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ABSTRACT We propose a multi-task learning framework for improving the performance of vision-based
deep-learning approaches for driver distraction recognition. The most popular tool so far for solving this task
is convolutional neural networks (CNNs) that have proven to be strongly biased toward local features. Such
bias causes CNNs to neglect global structural information, adversely affecting the robustness of the distracted
driver recognition task. To solve this problem, we generate positive and negative samples of each given input,
and construct a triplet of images (i.e., raw image, positive sample, and negative sample). The positive sample
is generated by applying structure-aware illumination to the human body region of each given input. The
negative sample is generated by randomly shuffling the local regions of each given input. The networks are
then trained with the triplets using a multi-task learning strategy to force the networks to explore global
information by multiple tasks: (a) recognizing the raw input and positive sample as the given ground truth;
(b) recognizing the negative sample as an extra ‘‘meaningless’’ label; (c) pulling closer the distance between
the features obtained from the raw input and positive sample while pushing away the distance between the
features obtained from the raw input and negative sample. By doing so, the model can be trained so that
it neglects the background information and pays more attention to the global structual information of the
scene. The proposed approach reaches state-of-the-art performance on the AUC Distracted Driver Dataset
and performs better than state-of-the-art studies on the Drive and Act Dataset. With raw images as input,
we have achieved an accuracy of 96.0% for the AUC distracted driver dataset and 66.8% for the Drive and
Act Dataset. Our approach does not introduce extra overhead during the testing procedure (i.e., utilization
procedure), which is helpful for real-life applications. Moreover, better accuracy can be achieved by fusing
the predictions respectively obtained with the raw input and positive sample. As a result, we have achieved
an accuracy of 96.3% for the AUC distracted driver Dataset and 66.9% for the Drive and Act Dataset. The
class activation map (CAM) of our proposed method is subjectively more reasonable, which would enhance
the reliability and explainability of the model.

INDEX TERMS Action recognition, advanced driver assistance, contrastive learning, multi-task learning,
intelligent vehicles.

I. INTRODUCTION
Nowadays, distracted driving has become a huge threat to
human society. According to the report issued by the National
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Highway Traffic Safety Administration (NHTSA) in the
United State in 2019, traffic accidents caused by distracted
driving led to 3,142 or 8.7 percent of all accidents of this year
in the United States [1], and most of them were involved in
texting or talking on mobile phones. Owing to this situation,
a reduction in traffic accidents can be realized if we can
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FIGURE 1. Examples of images from the AUC Distracted Driver
Dataset [13] that are wrongly classified by Efficientnet-b3-pruned [14]
trained on this dataset. The network’s focus is visualized using class
activation maps (CAMs) [15], which are saliency maps denoting the region
the CNN uses as clues to identify the predicted category. (a) shows some
examples that the CNN makes no distinction between the major and the
minor clues. (b) shows some examples that the CNN model only focuses
on a certain small local region while neglecting other crucial clues.

develop distracted driving detectors. Such detectors can be
used in cars to alert the driver when distracted driving is
sensed [2]–[7].

According toNHTSA, distracted driving is defined as ‘‘any
activity that diverts attention from driving.’’ Examples of
such actions include eating, drinking, talking to passengers,
etc. [8], [9]. A more specific explanation of distracted driving
is given by the Centers for Disease Control and Prevention
(CDC), which defines three situations of distracted driving:
visual distraction (i.e., looking around rather than visually
focusing on the road), cognitive distraction (i.e., looking at
the road but not mentally focusing on it), and manual dis-
traction (i.e., the driver taking his/her hands off the steering
wheel) [10]. In this paper, we focus on computer-vision-
based approaches for recognizing different distracted driving
behaviors based on dashcam videos. Firstly, vision-based
approaches always act as the base of many driver assistance
systems. Some driver assistance systems also use other sen-
sors together with a dashcam, but the information captured
by the dashcam is still very important [11], [12]. Secondly,
vision-based solutions are often lower cost. Dashcam videos
are often much cheaper than many other sensors, such as
LIDAR and NIR cameras.

