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ABSTRACT Electrocardiogram (ECG) is sensitive to autonomic dysfunction and cardiac complications
derived from ischemic or hemorrhage stroke and is supposed to be a potential prognostic tool in stroke
identification and post-stroke treatment. ECG data generated cannot be real-time accumulated, processed,
and used for enterprise-level healthcare and wellness services with the existing cardiovascular monitoring
system used in hospitals. This study aims to assess the feasibility of a cyber-physical cardiac monitoring
system to classify stroke patients with altered cardiac activity and healthy adults. Here, we propose Big-
ECG, a cyber-physical cardiac monitoring system for stroke management, consisting of a wearable ECG
sensor, data storage and data analysis in a big data platform, and health advisory services using data analytics
and medical ontology. We investigated our proposed ECG-based patient monitoring system with 45 stroke
patients (average age 70.8 years old, 68% men) admitted to the rehabilitation center of the hospital and
40 healthy elderly volunteers (average age 75.4 years old, 38% men). We recorded ECG at resting state
using a single-channel ECG patch within threemonths of diagnosis of ischemic stroke (clinically confirmed).
In statistical results, ECG fiducial features, RR-I, QRS, QT, ST, and heart rate variability (HRV) features,
SDSD, LF/HF, LF/(LF+HF), and HF/(LF+HF) are observed as significantly distinctive biomarkers for the
stroke group relative to the healthy control group. The Random Trees model presented the best classification
performance (overall accuracy: 95.6%) utilizing ECG fiducial variables. This system may assist healthcare
enterprises in prognosis and rehabilitation management during post-stroke treatment.

INDEX TERMS Cyber-physical systems, electrocardiography, biomedical monitoring, big data applications,
biomedical informatics.

I. INTRODUCTION
Stroke, a primary neurovascular disease in adulthood, is the
world’s second leading cause of death in the elderly commu-
nity [1]. Hemorrhagic events, such as a stroke, occurs due
to the blood vessel’s rupture in the brain and hamper the
supply of oxygen to brain tissue at the lesion site causing
brain cell death. This damage to the brain tissue affects the
central nervous system. Furthermore, stroke is commonly
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associated with autonomic dysfunction [2] and cardiovascu-
lar responses [3], whichmay increasemortality andmorbidity
rates. Early prediction of stroke symptoms affects mortality,
rehabilitation, cost of post-stroke treatment, and quality of
life [4]. Often, the stroke symptoms are not noticeable in the
early stages of an ischemic event. Therefore, the decision
to refer a stroke survivor to a clinical diagnostic center for
brain imaging and pathological evaluation may delay. Late
diagnostics of ischemic stroke can lead to motor impairment,
sensory impairment, cognitive impairment, and even death.
The prospect of improvement after stroke differs with the
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severity of the initial motor and cognitive deficit. The eco-
nomic burden of post-stroke treatment is among the fastest-
growing expenses for healthcare [5].

Tracking the physiological signals is one of the essential
methods for disease prognostics and clinical management.
Stroke is a neurological disease, and electroencephalogra-
phy (EEG) is a useful tool for early prognostics of stroke [6].
Besides, ischemic stroke affects the autonomic nervous sys-
tem (ANS), cardiovascular activity. As electrocardiography
(ECG) is the representative physiological signal of cardio-
vascular health and the autonomic nervous system, cardiac
monitoring is one of the keys for stroke prediction. Several
ECG studies have been reported the quantitative ECG mea-
surements in clinical applications to evaluate the relation-
ship between cardiac, neurological, and functional outcomes
of ischemic stroke [2]. Changes in the ECG-derived heart
rate variability (HRV) are the biomarker of the sympathetic
and parasympathetic activity of the ANS regulating most
visceral and metabolic processes. Cardiac dynamics can be
tracked using nonlinear HRVmeasures and studied to predict
sleep apnea [7] and congestive heart failure [8]. Ischemic
stroke impairs autonomic function, characterized by a dom-
inance of sympathetic activity. Cardiac abnormality, such
as myocardial ischemia, is associated with stroke patients.
The most common ECG fiducial changes include depressed
ST-segments, prolonged QT-interval, flat or inverted
T-waves, and U-waves [9].

For a detailed diagnostics of stroke, including identifi-
cation of the stroke lesion on the brain, and evaluation of
lesion size and location, computed tomography (CT) and
magnetic resonance imaging (MRI) is the most useful tool
to understand the anatomy of the brain and to determine
the scope of diagnosis for both types of stroke (thrombosis
or hemorrhage) [10]. Continuous monitoring of high-risk
patients with a history of acute stroke or transient ischemic
attack (mini stroke) using CT and MRI is impractical [6]. For
the prognosis of Stroke, ECG changes can be useful in daily
life and the clinical environment [11], [12]. Moreover, ECG
or vital sign functionality is present in most fitness trackers
and wellness devices. Real-time tracking of heart activity is
an affordable and effective way to predict high-risk stroke
patients’ cardiovascular health status with underlying heart
diseases.

With the advancement of a cyber-physical system, big
data, and Healthcare 4.0 in medicine, a real-time biosignal-
based patient monitoring system draws much attention.
Elderly adults are most vulnerable to several life-threatening
diseases, such as ischemic stroke, heart disease. Besides,
government and healthcare agencies are looking for an
innovative and effective way to manage senior citizens’
treatment. Rehabilitation is an important step to recover
from cardiovascular and neurological disorders. Healthcare
providers generally record ECG using an existing stan-
dard 12-lead ECG system with multiple electrodes in med-
ical centers and hospitals. These ECG studies also require
trained medical staff and clinical settings. Besides, traditional

ECG methods use multiple spatial positions to measure
the heart’s electrical activity correctly. These kinds of long
clinical preparation and expert skill demand can delay the
prognosis of acute diseases. Moreover, cardiovascular and
neurological impairment resulting from stroke increases the
risk of cardiac morbidity and mortality during the post-stroke
period [3]. So, the real-time cardiac monitoring system has
achieved considerable interest for post-stroke rehabilitation
management.

ECG data generated in healthcare centers cannot be real-
time stored, transformed, and utilized for enterprise-level
clinical and wellness services with the present cardiovas-
cular monitoring system. Generally, doctors’ intervention
is required to interpret ECG for clinical decision-making.
As the application of wearable medical devices is growing
and home patient monitoring system is getting popularity
during COVID-19 era, an automated ECG analytics platform
may come to be an assistive tool for medical experts and
patient caregivers. Not enough extensive studies investigated
cardiac activity using portable ECG and cloud-based live
processing for stroke patients’ prognostics and rehabilita-
tion. In addition, ECG-derived HRV parameters were stud-
ied earlier for machine learning based stroke prediction [9].
ECG fiducial feature based machine-learning approach was
not clinically explored yet in the case of ischemic stroke.
In summary, it requires a real-time or near-real-time ECG
system for monitoring cardiovascular activity in a stroke
patient’s daily life setting. We proposed Big-ECG, capable
of tracking the cardiac signal, analyzing data in the big data
platform, and providing health analytics as a service. This
system can generate alerts as feedback for the assistance
of the emergency rescue services if stroke-predictive car-
diac features exceed any lethal criteria. Big-ECG is a cyber-
physical platform that combines clinical ECG and big data
analytics.

