
Received July 30, 2021, accepted August 9, 2021, date of publication September 1, 2021, date of current version September 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3109744

A Parallelization Algorithm for Real-Time Path
Shortening of High-DOFs Manipulator
JI HWAN SEO ∗, HYUNTAE LEE∗, AND KYOUNG-DAE KIM , (Member, IEEE)
Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea

Corresponding author: Kyoung-Dae Kim (kkim@dgist.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant through Korean Government by the Ministry of
Science and ICT (MSIT) under Grant 2019R1F1A1059496, and in part by the Daegu Gyeongbuk Institute of Science and
Technology (DGIST) Research and Development Program of MSIT under Grant 21-CoE-IT-01.

∗Ji Hwan Seo and Hyuntae Lee contributed equally to this work.

ABSTRACT The paths generated by sampling-based path planning are generally not smooth and often
generate multiple unnecessary robot posture changes in the task space. To mitigate such issues with a
planned path from sampling-based path planners, shortcut-based path shortening algorithms are commonly
adopted in the field of robot manipulator path planning as a post-processing step. In this paper, we analyze
shortcut-based algorithms and propose a new approach based on the idea of parallelism for faster path
shortening so that it can be more applicable in environments where a path has to be generated as quickly
as possible to avoid collisions with other moving objects around the manipulator. Through performance
comparisons in simulations, it is shown that the proposed approach can obtain a well-shortened as well as
much smooth path compared to the original path faster than conventional shortcut-based algorithms and an
optimization-based approach developed for collision-free path generation.

INDEX TERMS Path shortening, path smoothing, parallelization, manipulator.

I. INTRODUCTION
Research on collaborative robotics is very active these days
due to its great usefulness in the era of the Fourth Industrial
Revolution. Robot path planning is one of the key areas in
the field of collaborative robotics research. In path planning,
the sampling-based approach is the most commonly used
technique especially for industrial robot manipulators, whose
configuration space dimensions are generally high.

Sampling-based path planning algorithms generate a
collision-free path by connecting sampled robot configura-
tions in the configuration space. This approach has been
widely used in robot path planning because it has better
ability to find a path in high degree of freedom (DOF)
configuration space, compared to existing techniques. Prob-
abilistic Roadmap (PRM) [1], one of the most representative
sampling-based planners, finds a path from start to goal
by connecting some of the sampled configuration nodes
(or simply, nodes) created in the collision-free space
in advance. Rapidly Exploring Random Tree (RRT) [2]
is another representative planner in this category.

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Grosu .

RRT generates a path by repeating the process of finding
the closest node to a randomly generated sample in the
configuration space, creating a new node at a certain dis-
tance, and performing collision checking. Afterwards, to cope
with static and dynamic environments, various sampling
based path planners have been introduced, such as Dynamic
Roadmap (DRM) [3], Dynamic RRT [4], g-Planner [5], and
so on. However, one common drawback of sampling-based
path planning is that the planned paths are generally not
smooth and often generate unnecessary robot posture changes
in task space [6]. This is mainly due to the difference between
the task space and the configuration space where a path is
originally planned. A common approach to address this issue
is to perform post-processing on the planned path such as
smoothing around corners or eliminating unnecessary posture
changes.

Parametric curves such as a polynomial curve, Bézier
curve, or splines can be used to smooth the curvature of
a path. These techniques generate a curved path based on
the given control points. For instance, Wang et al. [7] gen-
erated a smooth trajectory between two adjacent points by
planning the joint acceleration as a 4th-order polynomial.
Huang et al. [8] proposed a method of smoothing the corners

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 123727

https://orcid.org/0000-0003-3617-6879
https://orcid.org/0000-0003-2631-1993
https://orcid.org/0000-0003-2340-5433


J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

of a given path to have G2 continuity using cubic B-spline.
Han and Liu [9] performed path smoothing with Bézier curve
after finding a collision-free path for a 6-DOF manipulator
using RRT. However, since sampling-based path planners
typically generate a path with unneeded control points, there
is a possibility that a path smoothed by these techniques
alone still contains unnecessary motions. For this reason,
removing unnecessary posture changes from a given path is
more effective for improving path quality.