This work was developed on two public datasets, namely,
the AUCDistracted Driver Dataset [13] and the Drive andAct
Dataset [16], both of which consider the manual categories
of distractions. Following the success of CNNs in various
computer vision fields, there has been increasing interest in
developing CNN-based approaches to obtain a better recog-
nition of human action in different situations [10], [17], [18].
However, recent studies [19], [20] have proven that CNNs
tend to be strongly biased toward local features instead of
global information. Consequently, it is difficult for CNNs
to utilize global information, such as the spatial relations
of local features, as clues for driver behavior recognition.
As shown in Figure 1, specifically in a distracted driving
recognition task, a CNN tends to only focus on a certain

local region or puts its focus everywhere because it does not
properly ‘‘understand’’ the spatial relations of different local
regions. In some wrongly classified cases (e.g., Figure 1(a)),
the attention of the network is too scattered. Consequently,
when predicting the category, the network cannot determine
which regions are important. In some other wrongly classified
cases (e.g., Figure 1(b)), the CNN model only focuses on a
certain small local region, which decreases the robustness of
the network. For example, focusing only on whether both
of the driver’s hands are placed on the steering wheel can
sometimes predict the correct action. However, the network
may make a mistake if it does not explore more information,
such as the driver’s pose. We assume that these problems
are caused by the local bias of CNNs because of which the
network lacks awareness of the semantically important global
structure. And this degrades the reliability of the detection
systems.

The above-mentioned problems result in the following
research question addressed in this paper: Can forcing CNNs
to explore more global information improve the accuracy for
distracted driver recognition?

To answer the research questions, in this paper, we propose
a triple-wise multi-task learning (TML) framework, which
forces the model to reduce the bias toward local features.
Firstly, for each given input, the TML generates a posi-
tive sample by applying structure-aware illumination to the
human body region, and it generates a negative sample by
randomly shuffling the local regions. Clearly, compared with
the raw input image, the positive sample keeps the same
global structure as the raw input, while the local texture
of the most crucial regions (i.e., human) is smoothed. The
negative sample has the same small local regions while the
spatial relationships of those small local regions are destruc-
ted. Secondly, the TML forces the model to explore global
information by a multi-task learning strategy that requires the
model to find the difference between the input and negative
samples, as well as the commonalities between the input and
positive samples. The multiple tasks that we use to train the
model are summarized as follows:

- Classification: to recognize the original input and posi-
tive sample as the given ground truth, and to recognize
the negative sample as an extra ‘‘meaningless’’ category
(Figure 2(b)).

- Contrastive learning: to push away the distance between
the deep features learned from the original input and
negative sample, and to pull closer the distance between
the deep features learned from the original input and
positive sample (Figure 2(c)).

Our contributions are summarized as follows:
- We solve the research question by proposing a novel
multi-task learning framework that forces the networks
to strengthen the awareness of the global informa-
tion, such as the spatial relations of different local
regions.

- Our approach is easy to implement with different
network backbones.
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- With different backbones, the proposed framework out-
performs baselines by 0.7%–1.2% on the AUC Dis-
tracted Driver Dataset [13], and 1.8%–3.1% on the Drive
and Act Dataset [16]. Our best result is 96.3% on the
AUC Distracted Driver Dataset [13], and 66.9% on the
Drive and Act Dataset [16].

- We are proposing a leaning scheme, not a new deep
learning architecture. Therefore, our method can gen-
erally boost the recognition accuracy as demonstrated
in Section V.l

The rest part of this paper is organized as follows. Section II
introduces some prior studies that are related to our work.
Section III describes the proposed framework in details.
Section IV introduces the experiments for evaluating the
effectiveness of the proposed framework, and Section V sum-
marizes the experimental results. Finally, Section VI presents
our conclusions.

II. RELATED WORKS
In this section, we introduce the previous studies that are
related to this work. Subsection II-A introduces the previ-
ous studies on the topic of vision-based distracted driving
recognition. Subsection II-B introduces the previous studies
on revealing the local bias of convolutional neural networks.

A. DISTRACTED DRIVING RECOGNITION
Earlier, many types of research have been done on vision-
based distracted driver classification from the video recorded
by the dashcam of vehicles. In recent years, researchers
have proposed various method to explore significant visual
information for recognizing distracted driving from image
and video data. Such visual information includes the eye
gaze [21]–[23], head pose [24]–[26], fatigue cues extracted
from the face [27]–[29], and body pose [30], [31].