We hypothesized that a portable ECG device would imme-
diately detect cardiovascular activity. Data analytics based on
biosignal processing, statistical analysis, and robust machine
learning techniques will be consistent methods for pre-
dicting cardiac health during stroke onset and post-stroke
rehabilitation.

We aim to develop the Big-ECG, a cyber-physical ECG
system for stroke, cardiovascular disease prediction in daily
life and clinical environments. The key contributions of this
paper can be summarized as follows:

• We established a Big-ECG platform integrating the
wearable ECG patch, data streaming to a cloud server,
real-time signal processing with Hadoop and Spark
ecosystem, live dashboards for the customers, doctors,
and service managers for cloud-based prognostics of the
ischemia and heart diseases.

• We discovered stroke-impaired ECG indices, including
HRV measures, fiducial features using statistical analy-
sis, and significantly important features through hypoth-
esis tests.
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• We utilized the machine-learning algorithms to catego-
rize the ischemic stroke group and the healthy control
group for acute stroke prediction.

We organized the remainder of this article into six sections.
We narrated this article’s technical background in Section II,
exploring the state-of-art techniques of Healthcare 4.0 and big
data. The proposed cyber-physical ECG-based health moni-
toring platform was described in Section III, followed by the
datasets and the methodology used to validate the system’s
predictive capability. After that, the results are reported in
Section V, trailed by the discussion. Lastly, we stated the
conclusions are in Section VII.

II. BACKGROUND
A. CYBER-PHYSICAL SYSTEM AND HEALTHCARE 4.0
The Cyber-Physical System (CPS) is an innovative sys-
tem with integrated computing and physical capabilities that
enables new ways to communicate with humans [13]. The
interaction between physical and digital elements has come
to play an essential role in various domains. CPS, adapted in
the industrial sector, is now being implemented in healthcare.
Within a healthcare context, the use of CPS has led to Smart
Healthcare. From the perspective of this new revolution,
a vast quantity of CPS shapes current healthcare systems
involving devices, technologies, solutions, and ventures. The
vital components of these CPS are composed of a blend
of enabling technologies, comprising smart medical devices,
diagnostics process automation, autonomous robots, Internet
of Things (IoT) devices, medical Big Data, Fog, and Cloud
Computing [14]. CPS is the crucial technology of Healthcare
4.0 [15]. Healthcare 4.0 is a consecutive revolution of the
complete healthcare system, including the intelligent man-
ufacturing of medicine and medical devices, cyber-physical
patient monitoring, health analytics, telemedicine, healthcare
logistics, personalized and precision medicine, assisted liv-
ing, and rehabilitation.

B. BIG DATA TECHNOLOGIES IN HEALTHCARE
Big data technologies are shaping the world; healthcare is
no exception. The real-time transactional medical data and
the accumulated historical electronic health records (EHR)
data in a hospital are vital medical decisive tools for clin-
icians and other care providers for the patient’s best care
or services. Healthcare big data builds up with a massive
volume of structured and unstructured medical records. Usu-
ally, the structured database resulted from several sources,
such as patient demographics, living habits, diagnostic tests,
and diseases. On the other hand, patients’ medical history,
doctor’s interrogation records contribute to accumulating vast
unstructured datasets. Hospitals are handling this Bigmedical
Data acquisition, processing and analytics, storage, retriev-
ing real-time data, and collecting historical medical data
using suitable Big data technologies [16]. Big Data technolo-
gies include the low-cost open-source Hadoop ecosystem,
Elasticsearch (ES), and the relational database (RDB) and

Hadoop–HadoopDB [17]. The Hadoop ecosystem comprises
of Hadoop distributed file system (HDFS), MapReduce algo-
rithm, and other analytical tools for handling, analyzing Big
Data to make it mature and enterprise-ready.

C. HEALTHCARE WEARABLES AND BIOSIGNALS
With the rise of wearable healthcare and wellness devices,
the source of healthcare data is expanding rapidly. High-
speed network, wearable physiological devices are enabling
smart homes to the part of the medical CPS. Several phys-
iological signals are measured in the hospitals and stored
as a numerical value or digital portable documents for-
mat (pdf). ECG gives information about cardiac activity
by measuring the electrical behavior of the heart. Elec-
tromyography (EMG) shows the muscle’s health by read-
ing the bioelectrical activity generated by muscle fibers.
Electroencephalogram (EEG) reveals the neurological sta-
tus by measuring the electrical activity of the brain. Pho-
toplethysmogram (PPG), galvanic skin response (GSR),
electrooculography (EOG) are examples of biosignals show-
ing the health status of the patients. Several human behav-
ioral signals, motion, gait, and postural parameters portray
physical and behavioral health. This kind of unstructured
data is very complicated to analyze using a big data plat-
form. Clinical decision-making using those records need a
physician or doctor’s assistance. The rapid advancement of
miniature bio-signal processing hardware, application pro-
gramming interface (API), communication technologies, and
machine-learning techniques enable wearables healthcare
devices to deal with real-time health analytics [18], [19].
Wearable health trackers can record biosignals in daily life
setup, such as home activities, walking, driving, sleeping,
and the widening era of the healthcare domain. Nowadays,
a patient’s real-time physiological data are generally acquired
using wearable sensors, such as a vital sign tracker, an activity
tracker [18], [4], [20], [21], and a sleep tracker [6], [22].
Wearable devices are utilized in wellness and health stim-
ulation, such as vagus nerve stimulation, microwave brain
stimulation [23].

III. BIG-ECG: A CYBER-PHYSICAL CARDIAC
MONITORING SYSTEM
Big-ECG, a novel cardiac monitoring system, consists of
a portable ECG sensor system, the data acquisition inter-
face, the big data storage and processing, the knowledge-
base, and the healthcare service dashboard, as shown in Fig-
ure 1. This section explored the proposed cyber-physical
cardiac monitoring architecture for real-time monitoring in
detail. First, the components of the system architecture are
introduced (Section III-A). Finally, we will demonstrate the
dataflow to assess the real-time cardiac tracking using the
CPSs (Section III-B).

A. SYSTEM ARCHITECTURE
This architecture aims to process the physiological sig-
nal to monitor in real-time health status, providing expert
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FIGURE 1. Overview of the Big-ECG system. ECG data acquisition system consists of the standard clinical ECG device and the wearable ECG patch. System
connects the ECG patch with the phone API through BLE. System feed the ECG data to cloud server using Wi-Fi or LTE network. In Apache Hadoop based
distributed file system, Elasticsearch indexes the data and acts as the NoSQL database, Spark performs live data processing, and MariaDB acts as the
relational database (RDB) and provides query service for front-end service application. This ambulatory system is developed to identify the changes in
cardiac features due to ischemic stroke or other illnesses and generate health advise and messages to assist the patients.

medical advice as feedback. This section describes the cyber-
physical cardiac monitoring system, the sensor (physical)
system, the cloud management system, and the front-end
service dashboard.

1) SENSORS SYSTEM
A sensor is a device, module, machine, or subsystem whose
purpose is to detect physical environment changes. The
Healthcare system utilizes a wide range of biosensors to
record various physiological signals to understand the health
status. Our sensor system deals with ECG sensors: the wear-
able ECG patch for real-life and clinical applications and
the standard ECG equipment for clinical application. The
wearable ECG device is a self-powered ECG patch with
Bluetooth low energy (BLE) communication with a computer
or a phone. The standalone ECG equipment used in hospitals
and healthcare centers stores the data in the local computer.
We integrated both kinds of devices with our CPS system.