Oneway to improve the quality of the planned path is to use
an optimization technique. For example, Covariant Hamil-
tonian Optimization for Motion Planning (CHOMP) [10]
defines a cost function with a combination of a collision term
and a smoothness term, and finds the optimal path using a
covariant gradient descent method. Stochastic Optimization
for Motion Planning (STOMP) [11] is similar to CHOMP,
but it performs optimization even if the gradient of the cost
function cannot be calculated. Trajectory Optimization for
Motion Planning (TrajOpt) [12] was introduced to address
the complexity issue of CHOMP by formulating a trajectory
optimization problem as a sequential quadratic programming.
However, these methods typically take a long time to get the
optimal path, and so it may not be applicable in environments
where a path has to be generated as quickly as possible to
avoid collisions with other moving objects.

Another approach is to shorten the middle part of a
given path by using path-pruning or shortcut-based algo-
rithms. Path-pruning is a sequential process starting from
the beginning node of a given path to find the other
farthest node in the path that can be connected without
collision [13], [14]. However, due to its sequential nature of
the algorithm, a path-pruning algorithm cannot sufficiently
shorten a given path in many cases. A Shortcut algorithm
was proposed to overcome the limitation of the original
path-pruning algorithm [15]. Roughly speaking, the shortcut
algorithm is an iterative path-pruning approach which repeats
a two-step process, a random selection of a partial segment of
the given path and then path-pruning for the selected path seg-
ment, until the given path is sufficiently shortened. Because
of its simplicity and effectiveness, the shortcut approach is
still widely used for path post-processing [16], [17].

In this paper, we propose a new shortcut-based path short-
ening algorithm, named as Parallelized Shortcut (ParaSC),
that can shorten a path much faster than conventional
shortcut-based algorithms. The proposed algorithm is
designed based on the idea of parallelism to overcome
some limitations of existing algorithms which we identified
through in-depth analysis of existing algorithms with sup-
porting evidence obtained via simulations. We also present
the results of performance comparison between ParaSC
and other algorithms to demonstrate the improved path
shortening performance of our algorithm. In particular,
an optimization-based method, which is another representa-
tive approach commonly used to generate a smooth optimal
path, is also considered for comparison. The main contribu-
tions of this work can be summarized as follows.

Algorithm 1 Shortcut Algorithm (5: Planned Path)
1: loop
2: 5s← Random selection of a partial segment of5
3: 5′s ← Perform shortening on 5s via linear interpo-

lation
4: if 5′s ∈ C

free then
5: Replace 5s with 5′s
6: end if
7: end loop

• Effective path shortening through parallelization
To the best of our knowledge, the proposed method is
the first shortcut-based algorithm utilizing paralleliza-
tion strategy applied for the path post-processing of
high-DOF robot manipulators. Since ParaSC divides a
given path into multiple segments and considers all pos-
sible shortening methods for each segment, it is possible
to generate a shortened path where unnecessary posture
changes are almost eliminated in a few iterations.

• Parallel path shortening speed improvement using GPU
It utilizes the parallel processing power of modern
GPUs to expedite the path shortening process for
high-DOF manipulators. According to the simulation
results, ParaSC can shorten a path in less than a few
tens of milliseconds in most cases even within an envi-
ronment with many surrounding obstacles, which out-
performs other path post-processing algorithms in terms
of shortening speed. Such computation time of ParaSC
for path shortening is fast enough to be used alongside
humans within the same workspace and it is expected
that ParaSC can be potentially useful in the field of
collaborative robotics.

The remainder of this paper is organized as follows.
Section II reviews the representative shortcut-based path
shortening approaches. Our proposed approach is presented
in Section III. Implementation details of the proposed algo-
rithm are presented in Section IV. Performance evaluation
and comparisons are shown in Section V. Finally, this work
is concluded in Section VI.