Recently, with the significant progress in the development
of deep learning models, especially CNNs in the computer
vision field, a common approach has been to use deep learn-
ing models to solve distracted driving tasks [10], [17], [18].
For example, Yan et al. [18] embeded local neighborhood
operations and trainable feature selectors within a deep CNN,
and by doing so, meaningful features could be selected auto-
matically to recognize distracted driving.

Abouelnaga et al. [10] proposed a technique to combine
multiple streams of CNN model. These streams were con-
structed with different backbones (i.e., AlexNet [32] and
Inception-v3 [33]) and were trained with different types
of input (i.e., raw images, face-segmented images, hands-
segmented images, skin-segmented images, etc.). The pre-
diction logits of multi-stream CNNs were applied with a
weighted sum to compute the final prediction score.

Arefin et al. [34] proposed to combine a modification of
AlexNet [32] model with the aggregation of HOG features
and brought improvement on classification accuracy.

Hu et al. [35] used multi-scale CNN blocks with dif-
ferent kernel sizes to generate hierarchical feature maps

and then fused multi-scale information for distracted driver
recognition.

Behera et al. [36] explored the configuration of body parts,
as well as the interaction between body parts and objects.
They also proposed a multi-stream deep fusion network to
combine image features, pose features, and pose-object inter-
action features.

Qin et al. [37] proposed a light weight detector by decreas-
ing the filter size. The number of parameters was as small as
0.76 million.

The above-mentioned studies yielded improvement in clas-
sification accuracy. However, the common weakness of them
is that they require sophisticated strategies to obtain com-
plementary information, such as multi-region or multi-scale
information. It is because the local bias makes it hard for
CNNs to capture all-sided information with a single original
image. Multi-region and multi-scale images are needed for
capturing information in all aspects. Instead of fusing multi-
ple information obtained frommultiple inputs, we use a triplet
of different inputs to force the CNNmodels to improve global
awareness. The benefit is that our framework does not require
to increase the overhead of assemblingmultiple CNN streams
to fuse the information obtained with different types of input.

B. LOCAL BIAS OF CONVOLUTIONAL NEURAL NETWORKS
While realizing significant developments in a wide range
of computer vision tasks, the internal mechanism of CNNs
still remains to be a ‘‘black box’’ to human as we do
not know exactly how the CNNs solve the given problem.
However, some recent studies have moved a step forward
in understanding the mechanisms of CNNs, and most of
them report that CNNs are strongly biased toward local
features [19], [20], [38].

Geirhos et al. [19] used awell-designed experiment to ana-
lyze whether CNNs were more receptive to local or global
features and provided evidence that CNNs are biased towards
local features. The authors conducted a careful psychophys-
ical experiment to analyze how humans and CNNs act dif-
ferently in terms of shape and texture cues. They created
pictures with a texture-shape cue conflict and allowed human
or CNNs to distinguish the pictures. For example, they gen-
erated an image of a cat shape with an elephant texture and
let humans or CNNs distinguish whether the image was a
cat or an elephant. After 48,560 psychophysical trials across
97 observers, they found that CNNs had a very strong texture
bias, while humans tended to recognize the category accord-
ing to their shape.

Brendel and Bethge [38] proposed a model named BagNet,
and trained BagNet with the features of small cropped local
regions without using any information about the global spa-
tial structure. BagNet showed similar performance on Ima-
geNet [39] when compared to AlexNet, which meant that
even though it was given full images, the CNN found nomore
clues than the BagNet, which only saw small local images.
should
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FIGURE 2. (a) illustrates the process of the proposed framework. (b) illustrates L1, which is based on the softmax loss. (c) illustrates L2, which is based
on triplet loss. More details are provided in Section III.

Such a bias toward local features does adversely affect
the robustness of CNNs [19], [20]. Some previous studies,
such as [10], stack multi-stream networks to learn informa-
tion from different perspectives. Such studies, although they
are not directly intended to reduce local bias, have some
effect on the capture of global information. However, a multi-
stream strategy significantly increases the number of model
parameters and the consumption of computational resources.
In contrast, our work reinforces the model’s awareness of
global spatial information with raw-positive-negative triplets,
which introduces no extra parameter numbers to the backbone
network.