2) CLOUD DATA STORAGE AND PROCESSING
The physiological data, such as ECG can be utilized as
big data, which is characterized by 5Vs in connection with
Volume, Velocity, Variety, Value, and Veracity. Hospital-
generated patient physiological data are of petabytes or
zettabytes, which depict the volume. The velocity is stated

in terms of data sampling rate from the patients, and most
of the clinical data are recorded with a higher sampling rate
to ensure signal quality. Variety explains the diversified data
sets, such as physiological data (ECG, EEG, EMG, etc.), and
radiological images (MRI, CT), and veracity explains the data
sets’ reliability and availability. The recorded healthcare data
are transformed into meaningful perceptions, such as disease
prediction, health monitoring, disability assistance system,
which describe the value in 5Vs.

The Cloud management system includes the data acqui-
sition system, data processing, data storage, data serv-
ing. The management of volume, velocity, scalability, and
fault-tolerance is the cloud platform’s essential requirement.
We utilized the Apache ActiveMQ for the role of data acqui-
sition requirements. ActiveMQ is a message broker built on
top of Java Messaging Service, capable of sending messages
between applications [24]. A custom-made java-based sensor
API acts as the publisher of the data. ActiveMQ is responsible
for the transport of the data sent by the API into the cloud.
ActiveMQ reduces message loss utilizing its fault-tolerance
functionality. Elasticsearch is a NoSQL database, which acts
as a distributed storage, search, and analytics engine with an
HTTP web interface and JavaScript Object Notation (JSON)
documents [25]. It provides powerful APIs to index data in a
format of a dynamic number of key-value pairs. Logstash is
a freely available data transformation engine that consumes
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data from many sources, converts it into JSON format, and
feeds it to the Elasticsearch database. The Hadoop ecosystem
contains a Hadoop distributed file system (HDFS), MapRe-
duce, Spark Streaming, and many other analytical compo-
nents for solving Big Data problems, and they have become
mature and enterprise-ready. The HDFS is designed for reli-
able storage, managing huge files, and streaming those data
sets to front–end applications. Apache Spark Streaming is a
scalable, fault-tolerant data processing for live data streams.
Spark performs in-memory big data processing with low-
latency; it is considered the best solution for live sensor data
processing. MariaDB is a community-developed MySQL
relational data management system. In this RDB, mostly
structured data is processed and utilized in conjunction with
Hadoop. It stores processed data and makes it available to use
from the front-end dashboard with no latency in response.

3) MEDICAL ONTOLOGY
An ontology is a formal, explicit specification of a shared
conceptualization [26]. As the ontology concept is gained
attraction in the biomedical domain for knowledge inter-
pretation and semantic interoperability, we developed the
medical ontology with assistance from ontology experts and
domain experts (researchers and doctors). The Protégé-OWL
v.4.2 ontology editor [27], which supports the OWL (Ontol-
ogy Web Language), was utilized to implement the ontology
concepts. Stored ECG data are tagged in semantic annota-
tions with predefined metadata, the set of ontological con-
cepts. Semantically annotated data was stored in a resource
description framework (RDF) database as RDF triples. The
RDF database acts as the ontology engine and facilitates
the storage and recovery of RDF triples through seman-
tic queries. The Front-end knowledgebase system gener-
ates automated recommendation from the back-end ontology
model for stroke prognostics, correlation with physiology,
level of stroke recovery, post-stroke therapy, etc. In addition,
the patient monitoring system subscriber or therapist can ask
additional queries the through user interface. The medical
ontology shares the disease information and the correlation
between the illnesses and physiological outcomes. Therefore,
Ontology-based stroke prognostics and risk will appear in the
client apps or dashboard.

4) HEALTH ADVISOR SERVICE DASHBOARD
The health advisor service dashboard consists of the client
application, the clinical dashboard, and the service executive
dashboard. The health advisor is the healthcare service layer
including client profile nodes, such as personal informa-
tion, wearable sensor identification, historical health records;
resource nodes, such as hospital and emergency service
information, hospital service availability, doctor information,
medicine, hospital logistics; decision nodes, such as medical
ontology, knowledgebase, disease ontology. The real-time or
near-real-time biosignal monitoring, live data streaming and
processing in a cloud platform, the real-time health status
feedback to the client, and the hospital dashboard make

a way to automate the health advisor system. Our system
enables the medical experts, such as doctors, to verify the
automatically generated recommendation and add his expert
clinical recommendation through the clinical dashboard. The
health advisor service, shown in client apps or dashboards,
consists of predicted diseases and severity and advice based
on knowledgebase along with a doctor’s prescription. The
health advisor also provides a message service to emergency
service control rooms and relatives about cardiac health,
helping them assist their patients and move to the hospital
for additional diagnosis and treatment.

B. DATAFLOW
The ECG data flows from the wearable sensor to front-end
visualization and undergoes a series of data processing for the
patients’ real-time cardiac monitoring to detect ECG changes
due to illness. Here we will describe the type of ECG data,
travel route of data for the transformation of raw data to
cardiac features, rule-based and machine learning-based data
processing, data visualization in dashboards.

As demonstrated in Figure 2, the wearable ECG patch
communicates with an API using the BLE network in a
near-located android phone. The android application reads
real-time ECG data from sensors, publishes in ActiveMQ
topics, and feeds data in JavaScript Object Notation (JSON)
format to the Transmission Control Protocol (TCP) server
through Wi-Fi or Long-Term Evolution (LTE) network. ECG
data is annotated with the corresponding device identity num-
ber (ID), patient ID, gateway ID, and timestamp to make data
traceable. Besides, the standalone ECG equipment stores the
data in comma-separated value (CSV) format. In this system,
ECG CSV data is converted to JSON format and send to
the ActiveMQ queue. JSON files were published by data
acquisition API in ActiveMQ feed to the server. If the big data
server exists on the same computer, Logstash can transform
those CSV files into JSON format, suitable for Elasticsearch
indexing and management.

On the cloud side, Elasticsearch receives raw data and per-
forms indexing according to ECG data configuration proto-
col. The Spark streaming service accomplishes the processing
of the live ECG. Data processing methods include context
prediction, feature extraction, feature ranking, machine learn-
ing, and knowledgebase. The context predictor annotated the
data with the client’s situation (resting, active), activity infor-
mation (walking, driving, or sleeping). The feature extraction
module extracts all relevant cardiovascular features. The rule-
based feature extender annotated cardiac features according
to the predicted diseases, such as ischemic stroke. All the
disease prediction rules come out of the disease prediction
decision tree derived from early extensive clinical studies.
The selected ECG features run through the machine learning
model to train the model. The system keeps records of the
clients’ details, historical medical records, contact informa-
tion, and health insurance data in their portfolios. All the
processing data are stored in theMariaDB andmade available
for the front-end dashboard. The dashboard can communicate

123150 VOLUME 9, 2021



I. Hussain, S. J. Park: Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management

FIGURE 2. The dataflow of the Big-ECG system. System feed the ECG data to cloud server through Wi-Fi or LTE network using ActiveMQ queue. In cloud
server, Elasticsearch indexes and stores the data, Spark performs live data processing, such as context prediction, feature extraction, rule-based feature
extension, and machine learning based prediction. Context prediction node identifies the scenario of data. System extracts cardiovascular features
related to Stroke, followed by the feature extension based on disease prediction rules. Cardiac features with disease prediction feed to machine leaning
model for training the model to build a disease prediction engine. RDB stores the processed data and provide query service for front-end service
application. Disease ontology will assist to understand the correlation of physiology, diseases, and possible cause of diseases. Doctors can recommend
expert suggestion through clinical dashboard.

with cloud applications in two ways; one is a REST API
to query the dashboard data, and another one is a Web-
Socket, which streams direct messages to the dashboard. The
Big-ECG system displays the cardiovascular health status and
various key ECG and HRV features, such as RR interval,
ST, QT, LF/HF ratio in the dashboard through WebSocket,
and signal trends using an HTTP request. Medical Ontology
and health advisors serve possible health advice to guide the
patient and the healthcare service providers.