II. SHORTCUT-BASED ALGORITHMS
The basic steps of the shortcut algorithm are shown in
Algorithm 1where5 is a path generated by a sampling-based
path planning algorithm consisting of a sequence of nodes
and edges connecting adjacent nodes, and C free is the
collision-free configuration space.

A simple but naive approach for the random selection of a
partial path segment5s, shown in line 2 of Algorithm 1, is to
use only existing nodes of the planned path5. However, this
simple strategy may limit the number of selectable path seg-
ments if the number of nodes constituting path5 is not large
enough, and hence eventually impact on the quality of path
shortening. To overcome this limitation, several approaches
have been proposed. In [18], the midpoint of an edge was

123728 VOLUME 9, 2021



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

Algorithm 2 Adaptive Partial Shortcut Algorithm
(5: Planned Path, 5ref: Reference Path)
1: loop
2: 5s← Random selection of a partial segment of5
3: Update AWD using 5 and 5ref
4: Select a fixed number of joints according to AWD
5: 5′s ← Perform shortening on 5s via linear interpo-

lation on selected joints
6: if 5′s ∈ C

free then
7: Replace 5s with 5′s
8: end if
9: end loop

used to increase the number of selectable path segments for
the given path. Hsu et al. [19] put additional nodes on the
planned path in order to achieve the same goal. In addition to
these approaches, the shortcut algorithm has been extended in
various directions such as a meta-algorithm that combines the
shortcutting concept and a path hybridization technique [20],
and a shortcutting approach for jerky trajectories bounded in
velocity, acceleration and so on [21], [22].

In general, through the iterative path-pruning process,
the shortcut algorithm can generate a well-shortened path
in terms of path length in configuration space. However,
the shortest path found in configuration space is not always
desirable in task space since it may contain unnecessary
joint movements when moving the manipulator from one
configuration to another. To address this problem of the
original shortcut algorithm, Partial Shortcut (PSC) algorithm
was proposed in [23]. The overall structure of PSC algorithm
is same as Algorithm 1. But the main idea which makes
PSC algorithm different from the original shortcut algorithm
is to focus on one joint motion when it shortens a path
segment instead of considering all joints. Referring to line 3
in Algorithm 1, PSC algorithm first selects a joint and then
performs the shortening process on 5s only for the selected
joint. At each iteration step, a joint is selected randomly
according to a pre-defined weight distribution over all joints
that approximately describes howmuch each of the joints can
influence to the robot posture change.

Since PSC algorithm only considers one joint motion for
each path shortening iteration step, one can easily see that the
algorithm will inevitably take more iteration steps than the
original shortcut algorithm to obtain a well-shortened path.
Furthermore, as the path is updated at each iteration step,
the pre-defined weight distribution for joint selection does
not appropriately reflect the effectiveness of each joint for
path shortening. To address these issues of PSC algorithm,
a new algorithm, called Adaptive Partial Shortcut (APSC)
algorithm, was proposed recently in [24]. The basic steps
of the APSC algorithm are shown in Algorithm 2 where
5ref is the straight line path in configuration space that
connects the first node and the terminal node of 5 without
considering obstacles.

In APSC algorithm, the first issue of PSC algorithm is
easily addressed by increasing the number of joints to be
considered for path shortening. As described in line 4 of
Algorithm 2, the number of joints to be selected is
pre-determined and fixed. Also, to reflect the effectiveness of
each joint for path shortening as the path5 is being updated,
APSC algorithm selects joints according to the weight dis-
tribution which is updated at each iteration step, called the
adaptive weight distribution (AWD). AWD is updated so that
joints which have large differences between 5 and 5ref are
to be selected more likely than others.

III. PARALLELIZATION FOR FAST PATH SHORTENING
As explained in Section II, APSC can generate a
well-shortened path faster than PSC. However, it is still not
fast enough to be used in dynamic environments. In this
section, we discuss the limitations of APSC algorithm in
terms of computation time and propose a new shortcut-based
path shortening framework that can achieve much faster
convergence toward a well-shortened path enough to be used
in real-time path planning situations.