III. PROPOSED FRAMEWORK
In this section, we introduce the details of the proposed
framework. Firstly, TML generates triplets composed of a
raw image, a positive sample, and a negative sample. The
positive sample maintains the same global spatial structure

as the raw input but smoothens the local texture of the human
body region. The negative sample is generated by keeping the
same local information as the raw input but destroying the
global spatial structure. Thereafter, TML reduces the CNN’s
local bias by exploring information among the triplets with a
multi-task learning strategy.

The rest part of this section is organized as follows.
Subsection III-A introduces the key definitions and notations
of this section. Subsection III-B describes how we generate
the negative and positive samples in details. Subsection III-C
introduces the multi-task learning strategy we use to train the
framework.

A. DEFINITION AND NOTATION
Let X , Xpos and Xneg respectively be the raw input, positive
sample and negative sample. v, vpos, and vneg respectively
denote the deep features learned from X , Xpos and Xneg.
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FIGURE 3. Simplified illustration of a self-correction human parsing
framework that has g progressive models. Here, we mainly illustrate the
parts that are closely related to our work.

To generate the positive samples, we need a mask denoted
as Xmask to segment the human body region of each image.
Xmask is computed from human parsing result of X , which is
defined as Xhp.

The number of channels is neglected, and the
two-dimensional (2D) size of X , Xmask , and Xhp is H × W
(height, width). In this paper, we regard X , Xmask , and Xhp as
sets of pixels and X = {x(1,1), x(1,2), . . . , x(α,β), . . . , x(H ,W )},
Xmask = {xm(1,1), x

m
(1,2), . . . , x

m
(α,β), . . . , x

m
(H ,W )}, Xhp =

{xhp(1,1), x
hp
(1,2), . . . , x

hp
(α,β), . . . , x

hp
(H ,W )}.

To generate the negative samples, we need to divide X into
small sub-regions, and N × N denotes the numbers of the
sub-regions. R and R′ respectively denote the sub-region in
X and Xneg.
l1, . . . , lk denote the logits outputted by the final fully-

connected (fc) layer. 5 = {π1, . . . , πk} denotes the parame-
ters of the final fc layer, and each of π1, . . . , πk corresponds
to each of l1, . . . , lk .
L1 and L2 denote the loss functions we use for our

multi-task learning.

B. GENERATION OF POSITIVE AND NEGATIVE SAMPLES
As shown in Figure 2(a), given an input, the proposed frame-
work generates a positive sample Xpos by applying structure-
aware illumination to the human body region that is masked
out by human parsing and a negative sample Xneg by ran-
domly shuffling local regions. Both of them are designed
to force the neural networks to be less biased toward local
information and to exploremore global structure information.

1) POSITIVE SAMPLE GENERATION
The positive sample is generated by changing the illumination
conditions of the human body regions. First, we compute the
human pose mask Xmask of a single channel. The human pose
mask Xmask is defined as:

xm(α,β) =
xhp(α,β) −min(Xhp)

max(Xhp)−min(Xhp)
, (1)

where Xhp = {xhp(1,1), x
hp
(1,2), . . . , x

hp
(α,β), . . . , x

hp
(H ,W )} is

defined as:

Xhp = SCHP(X ). (2)

FIGURE 4. Simplified illustration of the architecture of Retinex-Net. Here,
we mainly illustrate the parts that are closely related to our work.

Here, SCHP denotes the self-correction human pars-
ing [40], which is a state-of-the-art human parsing strategy.
In human parsing tasks, pixel-level semantic regions must
be manually annotated. However, owing to the difficulty
associated with annotating pixel-level labels, the annotators
tend to be confused by the unclear edges between different
semantic regions and introduce noise to the labels. To solve
this problem, SCHP is proposed to improve the reliability
of pixel-level labels with a progressive schedule. As shown
in Figure 3, SCHP has a progressive schedule withG learning
cycles. In the first cycle, the model is trained using coarse
manual labels. In each of the other cycles, the model takes the
training data as the input and uses a pixel-wise mask output
from the former cycle as the label. By doing so, the model
and labels are progressively improved to be more robust and
accurate. Let θg be the model weights learned at the end of
cycle g (g ∈ {1, 2, 3, . . . ,G}). Themodel weights are updated
as follows:

θg =
g

g+ 1
θg−1 +

1
g+ 1

θg. (3)

In this work, we train the SCHP mdoel on the Pascal-
Person-Part dataset [41] and then obtain SCHP(X ).