IV. EXPERIMENTAL METHODOLOGY
To understand the stroke-impaired cardiac activity, we mea-
sured the single-channel ECG of the stroke patients and the
healthy adults in the resting state. We processed and extracted
the ECG fiducial features, time-domain, and frequency-
domain features of ECG-derived HRV. We investigated the
cardiac features through statistical analysis and hypothesis
tests to identify the significant important ECG features asso-
ciated with ischemic stroke. We also utilized machine learn-
ing algorithms to automate the classification of stroke group
and control group. As a pilot system, we set up a cyber-
physical pilot system for stroke prognostics and rehabilitation
management parallel to regular operations in two medical
centers. The pilot system includes data acquisition using a
wireless ECG patch, data transfer to the cloud, the wireless
network, and data storage and indexing in the cloud platform.

A. DEMOGRAPHICS OF THE PARTICIPANTS
The participants of this experiment are ischemic stroke
patients and healthy adults. The stroke group consisted
of 45 ischemic stroke patients (Age: 70.8 ± 4.6 years old,
68% men), and the control group composed of 40 healthy
adults (Age: 75.4 ± 2.3 years old, 38% males). Although no
changes were observed for age and gender in ECG autonomic
response [28], both participants in the stroke and control
volunteers belong to the same age group to reduce age-related
ECG fiducial feature variations. The stroke group included
patients undergoing post-stroke rehabilitation at Chungnam
National University Hospital and Konyang University Medi-
cal campus in Daejeon, South Korea. CT or MRI confirmed
clinical diagnostics of the patients’ ischemic stroke. The con-
trol group consisted of healthy older adults with no underly-
ing known heart disease and records of ischemic events. The
Institutional review Board of the Korea Research Institute of
Standards and Science, Daejeon, South Korea, and Konyang
University, Daejeon, South Korea, approved this study con-
ducted under the guidelines of the Declaration of Helsinki
(KRISS-IRB-2016-05-19).

B. ECG DATA ACQUISITION
We recorded ECG data in two different sensor systems; one is
the Biopac wireless ECG sensor (Biopac Systems Inc., Santa
Barbara, CA, USA), and another is a wearable ECG patch
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(Life science Technology Inc., South Korea). We acquired
a single-channel ECG dataset in Chungnam National Uni-
versity Hospital using the Biopac MP160 system with
AcqKnowledge version 5.0. A wireless Biopac BioNomadix
respiration (RSP) and ECG amplifier (RSPEC-4.3) recorded
the cardiovascular activity using 3 x 30-cm Electro Lead
(BN-EL30-LEAD3) by applying bipolar EL 503 pre-gelled
disposable electrodes to the left and right chests of the partic-
ipants, as shown in Figure 3(c). We recorded a single-channel
ECG dataset in Konyang University Physiotherapy Center
using an ECG patch and feed it to the cloud database.We used
the low-alcohol swab to clean the participants’ skin to reduce
the impedance. As described in Figure 3(a), we only con-
sider ECG data gathered on the lead position V5. For the
stroke population, we recorded the ECG data within three
months after diagnosing Ischemic Stroke. We recommended
participants avoid drinks, such as coffee or alcohol, before
the recording. While measuring ECG data, we instructed the
patient to keep awake, close the eyes, sit down and keep rest.
Following sitting on the chair, the recording of the data was
delayed for 3 minutes, allowing the participant’s vital signs to
calm down to a steady-state. As demonstrated in Figure 3(b),
we recorded the electrocardiogram for at least 5 minutes
during awake and rest. We maintained the room temperature
at 24◦ C and the relative humidity at 40%.

C. DATA TRANSFORMATION AND STORAGE
We fed the ECG patch data directly to the Big-ECG server
through an android application using ActiveMQ. Besides,
ECG data of the Biopac wireless is stored ECG data in
CSV file format in the connected local computer. To feed
this data to a remote server using the ActiveMQ protocol,
a data conversion API transformed the CSV data to JSON
data and sent it to the ActiveMQ queue. On the remote
server, Elasticsearch receives raw data and makes indexing
according to ECG data configuration protocol. As displayed
in Figure 3(d), the data server is equipped with a Dell Pow-
erEdge T640 tower server (Intel Xeon Silver 4210R 2.4GHz
10C Processor, RAM:32GB).

D. PRE-PROCESSING
All electrocardiogram (ECG) streams were sampled down
at 200 Hz to match the optimized sampling rate of the
QRS detection algorithms. All premature, missing, or ectopic
beats are filtered out using Pan-Tompkins QRS detection
algorithm [29].

E. FEATURE EXTRACTION
ECG Feature extraction consists of the fiducial features and
the heart rate variability features as described in Figure 3(e).
ECG fiducial components extracted through the onset, offset,
and peak of each wave of the standard P-QRS-T wave profile.
We analyzed ECG-derived HRV signals in time-domain and
frequency-domain. The frequency-domain HRV features are
spectral power extracted in various frequency bands, and the

time-domain HRV features included the various statistical
components.

1) ECG FIDUCIAL FEATURES
We extracted the fiducial features from the ECG waveform.
The cycle-by-cycle time and voltage measurements of Q
and S wave events and QRS events are extracts for various
points and intervals between waveforms in the ECG signals
cycle. RR Interval demonstrates the time between succes-
sive R peaks in the ECG waveform calculated in seconds.
Heart rate, expressed in beat per minute (BPM), is calcu-
lated using the RR time interval. QRS defines the duration
between the start of the Q -wave and the end of the S-wave.
QT describes the period between the beginning of the Q wave
and the end of the T-wave measured in seconds. Corrected
QT interval (QTc) is the QT duration adjusted with the RR
interval. ST describes the time between the S wave and the
end of the T wave calculated in seconds. PRQ interval means
the period between the beginning of the P-wave and the
Q-wave measured in seconds. P-height (P-H) narrates the
height of the P-wave peak in a cycle measured in mV. Sim-
ilarly, R-height (R-H) expresses the R-wave amplitude in an
ECG cycle recorded in mV.