A. LIMITATIONS OF APSC ALGORITHM
Since APSC algorithm is essentially a shortcut-based algo-
rithm, it still relies on an iterative process for path shortening.
Therefore, it is necessary to increase the number of itera-
tions to get a well-shortened path using APSC. Referring to
Algorithm 2, one main step that contributes to the number of
iterations is the collision checking in lines 6 and 7. The prob-
ability that the shortened path segment 5′s be collision-free
is highly dependent on both the path segment 5s selected
in line 2 and also the set of joints selected in line 4. Thus,
it is critically important for path shortening to wisely choose
a set of joints for a given path segment5s. Also, even though
APSC algorithm selects a fixed number of joints according
to AWD, there is still a substantial possibility that 5′s fails
to pass the collision checking step in line 6. We argue that
this is because the set of joints selected for a given path
segment 5s is generally not the best choice for 5s in terms
of the number of joints as well as the combination of selected
joints. This claim is supported by the simulation results of the
6-DOF manipulator shown in Figure 1 and Table 1.

Figure 1a shows an exemplary path 5 generated by a
sampling-based path planning algorithm and three partial
path segments 5s of 5 are shown in Figure 1b, 1c, and 1d.
As shown in the figure, the planned path 5 consists
of 15 nodes along the path starting from the node 1 and
ending at the node 15. In Table 1, we present the results of
our exhaustive simulations for path segment shortening by
considering all possible combinations of joints for a given
number of selected joints. As shown in the table, the max-
imum number of joints that can generate a collision-free
shortened path segment 5′s can be different if the given path
segment 5s is different. For example, for the case of path
segment5s in Figure 1b, the maximum number of selectable
joints for collision-free 5′s is six while it is only two for the

VOLUME 9, 2021 123729



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

FIGURE 1. An example of path generated by a sampling-based path
planning for a 6-DOFs UR-5 manipulator. (a) Planned path 5. (b) A path
segment 5s from node 1 to node 4. (c) A path segment 5s from node 4 to
node 11. (d) A path segment 5s from node 8 to node 15.

TABLE 1. Number of joint combinations for collision-free 5′
s for given

path segment 5s.

case of path segment5s in Figure 1c. Also, we note that if we
fix the number of joints to be selected as in APSC algorithm,
say to three for example, then the collision checking step in
line 6 of APSC algorithm will fail and hence increase the
number of iterations. Furthermore, even if we fix the number
to two, one can argue that there are still some issues with
APSC algorithm. Specifically, in our result for the case of
path segment5s in Figure 1c, the two pairs of joint combina-
tions for successful collision-free path segment5′s generation
are turned out to be (1, 6) and (2, 6). However, since APSC
algorithm selects joints randomly according to AWD, there is
no guarantee that the algorithm will select one of these joint
combinations. Also, if we choose joints with a pre-defined
fixed number, it is easy to see that the algorithm eliminates
any possibility to generate a better shortened path segment
with either smaller or larger number of joints.

B. PARALLELIZATION STRATEGY FOR FAST PATH
SHORTENING
In previous section, we discussed the limitation of the existing
state-of-the-art path shortening algorithm, APSC, in terms of
computation time. In this section, we propose our approach
which is also a shortcut-based algorithm but with a paral-
lelism framework to overcome the above mentioned limita-
tion of other algorithms and make it fast enough to be used in
dynamic environments.

First, one intuitive way to reduce the number of iterations
is to perform path shortening on multiple path segments
simultaneously. For this, we select a set of partial path seg-
ments that are non-overlapping each other except the first
and the last nodes in each path segment. With this paral-
lelized processing overmultiple path segments, one can easily
expect that the total number of iterations can be substantially
reduced.

As we pointed out above, the strategy that selects a fixed
number of joints randomly according to weight distribution
(AWD in the case of APSC) can be problematic. To overcome
this limitation, we also propose a parallelization scheme in
joint selection. As shown in our simulation results, since the
probability of success in the collision checking process is
highly dependent on the number of joints to be selected as
well as the combination of selected joints for a given number
of joints, it is very important to choose a set of joints for a
given path segment in the way to increase the success prob-
ability in collision checking. With a parallelization scheme
in mind, we propose to explore all possible combinations
of joints simultaneously and choose one of them that is
collision-free and has the best shortening effect.