Then, the positive sample is generated as follows:

Xpos = RET (X )� Xmask + X � (1− Xmask ), (4)

where� denotes the element-wise product, and RET denotes
a pretrained Retinex-Net [42], which we use to generate
the structure-aware illumination of X . Structure-aware illu-
mination can preserve the overall structure boundary while
smoothing the local texture [42], [43]; Retinex-Net was ini-
tially designed for low-light image enhancement. As shown
in Figure 4, Retinex-Net is composed of a decomposition
network and an adjustment network. Given low-right and
normal-light image pairs, the decomposition network first
decomposes each image into their reflectance and illumina-
tion. Thereafter, the adjustment network takes the reflectance
and illumination of the low-light image as the input and
generates the target image. During training, the frame-
work is forced to improve the structure awareness using
the structure-aware smoothness loss Lis. Let Rlow and Ilow
be the reflectance and illumination of the low-light image,
respectively. Let Rnormal and Inormal be the reflectance and
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illumination of the normal-light image, respectively. Lis is
defined as:

Lis =
∑

j=normal,low

‖∇Ij � exp(−C∇Rj)‖, (5)

where ∇ denotes the gradient, and C denotes the coefficient
that balances the structure-awareness strength (C is man-
ually set to 10 in [42], and we follow the same setting).
Lis considers the locations that have steep reflectance gradi-
ents as global structures and relaxes the constraint. Otherwise,
the locations are regarded as local textures, and the constraint
is strengthened. In this work, we first train Retinex-Net on the
LOL dataset [42], and then treat X as the low-light input to
obtain RET (X ).

Clearly, X and Xpos share the same background, and the
only difference between them lies in the human body regions.
Thus, X and Xpos can be regarded as different views of
the same action. When neural networks are required to find
the commonalities between X and Xpos, they must explore the
global structure of the human body regions. This is because:
(a) the background regions of X and Xpos are already the
same, and will output the same deep features (e.g., features in
the penultimate layer) when passing through neural networks.
That is, the background regions do not contribute to the loss
that we designed to pull close the deep features of X and Xpos
(details in subsection III-C). This loss can only be reduced by
exploring the human body part. (b) In Xpos, the local texture
is to some extent smoothed with RET , and the clues have to
be explored in a more global style.

2) NEGATIVE SAMPLE GENERATION
The negative sample is designed to break the spatial structure
of the imagewhile simultaneouslymaintaining the same local
information. Given the input X, we first divide X into N ×N
sub-regions denoted by Ri,j, where i ∈ {1, 2, 3, . . . ,N } and
j ∈ {1, 2, 3, . . . ,N } are the horizontal and vertical indices,
respectively. Assuming that Xneg is similarly divided into
N × N sub-regions R′i,j, we then obtain the negative sample
Xneg by randomly shuffling the sub-regions and ensuring that
R′i,j 6= Ri,j. By doing so, the spatial relationship of objects
is destroyed, and Xneg should not correspond to the same
class as X .

Note that although the global spatial structure is destroyed,
the local information and global statistical information
remain the same between X and Xneg. Thus, the global spatial
correlation of the sub-regions must be explored to compare
the difference between X and Xneg.

C. MULTI-TASK TRAINING
Our proposed architecture is trained in an end-to-end manner
by solving multiple tasks. Our work focuses on recognizing
different categories of driver actions, and thus, the first task
is trained with a softmax loss (as shown in Figure 2(b)).
Let us assume that the classification problem is k-class, and
we treat the negative samples of all the k classes as the
(k + 1)th class. The softmax loss adopted in this study is

defined as

L1=−

(
k∑
c=1

(λc log p(ρ = c))+λ(k+1) log p(ρ = k + 1)

)
.

(6)

Here, λc is a binary indicator (0 or 1), which equals 1 if
c is the true label of the input instance and 0 otherwise.
ρ is the prediction of the category for the input instance and
p(ρ = c) = exp(lc)∑(k+1)

i=1 exp(li)
. {l1, . . . , lk , l(k+1)} is a k + 1

dimension vector of logits, which is output by the network as

L1 = fc(v, concat(5,πk+1)), (7)

where v is the deep feature learned by an adopted network
backbone (e.g., the output of the final pooling layer of a
ResNet-50), fc denotes the fully connected (fc) layer, and
5 = {π1, . . . , πk} is a set of parameters of the fc layer.
Each parameter in {π1, . . . , πk} corresponds to each logit in
{l1, . . . , lk}. πk+1 is an extra parameter that we added to cor-
respond to the (k + 1)th logit. During the training procedure,
we concatenateπk+1 with5 as the parameters for the fc layer.
Therefore, this task is changed from a k-class classification
problem to a (k + 1)-class classification problem.