2) TIME-DOMAIN HEART RATE VARIABILITY
HRV is a measure of the physiological rhythm between
successive beats. The change in heart rate is detected in
the RR interval of the ECG waveform. The RR interval
is a representative function of heart rate (HR) and HRV.
The RR interval is extracted from the ECG signal using a
QRS detector. A modified Pan-Tompkins method is used
to normalize the ECG data to 1, rather than using raw
ECG data, where the peak value of the highest R-wave is
considered 1 [29]. R wave threshold is demonstrated in
normalized range (−1, 1): positive for positive R wave
peaks and negative for inverted R peaks. A continuous time-
domain representation of the RR Intervals is obtained through
re-sampling R-R intervals to a constant sampling rate using
the Cubic-spine interpolation. The features obtained in the
time domain analysis were generally the standard deviation of
the adjacent R-wave interval (SDNN), the RMS of the succes-
sive difference of the RR interval (RMSSD), and the standard
deviation of the consecutive difference of the R-wave interval
(SDSD) and the ratio of the number of pairs of normal-to-
normal R-wave (NN) intervals greater than 50 ms to the total
NN interval (pNN50). Respiratory Sinus Arrhythmia (RSA)
is an index for the respiratory cycle, defined as maximum rate
minus the minimum rate, expressed in milliseconds.

3) FREQUENCY-DOMAIN HEART RATE VARIABILITY
The power spectral density (PSD), power in various fre-
quency bands are extracted from the RR intervals using
the Welch approximation method, the average of signal
time-sliced portions. The Hamming window is used for
Fast Fourier transformation (FFT) to construct PSD. VLF,
the very-low-frequency band power, describes the average
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FIGURE 3. Demonstration of data acquisition protocol, experimental scenario, and signal processing. (a) ECG patch in V5 position for both clinical and
real-life applications; (b) Experimental scenario; (c) Biopac system ECG electrode in V5 position for clinical application; (d) Big-ECG platform and service
dashboard; (e) Standard ECG signal and fiducial points description.

spectral power measured in the range of 0.00-0.04Hz, hav-
ing a unit of second^2/Hz. LF, the low-frequency band
power, is the average spectral power measured in the range
of 0.04-0.15Hz. HF, the high-frequency band power, indi-
cates the average spectral power measured in the range
of 0.15-0.40Hz. VHF, the very-high-frequency band power,
demonstrates the average spectral power measured in the
range of 0.40-3.00Hz. LF/(LF + HF) narrates the low-
frequency ratio, and HF/(LF + HF) mentions the high-
frequency ratio. LF/HF describes the ratio of low-frequency
power and high-frequency power.

F. FEATURE SELECTION
Feature selection plays a vital role in high-dimensional
biomedical data analysis. Classification performance largely
depends on the relevance of features, and irrelevant or
redundant data affects the computational power and time.
Feature selection consists of screening, ranking, and select-
ing features. Screening removes feature variables, which
do not provide useful information for prediction. Feature
selection ranks the features based on the prediction accu-
racy of the individual variable. The chi-square test mea-
sures the importance value of the predictor. We evaluated
the feature importance as (1-p), where p is the chi-square
test outcome. We selected ECG features with feature impor-
tance greater than 0.95 for training the machine learning
algorithm.

G. CLASSIFICATION
Supervised machine learning techniques are an efficient tool
for classification and discovering patterns in a dataset. In pre-
vious studies, machine learning was successfully utilized to
classify the physiological [21], [30] and behavioral [20], [31]
data of the stroke dataset and the control dataset. Machine
learning and deep learning techniques are also utilized to
classify the fatigue indies [32] and sleep apnea [33] using
the multimodal physiological signal. Decision tree-based
machine learning algorithms, such as QUEST, CART, C5.0,
CHAID, Random Trees, and biologically inspired neural
networks algorithm, have been implemented to categorize
cardiac stroke features. ECG HRV features were extracted
for every epoch of 30s and, fiducial features were generated
for each QRS cycle. We also filtered the premature, missing,
or ectopic beats and corresponding epoch measurements.
ECG dataset consists of 521 sets of HRV pre-processed
features and 5658 sets of pre-processed fiducial features in
total; 6 sets of HRV features and 66 sets of fiducial features
on average for each subject. ECG HRV dataset has 365 sets
of HRV features and each set consists of 5 time-domain
HRV features, such as RMSSD, SDSD, pNN50, RSA, and
9 frequency-domain HRV features, such as VLF, LF, HF,
VHF, LF/HF, LF/(VLF + LF + HF), HF/(VLF + LF +
HF), LF/(LF + HF), and HF/(LF + HF), extracted for each
sample. Furthermore, ECG fiducial dataset has 3961 sets
of fiducial features and each set consists of 8 fiducial or
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TABLE 1. Model hyperparameters of machine learning models (CHAID, QUEST, CART, C5.0, Random trees, Neural networks).

profile features, such as RRI, R-H, P-H, QRS, PRQ, QT,
QTc, and ST extracted for each sample. We partitioned the
ECG dataset into the training and testing data. The training
dataset comprises 70% of feature data, and the test dataset
occupied 30% of the entire feature dataset. Training data
size is 365 sets of HRV features and 3961 sets of fiducial
features. Besides, the testing data size was 156 sets of HRV
features and 1697 sets of fiducial features. We tuned the
hyper-parameters of models using cross-validation to find the
best-performing model. We performed non-exhaustive k-fold
(k = 10) cross-validation using the training dataset to get
rid of overfitting [34]. Each model was trained and cross-
validated to find out the set of hyper-parameters with the
highest accuracy of the model. As the most accurate model
was developed, we test the model using the test dataset. The
optimized hyper-parameters of each model were presented
in Table 1.

1) CHAID MODELS
The chi-squared automatic interaction detector (CHAID)
method is a decision tree formed by successively dividing a
subset into two or more child nodes, starting with the whole

data set [35]. The best partition across all nodes comes out by
merging the predictors’ pairs until no significant difference
is observed within the target’s pair. As a decision tree model,
CHAID model output is visual and easy to interpret in the
clinical decision support system.c5.0 model The C5.0 model
is a supervised data mining algorithm used to build decision
trees from data sets. It creates a decision tree using a divide-
and-conquer method. The C5.0 decision tree algorithm uses
a gain ratio as the basis for division. The model builds the
decision tree, followed by the cleanup procedure and the
tree size reduction to minimize the tree’s estimation error
rate [36]. This algorithm is widely utilized in biomedical data
mining applications.

2) QUEST MODEL
QUEST (Quick, Unbiased, Efficient) is a binary-split statis-
tical tree-growth method [37]. QUEST handles linear splits
using Fisher’s Linear discriminant analysis. If no missing
values in the data, it grows a tree with univariate splits.
It is robust to handle categorical predictors with many
categories.
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3) NEURAL NETWORK MODEL
The neural network is a biologically-inspired data mining
algorithms that predict a target according to a growing multi-
layered intricate pattern. We used the multilayer percep-
tron (MLP) neural network in this study [38]. This model
includes an input layer with multiple input nodes, a neural
network with hidden layers, and an output layer. This model
is capable of learning by own, fault-tolerance and storing
the data in entire network, capable of working on real-time
applications.

4) CLASSIFICATION AND REGRESSION TREES MODEL
Classification & Regression Tree (CART) is a recursive seg-
mentation method suitable for regression and classification
by selecting partitions at each node. Each child node cre-
ated by the separation is more homogeneous than the parent
node [39].

5) RANDOM TREES MODEL
The random trees model is a robust supervised Classifier
for accurate predictive models in classification or regression
problems. Random Trees is an ensemble learning algorithm
consisting of tree nodes representing decision rules to under-
stand any tree’s prediction and generate multiple classifica-
tions and regression trees [17].