Figure 2 shows the overall structure of the proposed
parallelization framework, named as Parallelized Short-
cut (ParaSC) algorithm, that integrates the two parallel pro-
cessing strategies explained above. The computation steps
of the proposed path shortening process are outlined in
Algorithms 3 and 4. For the purpose of parallelized

FIGURE 2. Proposed parallelization framework for shortcut-based path
shortening.

123730 VOLUME 9, 2021



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

Algorithm 3 Parallelized Shortcut (ParaSC) Algorithm
(5: Planned Path)
1: Let γ1, γ2, . . . , γm be the set of all possible joint combi-

nation
2: loop
3: {5s,1,5s,2, . . . ,5s,n} ← Partition 5 into n path

segments
4:

∑
i = ∅,∀i ∈ {1, 2, . . . , n}

5: Run In Parallel: ∀i ∈ {1, 2, . . . , n},∀j ∈

{1, 2, . . . ,m}
6: 5′s,i← Path shortening on 5s,i (Algorithm 4)
7:

∑
i =

∑
i ∪5

′
s,i

8: For each
∑

i s.t.
∑

i 6= ∅

9: Choose one5′s,i from
∑

i w.r.t. a measure for path
shortening quality

10: Replace 5s,i with 5′s,i
11: end loop

Algorithm 4 Parallelized Path Shortening on 5s,i for the
jth Joint Combination Case
1: Let Qj be the set of joints in the jth joint combination
2: 5′s,i← Linear interpolation of joints in Qj from the first

node to the last node of 5s,i
3: Run In Parallel: ∀l ∈ {1, 2, . . . ,L} where L is the

user-specified maximum number of interpolated node
samples for collision checking

4: cl ← Generate an interpolated node sample on5′s,i
5: if cl ∈ C free then rl = 0
6: else rl = 1
7: end if
8: if rl = 0 for all l then return 5′s,i
9: end if

shortening of multiple path segments, the algorithm first
partitions the given path 5 into n path segments as shown in
line 3 of Algorithm 3. This can be done easily by randomly
selecting n + 1 nodes from the path and dividing the path
into n path segments based on these selected nodes. Then,
as the main step for the parallelized path shortening process
shown in lines from 4 to 7, the algorithm applies the path
shortening calculation for each path segment 5s,i and for
all possible joint combinations γj where i ∈ {1, , 2, · · · , n}
and j ∈ {1, 2, · · · ,m}. Here, the outline of path shortening
calculation process on each path segment 5s,i is presented
in Algorithm 4 where the linear interpolation is performed
first for shortening the path segment and then collisions are
checked along the shortened path segment as shown in lines
from 3 to 7 of the algorithm. Next, if the shortened path
segment is clear from collisions, then the shortened path
segment 5′s,i is returned to the main algorithm and stored in
the set 6i in Algorithm 3 for further processing where the
subscript i represents the path segment number. After com-
pletion of path shortening for all i and j, the algorithm chooses

the best shortened path segment5′s,i for each path segment i
w.r.t. a certain path shortening quality measure. As the main
purpose of the process is to shorten a path, we chose to use the
path length as the measure for path shortening quality. Once
these steps are done in lines from 8 to 9 for each path segment,
then the algorithm replaces the original path segment 5s,i
with the shortened one5′s,i if there is any. Finally, this process
is repeated until the entire path5 is shortened sufficiently.

IV. IMPLEMENTATION
In this section, we present the details on the implemen-
tation of the parallelization steps in ParaSC algorithm,
i.e., lines 5 and 6 in Algorithm 3, on a Graphics Processing
Unit (GPU). A GPU usually has more than hundreds of
cores and this makes a GPU more suitable than a Central
Processing Unit (CPU) for applications that need to process
a massive amount of data rapidly in parallel. There are two
representative frameworks for GPU programming: Compute
Unified Device Architecture (CUDA) and Open Computing
Language (OpenCL). Since CUDA usually requires less pro-
gramming effort than OpenCL [25], CUDA was used in this
work. Below, we first provide a brief overview of the GPU
architecture, and then describe how we parallelize the path
shortening process in consideration of GPU architecture.