As shown in Figure 2(c), the second task is to explore the
commonalities and differences between X and Xpos, or X and
Xneg. Let us assume that v, vpos, and vneg are the deep features
extracted from X , Xpos, and Xneg, respectively. The second
task is defined as in the following:

L2 = max(d(v, vpos)− d(v, vneg)+ σ, 0), (8)

where d denotes the Euclidean distance.
To train the networks, we simultaneously solve the two

above-mentioned losses as follows:

L = L1 + γL2, (9)

where γ is a weight coefficient.
During the training procedure,L1 actually treatsXneg as the

‘‘meaningless’’ class, which semantically acts as a ‘‘none of
the above.’’ It can build a default categorization to introduce
additional images as a ‘‘meaningless’’ class, which provides
better separation between the main classes within the feature
space [44]–[46]. Specifically, in our work, optimizing L1
trains the model to know that same-category images do not
only have the same local features, but also have the same
global structure.

L2 ensures that the distance between v and vpos is close,
while the distance between v and vneg is large. Consequently,
the model has to explore clues in terms of the global struc-
ture to find differences in X and Xneg pairs and similarities
between X and Xpos pairs. L1 and L2 together help the model
to reduce local biases and to improve the awareness of the
global structure.

During the testing procedure, we remove πk+1, and then
the trained networks can be directly used to validate the
k-class classification accuracy.
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FIGURE 5. Ten different driver behaviors categorized in the AUC Distracted Driver Dataset [13].

FIGURE 6. Thirty-four different driver behaviors categorized in the Drive and Act Dataset [16].

IV. EXPERIMENTS
In this section, we introduce the experiments for eval-
uating the effectiveness of the proposed framework.
Subsection IV-A introduces the dataset in details.
Subsection IV-B introduces the network backbones we use
for experiments. Subsection IV-C introduces the setup of
experimental environment.

A. DATASET DETAILS
As mentioned before, we carried out experiments on two
standard benchmark datasets: the AUC Distracted Driver
Dataset [13] and the Drive and Act Dataset [16]. The for-
mer requires the recognition of 10 classes of video frame-
based distracted driving behavior. It has 17,308 RGB frames,

TABLE 1. Comparison between the proposed approach and baselines in
terms of classification accuracy.

of which 12,977 are for training, while the remaining
4,331 are for testing. The latter requires the recognition
of 34 classes of video-clip-based distracted driving behavior.
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FIGURE 7. Visualization results of the baseline (the left image of each pair) and TML (the right image of each pair).

It has 8,864 video clips, of which 6,642 are for training, while
the remaining 2,222 are for testing. The 10 classes of the
AUC Distracted Driver Dataset [13] are labeled as c0–c9,
and Figure 5 shows the driving behaviors corresponding to
c0–c9 in this dataset. The 34 classes of the Drive and Act
Dataset [16] are labeled as c0–c33, and Figure 6 show the
driving behaviors that correspond to c0–c33 of this dataset.

B. NETWORK BACKBONES
Because the two datasets have different types of data,
we use 2D CNNs and three-dimensional (3D) CNNs for

video-frame-based and video-clip-based datasets to test our
proposed approach. We use Resnet-50 [47] and Efficientnet-
b3-pruned [14] as backbones for the video-frame-based
dataset, and C3D [48] and R3D [49] for the video-clip-
based dataset. We compare the performance of the networks
trained using the standard training strategy and the proposed
framework.

C. EXPERIMENTAL ENVIRONMENT SETUP
We set the learning rate as 0.01 with cosine annealing [50]
for the video-frame-based dataset, and 0.001 with cosine
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TABLE 2. Class-wise sensitivity on the AUC Distracted Driver [13].

