-RWS, the crossover operator selects
PMX and the partheno-genetic operator selects EOM. While
in the RB-RWS, SP = 1.1 [36].
It is difficult to choose suitable values for parameters

such as population size, rate of crossover (Pc), and rate of
mutation (Pm) in building a practical IGA-POGR. For solv-
ing the POGR problems, in order to converge effectively
and achieve global optima, firstly, we obey De Jong’s sug-
gestion [51] and Goldberg’s idea [52]. De Jong first sys-
tematically studied the effects of different combinations of
parameters. These parameters have been used in many GA
implementations [53]. Goldberg suggested that GAmaywork
well with a large crossover rate and with a small mutation
rate. Grefenstette [54] provided more details and suggested
that when meeting the large population size, high crossover
rates with low mutation rates was good; however, in the small
population size, the mutation rates become important in order
to provide diversity and to increase the search quality. Also,
Lawler [55] and Johnson [56] described how a population of
medium quality can be created.

In the experiments presented here the following parameters
have been established: If the scale is greater than or equal
to 20, the size of population (800), the rate of mutation (Pm =
0.03) and the rate of crossover (Pc = 0.8); If the scale is
less than 20, the size of population (=300), the mutation rate
(Pm = 0.1) and the crossover rate (Pc = 0.5). Any change
in the value of these parameters (increasing or decreasing)
affects the result of GA negatively or positively [57]. Choos-
ing the right parameters is a nontrivial task. In each experi-
ment, the IGA-POGR algorithm was run thirty times, and the
lowest distance as a final result is chosen. In all experiments,
when the condition is met, the loop ends.

TABLE 1. Results of the best approach for known instances.

B. RESULTS AND DISCUSSION
1) IGA-POGR ALGORITHM RESULTS FOR THE WELL-KNOW
TSP INSTANCES
The best approaches obtained for the well-known TSP
instances with IGA-POGR algorithm are showed in Table 1.
It clearly shows that IGA-POGR can solve well-known
TSP problems—whether the scale is greater than 20 or less
than 20, an optimal approach can be obtained. Numerical

results in Table 1 show that the proposed IGA-POGR does not
give any deviation (0%) from the optimal solution for the four
instances: burma14, ulysses16, ulysses 22 and dantzig 42.

In Fig. 13, the performance curves show the minimum
distance obtained by the IGA-POGR in each generation.
As we can see from the curves, along with the generation
increasing, the distance reduced towards optimal approach
and finally converged at a certain generation. For exam-
ple, in burma14 and dantzig 42, the IGA-POGR converged
at generation 21 and 145 respectively, where there is no
more improvement made after this generation. It proves that
IGA-POGR is feasible and valid.

FIGURE 13. Performance curves for instances showing number of
generations to converge.

For the well-known TSP instances which are mentioned
above, when mutation rate and crossover rate are fixed,
the size of population is exchanged. Result shows that large
population size needmore time in finding an optimal solution.
With small population, it can easily fall into the local opti-
mal solution. Improving mutation rate can prevent premature
convergence.
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2) IGA-POGR ALGORITHM RESULTS FOR THE POGR
PROBLEM
Taking a belt with a 1400cm width for instance, Fig. 14 is the
schematic diagram of the worn belt. It contains four different
worn segments. The X axis represents the width of the belt.
Obviously, the width is 1400cm in this experiment. And the
Y axis represents the length of GR’s workspace, the length is
designed to be 3000 cm. The blue rectangular block diagram
represents each worn block. The edges of the blue rectangular
block are the edges of the worn block. The size of the blue
rectangular block is the size of the worn block. In each worn
block, there are a starting point and an ending point. The
starting point and ending point represented by the red boxes
are the initial setting. For the POGR problem, the starting
point and the ending point are interchangeable.

In order to obtain the optimal path among worn blocks,
first, the worn blocks and the starting and ending points are
marked, as shown in Fig. 15. Each worn block has its own
number tag on it. The starting point and the ending point
corresponding to each worn block have a number tag starting
with the number tag of the worn block. Take ‘‘Five Worn
Blocks’’ as an example, 1,2,3,4 and 5 are respectively as
the number tags for each worn block. For the worn block 1,
11 is the starting point of the initial setting and 12 is the
ending point. For the worn block 2, 21 is the starting point
of the initial setting and 22 is the ending point. For the worn
block 3, 31 is the starting point of the initial setting and 32 is
the ending point. For the worn block 4, 41 is the starting
point of the initial setting and 42 is the ending point. For the
worn block 5, 51 is the starting point of the initial setting
and 52 is the ending point. Thus, for the POGR problem
with 5 worn blocks, it is equivalent to the TSP problem with
a scale of 10. Then IGA-POGR is executed. Based on the
IGA-POGR algorithm, if the scale is less than 20(5 worn
blocks, 10 points), the selection operator of the IGA-POGR
algorithm selects TS, crossover operator selects PMX and
partheno-genetic operator selects EOS. The optimization path
of the ‘‘FiveWorn Blocks’’ that calculated by the IGA-POGR
algorithm can be seen in Table 2.