A. GPU ARCHITECTURE
In the GPU architecture, a thread is defined as a sequence
of operations, and the GPU is specifically designed to excel
at executing thousands of threads in parallel. Each thread
executes a user-defined function called a kernel, and the same
kernel can be executed in parallel by multiple threads.

In CUDA, a thread hierarchy can be configured by spec-
ifying two configurations: The number of thread blocks
(or simply, block) and the number of threads per block.
A thread block is a group of threads. Both can be configured
in the form of 1D, 2D, or 3D. On a current GPU, a block can
contain up to 1024 threads. Once the thread hierarchy for a
kernel is configured, threads are executed by the streaming
multiprocessors (SMs) of the GPU, which are components
of GPU, that contain several CUDA cores. The SM executes
threads in groups of 32 threads called a warp. If the threads
allocated to the SM are not multiples of 32, virtual threads
are generated so that the number of threads is a multiple
of 32, and they are filled in the last warp [26]. Since virtual
threads do not perform any valid operations, it is desirable to
configure the thread hierarchy so that the number of threads
per block can be a multiple of 32 in order to maximize
the utilization of GPU capacity [27]. NVIDIA recommends
the number of threads per block in multiples of 64 such
as 192 or 256 [28].

There are 6 types of memory in a GPU that can be
accessed by threads. Figure 3 shows the hierarchy of GPU
memory and Table 2 shows the characteristics of each
memory [29]–[31]. Register is mainly used to store variables
which are frequently used by each thread [32]. Local memory
is used when each thread needs more space than the total

VOLUME 9, 2021 123731



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

FIGURE 3. GPU memory hierarchy.

TABLE 2. Characteristics of each GPU memory.

allocated registers. Shared memory allows multiple threads
in each thread block to share intermediate operation results.
Global memory is a space where data is exchanged between
the host PC and GPU. This memory is typically used when
previous data is required for the next kernel run [32].Constant
memory and texture memory can also receive data from the
host PC, but data stored in them can only be read. Threads can
access data relatively quickly in some cached areas of these
memories. Constant memory is optimized for broadcasting
data to multiple threads [33], and texture memory can be
used to improve computing performance when the memory
access pattern has spatial locality [34]. To increase computing
efficiency, it is important to consider these characteristics
when storing data in each memory available in the GPU.

B. PARALLEL INTERPOLATED NODE GENERATION
As shown in Algorithms 3 and 4, ParaSC algorithm has a
hierarchy of parallelizations. Once the path segment 5s,i
and the set of joints Qj for path shortening are selected,
the algorithm tries to shorten the selected path segment 5s,i
via linear interpolation. However, to be a valid shortened path
segment, it is necessary that the shortened path segment is
collision-free. Since this is one of the most computationally

expensive tasks in general, to check whether a path is free
from any collisions, ParaSC algorithm utilizes another level
of parallelization strategy for collision checking of a given
path segment, which corresponds to lines from 3 to 7 in
Algorithm 4. Our strategy for collision checking of a path is
to generate node samples along the path as many as possible
and check whether any of the node samples is in collision
with surrounding obstacles. If all node samples are collision-
free, then the algorithm declares that the linearly interpolated
path segment is also collision-free and returns it as a valid
shortened path segment5′s,i.
In this section, we first describe the details of our imple-

mentation for concurrent generation of node samples that
will be used for collision checking later. Figure 4 shows the
overall process of the proposed parallel interpolated node
sample generation. In our implementation for this process,
we configure the thread hierarchy as follows. First, each joint
combination is assigned to each (thread) block so that the
jth joint combination corresponds to block j. Thus blocks
are configured in 1D form. Second, each block is configured
in 2D form so that threads within a block can process the
same computation simultaneously but working on a different
path segment as well as different joint. For example, the blue
thread shown in Figure 4 processes its calculations for the
fifth joint in the second edge of the given path. Here, it is
worth noting that, as shown in Figure 4, a path segment for
shortening consists of a group of consecutive path edges.