TABLE 3. Confusion matrix on the AUC Distracted Driver [13].

annealing for the video-clip-based dataset. The batch size
was set as 64 for all network backbones except C3D. We set
the batch size for training C3D to 16 because of the limited
GPU memory in our computer (1080Ti×2). We trained the
networks for 100 or 50 epochs on the video frame-based
or video-clip-based datasets when the training status was
already saturated. We set σ as 0.1, γ as 0.5, and N as 32.

V. RESULTS AND DISCUSSIONS
In this section, we summarize the experimental results
and discuss the limitations of the proposed framework.
Subsection V-A presents the results of comparing TML with
the baselines. Subsection V-B presents the results of compar-
ing TMLwith the previous studies. Subsection V-C discusses
the limitations of the proposed framework.
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TABLE 4. Class-wise sensitivity on the Drive and Act Dataset [16].

A. COMPARISON WITH THE BASELINES
Table 1 shows the comparison results obtained between the
proposed approach and baselines (our implementation). The
proposed approaches and baselines adopt the same networks
but are trained with different strategies. For the baselines,
the networks are trained with the standard procedure. For the
proposed approaches, the networks are trained with TML.
Our proposed approach clearly surpasses the baselines for
each backbone network on both datasets. Our framework
improves 0.7% points with Resnet-50 [47] and 1.2% points
with Efficientnet-b3-pruned on the AUC Distracted Driver
Dataset [13], and improves 1.8% points with C3D and 3.1%
points with R3D on the Drive and Act Dataset [16]. Consid-
ering that the accuracy for the AUCDistracted Driver Dataset

is almost saturated, it is interesting to see there is still room
for the improvement by our proposed method.

Figure 7 visualizes some example CAMs generated by
the baseline Efficientnet-b3-pruned (the left image of each
pair) and the Efficientnet-b3-pruned trained with the pro-
posed framework (the right image of each pair). Each row
shows three examples of one of the ten categories of actions
of the AUC Distracted Driver Dataset [13]. The proposed
framework allows the network to obtain more accurate clues.
For example, for the action ‘‘Talk Passenger,’’ the network
trained with the proposed approach does not only focus on the
driver’s hand, but also likely focuses on the face orientation.
For actions such as ‘‘Drink’’ and ‘‘Text Right,’’ the network
trained with the proposed approach mainly focuses on the
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TABLE 5. Confusion matrix of the baseline network on the Drive and Act Dataset [16].

objects related to the action, such as bottle or mobile-phone.
For some other examples, sometimes the baseline networks
tend to put their focus everywhere on the image. It can be
observed that the network trained with TML captures the
visual attention that is more semantically meaningful than
those captured by the baseline network. It is because the
baseline networks are strongly biased towards local regions,
they can consider different unimportant regions as important
clues by chance during the training procedure. Therefore,
they fail to capture the real attention during the testing proce-
dure. On the contrary, the proposed TML framework can help
reduce this bad effect. This shows that our proposed method
properly captures the right characteristics of distracted driv-
ing, resulting in more reliable and explainable detection.

In this subsection, we also compare the confusion matrix
and the class-wise sensitivity between the baseline and the
proposed method. As defined in [51] and [52], class-wise
sensitivity (S), which is also known as the true positive rate
(TPR), is computed as

S =
QTP

QTP + QFN
, (10)

where QTP denotes the true positive (i.e., the number of
correctly classified images), and QFN denotes false negatives
(i.e., the number of incorrectly classified images).

Tables 2 (a) and (b) respectively show the class-wise sen-
sitivity computed on the AUC Distracted Driver Dataset [13]
of the baseline Efficientnet-b3-pruned and the Efficientnet-
b3-pruned trained with TML. Tables 4 (a) and (b) respec-
tively show the class-wise sensitivity computed on the Drive
and Act Dataset [16] of the baseline R3D and the R3D
trained with TML. It can be observed that, on both datasets,
the proposed framework helps the network improve the class-
wise sensitivity. On the AUC Distracted Driver Dataset [13],
TML improves the class-wise sensitivity in all ten categories.
On the Drive and Act Dataset [16], TML improves the class-
wise sensitivity in 14 categories out of 34, and the class-wise
sensitivity in the other categories do not decrease.