H. DATA ANALYSIS
We explored the cardiac features that characterize ECG
changes due to ischemic stroke using statistical and machine
learning data analysis. We performed the statistical analysis
to identify the relationship between ECG-derived variables.
We explored the descriptive statistics analysis to explore the
statistical distribution of the data and independent-samples
t-test to evaluate whatever the associated groups’ means are
statistically significant. We performed the Statistical anal-
ysis using SPSS 24 package (IBM, Armonk, NY, USA).
Machine learning techniques are practical in assessing the
most accurate predictions possible.We used the feature selec-
tion to rank ECG features based on the target prediction
performance. For feature selection, Pearson’s chi-square test
evaluated the prediction importance of the component.
The supervised machine learning algorithms utilized the
high-ranking training feature datasets to build a classification
model, which later tested the dataset. We used the IBM SPSS
Modeler 18 package (IBM, Armonk, NY, USA) to utilize
machine learning techniques in our ECG data.

V. RESULTS
Wedeveloped a real-time or near-real-time ECG-based health
monitoring and disease prediction platform. The core mod-
ules are a wearable ECG patch for cardiac signal acquisition,
a big data platform for real-time data storage and processing,
and the health advisor dashboard for post-stroke management
service. We investigated the association of the electrocar-
diographic features with post-stroke ECG in two methods.

(1) Statistical analysis included descriptive statistics and the
hypothesis test. Descriptive statistics provide statistical distri-
bution measures, such as mean, variance, standard deviation.
In descriptive statistics, a boxplot graphically portrays the
spread of the dataset with their quartiles. The independent
sample t-test is a hypothesis test to determine whether asso-
ciated population means are statistically different. We per-
formed Levene’s test to measure the equality of the variance
and the t-test to check the means’ equality. (2) The machine
learning technique is a data analysis method, which builds
analytical models to learn from data, identify patterns and
make decisions through experience. In the following subsec-
tions, we will explore the results of the descriptive statistics
and the hypothesis tests of important ECG fiducial and the
heart rate variability features.

A. ASSOCIATION BETWEEN ECG FIDUCIAL FEATURES AND
STROKE
As displayed in Figure 4, RR interval, P-height, QRS,
QT, QTc, and ST intervals are the most significant stroke-
predictive ECG features.We investigated whether post-stroke
ECG changes are associated with the ECG fiducial features
and whether these can be detected using a single-channel
heart signal recording. As shown in Table 2, the RR interval
was−0.025 s shorter in the stroke group relative to the control
group (95% CI, −0.031 to −0.018 s, p = 0.0001). Mean
R-H was 0.085 mV higher in the stroke group relative to the
control group (95% CI, 0.055-0.115 mV, p = 0.0001). Mean
P-H was 0.011 mV higher in the stroke group relative to the
control group (95% CI, 0.010-0.012 mV, p = 0.0001). The
mean QRS of the stroke group was 0.004 s longer (95% CI,
0.002-0.005 s, p= 0.0001) than the mean QRS for the control
group. The mean PRQ of the stroke group was -0.006 s
shorter (95% CI, −0.007 to −0.004 s, p = 0.0001) than the
mean QRS for the control group. The mean QT of the stroke
dataset was −0.018 s shorter (95% CI, −0.021 to −0.015 s,
p = 0.0001) relative to the control group’s mean QT. The
mean QTc of the stroke patients was -0.011 s shorter (95%
CI, -0.014 to −0.008 s, p = 0.0001) relative to the control
patients’ mean QT. The mean ST of the stroke group was
−0.023 s shorter (95% CI, −0.027 to −0.020 s, p = 0.0001)
than the control group’s mean ST. Although all ECG fiducial
variables’ mean values were significantly different, the vari-
ance values of R-height, PRQ interval showed discrepancies.

B. ASSOCIATION BETWEEN FREQUENCY-DOMAIN HEART
RATE VARIABILITY AND STROKE
As demonstrated in Figure 5, LF ratio, HF ratio, LF/HF
showed significant associations with post-stroke cardiovas-
cular activity. We conducted the statistical investigation to
evaluate the association of frequency-domain features of
HRV with the stroke group relative to the control group.
As listed in Table 3, we measured spectral power in the
LF, HF, VLF, VHF bands and extracted the spectral ratios,
such as LF/(LF + HF), LF/(VLF + LF + HF), HF/(LF +
HF), HF/(VLF + LF + HF), and LF/HF as the standard
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FIGURE 4. Statistical distribution of ECG fiducial features. Median and interquartile range of (a) RR interval; (b) R-height; (c) P-height; (d) QRS
interval; (e) QT interval; (f) ST interval among the stroke group and the healthy control group. ∗(p < 0.05) indicates significant difference.

TABLE 2. Results of statistical analysis of the ECG fiducial features of the stroke and control group. ∗(p < 0.05) indicates significant difference.

TABLE 3. Results of statistical analysis of the HRV frequency-domain features of the stroke and control group. ∗(p < 0.05) indicates significant difference.

HRV measures. Power in HF, LF, and VLF are not statisti-
cally significant (p > 0.05). The mean LF/(LF + HF) was
−0.0003 smaller (95% CI,−0.0007 to−0.00001, p= 0.045)
in the stroke group relative to the control group. The mean
HF/(LF + HF) was 0.0004 greater (95% CI, 0.00001 to

0.00070, p= 0.045) in the stroke group relative to the control
group. The mean LF/(VLF+ LF+HF) was−0.0003 smaller
(95% CI, −0.00059 to −0.00001, p = 0.044) in the stroke
group relative to the control group. The mean HF/(VLF +
LF + HF) was 0.0004 greater in the stroke group relative to
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FIGURE 5. Statistical distribution of HRV frequency-domain features. Median and interquartile range of
(a) LF/(LF + HF); (b) HF/(LF + HF); (c) LF/HF among the stroke group and the control group. ∗(p < 0.05) indicates
significant difference.

TABLE 4. Results of statistical analysis of the HRV time-domain features of the stroke and control group. ∗(p < 0.05) indicates significant difference.

the control group (95% CI, 0.00001 to 0.00079, p = 0.045).
The mean LF/HF was−0.001 smaller (95% CI,−0.00141 to
−0.00001, p = 0.046) in the stroke group relative to the
control group.

C. ASSOCIATION BETWEEN TIME-DOMAIN HEART RATE
VARIABILITY AND STROKE
As displayed in Figure 6, RSA, RMSSD, and SDSD are
significant predictive features associated with cardiovascular
activities after ischemic stroke. We investigated the statistical
measure to evaluate the association of time-domain features
of HRV with the stroke group relative to the control group.
As shown in Table 4, we measured RMSSD, SDSD, pNN50,
and RSA as the standard HRV measures. Few ECG-derived
time-domain variables of heart rate variability have expressed
association with stroke patients. The mean RMSSD of the
stroke group was −3.28 ms shorter (95% CI, −4.81 to
−1.75 s, p= 0.0001) than the control group’s mean RMSSD.
The mean SDSD of the stroke group was −3.47 ms shorter
(95% CI, −4.98 to −1.95 s, p = 0.0001) than the control
group’s mean SDSD. The mean pNN50 of the stroke group
was -1.24 % shorter (95% CI, - 2.17 to −0.32 %, p = 0.008)

than the control group’s mean pNN50. The mean RSA of the
stroke group was −0.49 shorter (95% CI, −0.75 to 0.23, p =
0.0001) than the control group’s mean.