The first step of the parallel interpolated node sample gen-
eration process is to determine the number of node samples to
be generated for each path edge, and then generate node sam-
ples along the path. In the figure, these steps are represented
as Steps 1 and 2 respectively. Specifically, in Step 1, a thread
associated with the ith joint and the jth path edge calculates
the angle change of the ith joint from the starting node and the
ending node of the jth path edge of the path. Once all threads
within a block finish their computation, the length of each
path edge in configuration space is approximated as follows:
For the jth path edge,

1θj =

(∑
i

1θ2i,j

)1/2

(1)

where 1θi,j is the angle change calculated by the thread
associated with the ith joint and the jth path edge.
Finally, the number of node samples Nj to be generated on

the jth path edge is determined by

Nj =
⌊
1θj

δθ

⌋
(2)

where bac is the maximum integer not exceeding a and
δθ is the user-defined constant for the resolution of node
sample distance in configuration space. Clearly, the smaller
δθ , the more samples generated on a path edge because the
distance between samples is smaller. Once Nj is determined
for all path edges, Njs are stored in the shared memory within
the block so that it can be used for further processing in the
next step.

123732 VOLUME 9, 2021



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

FIGURE 4. Parallel interpolated node sample generation process. (The path example shown in the figure consists of five path edges and is divided into
3 path segments. The small box with arrow represents thread and the brown box represents shared memory in each block.)

After the completion of Step 1, threads are now ready
to generate node samples along the path edge assigned to
each thread. Specifically, if a thread is associated with the
ith joint and the jth path edge, the thread samples Nj num-
ber of uniformly spaced joint angles over the interval of
[θ1i,j, θ

1
i,j + 1θi,j) where θ

1
i,j is the ith joint angle of the first

node in the jth path edge. We note here that, if we let 2i,j
be the set of sampled joint angles, then elements in 2i,j are
ordered starting from the first node of the path edge and
θ1i,j has to be the first element in the set. Once the set 2i,j
are generated for all i and j, node samples generated along
the path can be easily constructed later by collecting joint
angles from each joint. For example, if we denote the kth node
sample along the jth path edge as qkj , then q

k
j for the 6-DOF

robot manipulator can be determined as a vector formed by

qkj =
[
θk1,j θ

k
2,j θ

k
3,j θ

k
4,j θ

k
5,j θ

k
6,j

]T
(3)

where θki,j is the kth element in 2i,j.
The last step in the node sample generation process is to

store data in 2i,j for all i and j in global memory so that they
can be used later in the parallel collision checking process
which is done in line 5 of Algorithm 4. For this, we use a
4D array data structure as shown in Figure 4 so that each
thread can access the memory efficiently without causing any
synchronization issues. Let ax,y,z,w be the element in the 4D
array located at the position with (x, y, z,w) indices where
x, y, z,w corresponds to the index number associated with
each path segment, joint combination, node sample, and joint,
respectively. For example, the blue-colored elements in the
4D array shown in the figure for Step 3 are accessed by
the thread associated with the second path segment (x =
2), the first joint combination case (y = 1), and the fifth
joint (w = 5). In addition, each of these blue-colored
elements corresponds to the joint angle of the fifth joint
in each of five node samples along the first path edge of

the second path segment. As shown in the example path
in Figure 4, the second path segment consists of two path
edges and its first path edge has five node samples on it. In a
case where there are multiple path edges within a path seg-
ment, the index in z-dimension is determined as follows: Let
me be the number of path edges within a path segment and
nj be the number of node samples on the jth path edge where
j ∈ [1, 2, . . . ,me]. Then the z index for the kth node sample
of the jth path edge is

z =
j−1∑
i=1

ni + k. (4)

Once the target array indices are determined as described
above, the node sample data generated by each thread is
stored in their corresponding locations. In this work, the max-
imum number of node samples to be generated in one path
segment is set to 1024.