Tables 3 (a) and (b) respectively show the confusion
matrix computed on the AUC Distracted Driver Dataset [13]
of the baseline Efficientnet-b3-pruned and the Efficientnet-
b3-pruned trained with TML. Tables 5 and 6 respectively
show the confusion matrix computed on the Drive and Act
Dataset [16] of the baseline R3D and the R3D trained
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TABLE 6. Confusion matrix of the network trained with TML on the Drive and Act Dataset [16].

with TML. The confusion matrix describes the performance
of a classification model by counting how many samples
of each category are predicted as each category. It can be
observed that, on both datasets, the number of correctly pre-
dicted samples increases.

Overall, the proposed method outperforms the baselines
considering all perspectives.

B. COMPARISON WITH STATE-OF-THE-ART STUDIES
In this subsection, we compare our work with state-of-the-art
studies on the AUC Distracted Driver Dataset [13] and the
Drive and Act Dataset [16]. We find that, after the training,
the accuracy can be further improved if we fuse the prediction
scores respectively obtained from the raw input and positive
sample. Thus, in this subsection, we both present the accuracy
obtained only by raw input images (X ) and the accuracy
obtained by fusing the prediction scores respectively obtained
from the raw input and positive sample (X + Xpos).
Table 7 shows the comparison results obtained with prior

studies on the AUC Distracted Driver Dataset [13], and
Table 8 shows the comparison results obtained with prior
studies on the Drive and Act Dataset [16].

TABLE 7. Comparison with state-of-the-art studies on AUC Distracted
Driver Dataset [13].

Figure 8 shows some typical failure cases of the 3.7%
wrongly-predicted images. Most failure cases are actually the
beginning frame of a sequence of frames that composes a
certain distracted driving behavior. In other words, in those
failure cases, the driver is about to start a certain distracted
driving behavior. Thus, those images actually look very
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TABLE 8. Comparison with state-of-the-art studies on Drive and Act
Dataset [16].

FIGURE 8. Some typical example images that are wrongly classified by
TML on the AUC Distracted Driver Dataset [13]. The category name below
each image is its ground truth, but all the images are predicted as ‘‘Drive
Safe.’’

similar to ‘‘Drive Safe,’’ and are very difficult even for
humans to recognize.

Overall, our best result achieves the state-of-the-art
performance observed for both datasets. Moreover, after
the training, our approach does not require any more extra
computational cost. In comparison, Abouelnaga et al. [10]
required multiple streams of network backbones to gather the
information obtained from different regions (e.g., head, hand,
body, etc.) during the testing procedure. Martin et al. [59]
required three-stream network backbones to gather the infor-
mation obtained from RGB frames, optical flows, and skele-
tons. Thus, our approach not only has better performance
but also requires less computation cost during the testing
procedure.

C. LIMITATIONS OF THE PROPOSED FRAMEWORK
Currently, the best accuracy of the proposed study is achieved
by averaging the log its respectively outputted with the raw
input and positive sample. It would be better if the best accu-
racy can be achieved with only the raw input image. Besides,
the current model requires around 90 million parameters,
which is less than the previous state-of-the-art model [57]
(160 million parameters), but still, it would be better for real-
world application if we can make it less.

VI. CONCLUSION
In this paper, we propose a triple-wise multi-task learn-
ing (TML) framework to improve the accuracy of distracted

driver recognition tasks. CNNs have been proven to exhibit
bias towards local features, which sometimes causes themod-
els to fail to focus on semantically meaningful regions for
finding clues. Our framework firstly generates positive and
negative samples of the given inputs. Then our framework
trains the network backbone with different tasks that include
(a) recognizing the raw input and positive sample as the
given ground truth and recognizing the negative sample as an
extra ‘‘meaningless’’ label, and (b) pulling closer the distance
between the features obtained from the raw input and positive
sample while pushing away the distance between the features
obtained from the raw input and negative sample. Those tasks
force the CNNs to improve their awareness of global spatial
structure by requiring the CNNs to explore the commonalities
and differences between the raw images and positive/negative
samples. The experimental results show that the proposed
framework helps the model to learn more accurate clues
from the videos. For our future plans, we mainly plan to:
(a) collect data by ourselves and test the generalization ability
of the model; (b) decrease the parameter size while keeping
the performance so that our work will be more suitable for
real-world application; and (c) compare our work with graph
neural networks [62], which have similar function to our work
of understanding the relationship between different regions.
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