All the optimization paths of the POGR problems are
shown in Table 2. As we can see from Table 2, after the
optimization calculation of the IGA-POGR algorithm, not
only the paths among the worn blocks are changed, but
also the starting point and the ending point of some worn
blocks are exchanged. Take ‘‘Five Worn Blocks’’ as an
example, the initial setting path among the worn blocks is
1→2→3→4→5.Actually, the path GR walks among the
worn blocks is 1→3→2→5→4. The initial setting path
including the starting point and the ending point among
the worn blocks is 11→12→21→22→31→32→41→42→
51→52.Actually, the path GR walks among the worn
blocks including the starting point and the ending point is
11→12→31→32→22→21→41→42→52→51. Based on
the results of the computational experiments about the POGR
problem, a conclusion may be formulated that IGA can solve FIGURE 14. The worn segments of 1400cm wide belt.
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FIGURE 14. (Continued.) The worn segments of 1400cm wide belt.

TABLE 2. The optimal path of the GR.

the POGR problem, find the optimal path for the GR, shorten
the repair time, and improve the working efficiency. In the
process of the repairing automatically with GR, every second
saved is invaluable. GR will repair more worn belt surface in
the limited time. This is certainly significant throughout the
maintenance.

3) COMPARISON BETWEEN IGA-POGR AND DPSO
In recent years, particle swarm optimization (PSO) has
attracted the interest of researchers due to their simplicity,
effectiveness and efficiency in solving complex optimiza-
tion problems [58]. There have been some reported works
focusing on TSP problem. Discrete particle swarm optimiza-
tion (DPSO) is proposed by Clerc for solving TSP problem

FIGURE 15. Marked graphs of worn blocks with the starting and ending
Points.

VOLUME 9, 2021 124883



Y. Zhang et al.: POGR Based on IGA

FIGURE 15. (Continued.) Marked graphs of worn blocks with the starting
and ending Points.

TABLE 3. Comparison between IGA-POGR and DPSO.

with the definition of velocity as a ‘‘swap sequence’’ as well
as other variables and rules, and it achieved good results [59].
We compare the proposed IGA-POGR with DPSO, and
the results are showed in Table 3. The configurations of
IGA-POGR and DPSO are the same.

According to the characteristic of the POGR, it is a ‘‘double
vertices’’ issue. It means that the number of the scale is twice
asmuch as the number of worn blocks. Thuswhen the number
of worn blocks is 5 and 8, it is the small-scale POGR, the size
of population is 300; when the number of worn blocks is
10 and 14, it is the large-scale POGR, the size of population
is 800.

The experiments showed that both IGA-POGR and DPSO
method can be used to solve the POGR effectively when
dealing with the small-scale POGR. The numerical results
in Table 3 also show that the IGA-POGR has better perfor-
mance in terms of the solving quality and time consump-
tion when using large-scale POGR. According to the results,
the proposed IGA-POGR algorithm is better in comparison
with DPSO in solving the complex POGR problem.

VII. CONCLUSION AND FUTURE WORK
The worn belt surface has acceleration characteristics, so to
repair the worn belt surface quickly and automatically is
the core design objective of the gluing robot (GR).Based
on this objective, a new variant Traveling Salesman
Problem (‘‘double vertices’’ TSP) is put forward: which is

called POGR (path optimization of the gluing robot). And
the mathematical model is built. IGA(improved genetic algo-
rithm) is used to solve the POGR (IGA-POGR). Selection
operator, crossover operator and partheno-genetic operator
are applied in IGA-POGR algorithm. The genetic oper-
ator selects different methods for different scales of the
POGR. Four well-known TSP instances and four idealized
POGR problems are used to verify the performance of
IGA-POGR. Numerical results show that IGA-POGR does
not give any deviation (0%) from the known optimal solution.
Compared with DPSO (discrete particle swarm optimiza-
tion), IGA-POGR has better performance in terms of the
quality of solutions and time consumption when solving four
idealized POGR problems.

Moreover, the further research of GR, for example, is that
GR starts from the specific point, and then returns to the very
same point. It is very important to solve the POGR better
with other algorithms as well. Furthermore, to determine the
threshold of the worn blocks according to the user’s demand
and calculate the volume of the worn blocks accurately, are
necessary for GR.

In China, steel cord conveyor belt constitute an increasing
share of the conveyor belts operated in both underground
and open pit mines. If mines or conveyor belt service com-
panies were interested, GR could be widely implemented
in mining industry. Using the GR to repair the worn belt
surface can improve the repair efficiency, reduces the number
of unexpected failures, eliminate the hidden trouble of the
steel core exposed and corroded, prolong the service life
of the belt and ensure the safety of production. Thus GR
contributes to improve conveyor belt management, and push
on the development of the transportation system automation
of intelligent mine.
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