D. MACHINE LEARNING BASED POST-STROKE CARDIAC
HEALTH PREDICTION
In the results of feature selection, seven features out of all
ECG fiducial features and four features out of all ECG HRV
features, ranked higher than 95% of the importance limit, are
selected and feed to models. Receiver operating characteris-
tic (ROC) analysis offers the most comprehensive description
of prediction widely used in biomedical studies [40]. It shows
all of the combinations of sensitivity and specificity that a
machine learning model can deliver. AUC (area under the
curve) is a performance indicator of the predictive model and
defines the area under the ROC curve. The perfect score of
the AUC is 1.0. The AUC less than 0.5 is not considered a
useful classifier. Another alternative measure of AUC is the
Gini coefficient, ranging between and 1, defined as two times
(AUC-1). The confusion matrix or the error matrix delivers a
complete representation of the predictions of true and false.
We evaluated the standard performance measures, including
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FIGURE 6. Statistical distribution of HRV time-domain features. Median and interquartile range of (a) RMSSD;
(b) SDSD; (c) RSA among the stroke population and the control population. ∗(p < 0.05) indicates significant
difference.

accuracy (ACC), sensitivity (true positive rate), specificity
(true negative rate), precision (positive predictive rate), and
negative predictive value from the confusion matrix. Accu-
racy was considered the most intuitive measure of perfor-
mance to find the best model calculated as a percentage of the
correct predictions across observations. Sensitivity is the true
positive rate, defined as the correct positive predictive ratio
of all actual observations. Specificity shows the true negative
rate, characterized as the fraction of correct negative predic-
tions to all actual observations. Model prediction outcome
can the presented using the following standard equations:

Sensitivity =
TP

TP+ FN

Specificity =
TN

TN + FP

Precision =
TP

TP+ FP

Negativepredictivevalue(NPV) =
TN

TN + FN

Accuracy(ACC) =
TN + TP

TN + TP+ FN + FP

where TP is a true positive, TN is a true negative, FP is a false
positive, and FN is a false negative.

1) PREDICTION BASED ON ECG FIDUCIAL FEATURES
In Figure 7(a) and Figure 7(b), ROC curves demonstrate the
classification models’ performance curves using the train-
ing and the test datasets. All ECG fiducial features except
QTc have shown feature importance greater than 0.95 for
classification prediction in the feature selection. Table 5(a)

and Table 5(b) display all the classifiers’ performance mea-
surements for the training and test fiducial datasets. The
Random Tree categorized the training dataset as the high-
est AUC (99.7%) and medium accuracy (ACC: 97.62%).
The random trees model sorted the test datasets up to AUC
(98.90%) and medium accuracy (ACC: 95.56%). As demon-
strated in Figure 8, R-H, QRS, and PRQ have come out as the
most crucial stroke classification features using the Random
trees model. The C5.0 model categorized the training dataset
with moderate AUC (99.5%) and accuracy (ACC: 98.20%).
C5.0 classified test datasets by AUC (96.30%) and accuracy
(ACC: 94.85%). RRI, R-H, and P-H have emerged as themost
predictive stroke classification features using the C5.0 model.
The CHAID model categorized the training dataset by AUC
(99.40%) and accuracy (ACC: 97.59%). CHAID classified
test datasets by AUC (96.90%) and accuracy (ACC: 94.27%).
PH, ST, and QT have emerged as the most predictive stroke
classification features using the CHAID model. The CART
model categorized the training dataset by AUC (96.60%) and
accuracy (ACC: 92.40%). CART categorized test datasets by
AUC (94.70%) and accuracy (ACC: 91.23%). PH, ST, and
QT have emerged as the most predictive stroke classification
features using the CART model. The QUEST model cate-
gorized the training dataset by AUC (93.40%) and accuracy
(ACC: 90.07%). QUEST classified the test dataset by AUC
(92.10%) and accuracy (ACC: 89.18%). PH, ST, and QT
have emerged as the most predictive features of stroke clas-
sification using neural network models. The neural network
model categorized the training dataset with AUC (89.90%)
and highest accuracy (ACC: 83.82%). The neural network
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FIGURE 7. Receiver Operating Characteristic (ROC) curves for six different machine-learning models (Random Trees, CART, C5.0, QUEST, CHAID, Neural
Network). Area under ROC curve (AUC) is an indicator of prediction accuracy. (a) ROC curve of the training dataset. Random Tree classified the training
dataset with the highest AUC (99.70%) and moderate accuracy (ACC: 97.62%); (b) ROC curve of the testing dataset. Random Tree classified the testing
dataset with the highest AUC (98.90%) and highest accuracy (ACC: 95.56%). Diagonal black line is the reference line.

TABLE 5. (a). Results of the classification performance of different Models using the ECG Fiducial training dataset. (b). Results of the Classification
performance of different Models using the ECG Fiducial testing dataset.

categorized the test dataset by AUC (89.40%) and accuracy
(ACC: 83.17%). ST, RR-I, and QT have emerged as the most
predictive stroke classification features using neural network
models. Overall, the random trees model shows the highest
AUC (99.40%) and the highest Gini coefficient (98.90%).

2) PREDICTION BASED ON HEART RATE VARIABILITY
The ROC curves of machine learning models demon-
strate the Stroke prediction performance using the HRV
time-domain and frequency-domain features in Figure 9(a)
and Figure 9(b). In the feature selection, RMSSD, RSA,

SDSD, and pNN50 have come out as the most predictive
features (feature importance > 0.95) for stroke classifica-
tion shown in Figure 10. Table 6(a) and Table 6(b) listed
classifiers’ performance measurements using the training and
the testing HRV feature dataset. The CART model classified
the training dataset with the highest AUC (87%) and highest
accuracy (ACC: 82%) and classified the testing dataset with
the highest AUC (70%) and the best accuracy (ACC: 69%).
CHAID categorized training datasets by AUC (77%) and
accuracy (ACC: 70%) and test datasets by AUC (63%) and
accuracy (ACC: 56%).
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FIGURE 8. Feature importance of the ECG fiducial features in the feature ranking process of machine learning models to
distinguish the stroke and control groups.

TABLE 6. (a). Results of the classification performance of machine learning models using the HRV training dataset. (b). Results of the Classification
performance of Machine Learning Models using the HRV testing dataset.

VI. DISCUSSION
Our study aimed to investigate an ECG-based CPS feasi-
bility and evaluate the cardiac biomarkers indicating activ-
ity changes due to ischemic stroke. Stroke shares severe
health risk factors, and underlying heart diseases, such as
heart failure, atrial fibrillation, or vascular heart disease
increases stroke risk. Stroke impairs autonomic control and
leads patients to cardiac complications [41], and post-stroke
cardiac complications are the most deadly [42].

When an ischemic event, such as a hemorrhagic stroke
occurs due to a rupture of blood cells, oxygen supply to the
lesion area’s is disturbed and causes the brain cells to die. This
damage to brain tissue affects the central nervous system [6]
and the autonomic nervous system. ECG derived-HRV is
one of the gateways for easy access to autonomic activity.
Neurological disorders, such as acute ischemic stroke, change
the ECG characteristics in various ways. ECG abnormalities
may occur as complications, such as cardiac arrhythmia,
such as ventricular tachycardia, ventricular tachycardia.
Cardiac arrhythmias are responsible for hemodynamic

instability and responsible for unexpected sudden death after
ischemic stroke. For example, atrial fibrillation, a kind of
arrhythmias, can lead to subsequent brain and systemic
thromboembolism [41].

According to this study, resting RR-I, QRS, QT, QTc, and
ST are essential markers for classifying the stroke and healthy
control groups. The primary and possibly deadliest ECG fea-
tures associated with neurological illness are the ST-segment
and T-wave, which reflect abnormal repolarization [47]. ST-
segment depression [48], [49] is associated with ischemic
stroke with underlying coronary heart disease. We observed a
similar ST-pattern in our investigation. Prolongation of QTc
is an independent predictor of reduced HRV and increases
the threat of cardiac death in the stroke population [50], [51].
As our investigated stroke patients are in the recovery phase,
a few stroke patients showed QT prolongation in this study.

The ANS controls the body’s stress response to various
stressors professed by the brain, neutralizes the stressors’
effects, and restores homeostasis [52]. The HRV is a sym-
bolic signal for the evaluation of autonomic functions of the

123160 VOLUME 9, 2021



I. Hussain, S. J. Park: Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management

FIGURE 9. Receiver Operating Characteristic (ROC) curves for five different machine-learning models (Random Tree, CART, C5.0,
CHAID). Area under ROC curve (AUC) is an indicator of prediction accuracy. (a) ROC curve of the training dataset. CART classified the
training dataset with the highest AUC (87%) and highest accuracy (ACC: 82%); (b) ROC curve of the testing dataset. CART classified
the testing dataset with the highest AUC (70%) and moderate accuracy (ACC: 69%). Diagonal black line is the reference line.

FIGURE 10. Feature importance of the HRV features in the feature ranking process of machine learning models to classify the stroke and control groups.

body. HRV features are clinically used as biomarkers for
understanding the ANS changes after stroke [53]. As shown
in Table 7, HRV characteristics, such as LF / HF, LF ratio,
and HF ratio showed a strong association with the disturbed
autonomic function derived from the stroke [45], [46], [54].
In this study, LF/HF, LF/(LF + HF), and HF/(LF + HF)
have shown significant differences in the stroke group rel-
ative to control group. HRV time-domain features, such as
RMSSD, RR-I, SDSD have come out as the most predictive
autonomic features for higher stroke risk [43]. This study
revealed RMSSD, RSA, SDSD, and pNN50 as the distinctive
features during post-stroke treatment. Autonomic dysfunc-
tion is evident in the impaired physiological regulation of
heart rate and increased cortisol secretion [3]. As cardiosym-
pathetic centers are assumed in the anterior, medial, and

superior sections of the insula, stroke lesion in the inferior
parietal and posterior insula may impair the parietal lobe’s
link with autonomic centers causes an autonomic imbalance
and increased risk of cardiac events [55]. HF power repre-
sents parasympathetic activity, and LF power correlates with
vagal activity. The LF/HF, an indicator of sympathovagal
balance, is significantly lower among the stroke patients than
among the healthy control adults. Previous findings sup-
ported this study, revealing that higher HF power, lower LF
power, and reduced LF/HF ratio predict post-stroke sub-acute
infections [53], [56] and poor neurological outcomes [45].
Machine learning approaches enabled early stroke prognos-
tics and most-stroke recovery using the cardiac activity pro-
file. In our study, the decision tree-based Random Trees
Model most accurately classified the stroke impaired cardiac

VOLUME 9, 2021 123161



I. Hussain, S. J. Park: Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management

TABLE 7. Comparison of results of ECG-derived cardiac features of stroke
population between proposed work and previous works.

profiles. We found ECG fiducial profiles as key predictive
features for stroke prediction. According to statistical analy-
sis, we found that most of the fiducial features are statistically
significant. In contrast, only a few HRV features showed
significant differences in discriminating the stroke group and
the healthy group. These findings reveal that ECG fiducial
features are more reliable to distinguish the stroke group
and the healthy group. According to the machine-learning
approach, we found that classification of ML model using
fiducial features resulted in higher accuracy relative to HRV
features. Therefore, our results demonstrated that fiducial
features are more accurate predictors to classify the stroke
group and the healthy group. In the future, we will try to
explore ECG data recorded within a few weeks after the
stroke onset to investigate whether the near stroke period
HRV shows better classification performance than studied
HRV data within three months. We have a plan to examine
the combined performance of both features in the future.
In Table 8 A, a comparison of classification performance
of several machine-learning models were demonstrated for
stroke prediction using ECG derived cardiac features.

To the best of our knowledge, the Big-ECG we devel-
oped was the first to propose an outpatient ECG-based

TABLE 8. Comparison of classification performance results of
machine-learning models for stroke prediction in the proposed work and
previous works.

cyber-physical system for managing stroke prognosis and
post-stroke treatment. Several studies in the past have used
standard 12-lead ECG with standalone devices. Real-time
healthcare service in a non-clinical environment, such as rest,
sleep, demands an ambulatory ECG along with instant data
processing and health analytics. Thus, wearable ECG sen-
sors, big-data-driven cloud analytics, and real-time service
dashboards improve stroke prognosis and post-stroke rehabil-
itation management. Our system can be a useful measure to
predict wake-up strokes in night sleep settings. This proposed
ECG-based cyber-physical system can be a prospective HRV
based sleep quality and sleep disorder monitoring system.

In this study, our focus belongs only to the single-
channel ECG to understand the changes in the ECG for
cardiac complications from ischemic stroke, not all standard
ECG 12-leads. Lead V5 is identical to other lead positions,
but there are still specific cardiac outcomes at each lead
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position. For this reason, the model developed here is cur-
rently only generalized to Lead V5 ECG of stroke patients
through current parameterization.We utilized 5 minutes ECG
data recorded once, within 3 months after the stroke onset,
long ECG changes were not studied in this study. As mul-
tiple features were extracted from each subject and leave-
k-subject-out cross-validation was not performed, there is a
possibility of potential subject-bias in cross-validation of this
studies. Multimodal physiological data (EEG, PPG, EMG)
may enhance the prediction accuracy of stroke-derived neu-
ral, vascular, and postural impairment in the cost of the
computational power. Although the proposed cyber-physical
system demonstrated ECG-based patient management, it is
possible to integrate multiple physiological sensors, such as
the EEG and PPG sensors, to monitor patients in various
physiological domains. In the future, we will extend our
system with a multimodal physiological sensing system for
automated stroke prognosis and post-stroke rehabilitation
studies. Moreover, leave-k-subject-out cross-validation will
be performed to avoid subject-bias in future studies.

VII. CONCLUSION
Big-ECG, a cyber-physical cardiac monitoring system, was
constructed for the stroke prognosis and post-stroke patient
monitoring. We explained the sensor system, data analysis
of the big data platform, and machine learning-based stroke
prediction in detail. We successfully perform data acquisi-
tion, cloud-based data transformation, disease prediction, and
visualization of 45 stroke patients and 40 healthy volunteers
using this cyber-physical system. RR-I, QT, ST, QRS, SDSD,
LF/HF, LF/(LF + HF), and HF/(LF + HF) were statistically
significant cardiovascular biomarkers for identifying cardiac
changes derived from an ischemic stroke during the post-
stroke rehabilitation. The Big-ECG system is likely to be
a prospective medical support system for the prognosis of
ischemic stroke and post-stroke recovery.
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