C. PARALLEL COLLISION CHECKING
In this section, we explain how the proposed parallel collision
checking process in line 5 of Algorithm 4 is implemented.
This calculation process starts immediately after completion
of the node sample generation process and the generated node
samples data is stored in the global memory of GPU. For con-
current collision checking calculation, we first configure the
thread hierarchy so that the blocks are configured in 3D form
and the threads in each block are configured in 1D form.
An example configuration of this thread hierarchy is shown
in Figure 5 when a path is divided into 3 path segments, all
joint combination cases are 63, and the maximum number of
node samples on each path segment for collision checking is
set to 1024. In this configuration, a block at (x, y, z′) location
consists of threads working on the xth path segment, the yth
joint combination case, and node samples indexed as 256 ×
(z′ − 1)+ l where z′ ∈ [1, 4] and l = [1, 256]. Note that the

VOLUME 9, 2021 123733



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

FIGURE 5. Parallel collision checking process.

upper bound for z′, which is 4 in this example, is determined
by the fact that we set the maximum number of node samples
per path segment is set to 1024 and also the number of threads
per block is set to 256 as recommended by NVIDIA.

In this thread hierarchy configuration, the lth thread in the
(x, y, z′)th block can now access the node sample data stored
in the global memory to determine the robot manipulator’s
pose for collision checking in the following manner. Recall
that the node sample data is stored as a 4D array in the global
memory such that the element ax,y,z,w in the array contains
the joint angle for the wth joint of the manipulator at the
zth node sample in the xth path segment and the yth joint
combination case. Thus the lth thread in the (x, y, z′)th block
can determine the pose of the manipulator by using angle
values stored in elements ax,y,z,w for all w ∈ [1, 6] where
z =

(
256× (z′ − 1)+ l

)
. If we let qlx,y,z′ be the node sample

processed by the lth thread in the (x, y, z′)th block, then

qlx,y,z′ =
[
θ1x,y,z θ

2
x,y,z θ

3
x,y,z θ

4
x,y,z θ

5
x,y,z θ

6
x,y,z

]T
(5)

where θwx,y,z is the joint angle value stored in ax,y,z,w and z is
determined as mentioned above based on z′ and l. Therefore,
collision checkings for all cases of path segment x, joint
combination y, and node samples z on path segment can be
processed in parallel based on the thread hierarchy configured
in the GPU.

The last step of the parallel collision checking process
is to store the collision checking results in global memory
so that they can be used to determine whether a shortened
path segment 5′s,i is free from collisions or not, which is
done in line 8 of Algorithm 4. For this purpose, we use
a 3D array variable to store the result for each node sam-
ple. Let bx,y,z be the element of the 3D array located at
the position with (x, y, z) indices where x, y, z corresponds
to the index number associated with each path segment,
joint combination, and node sample, respectively. Then the

lth thread in the (x, y, z′)th block stores its collision checking
result, which is 0 if no collision, 1 otherwise, at bx,y,z where
z is determined by z′ and l in the same way as before. Thus,
each thread can store its calculation result without causing
any synchronization issues.

V. PERFORMANCE EVALUATION
In this section, we present the simulation results of the pro-
posed path shortening algorithm. To verify the effectiveness
of the parallelization strategy, the performance was analyzed
in terms of convergence rate and computation time.

A. SIMULATION SETUP
In order to evaluate the performance of the pro-
posed parallelization framework for path shortening in
Algorithms 3 and 4, we ran simulations with a 6-DOF
robot manipulator that has 63 possible joint combinations.
An approximated robot model was implemented based on
the Oriented Bounding Boxes (OBB) tree approach for
collision detection. The OBB tree shows relatively better
performance than other collision detection algorithms such as
AABB, sphere-tree, even when two objects are close to each
other [35]. Robot Operating System (ROS) [36] was used as
a software development platform to implement the proposed
parallelization algorithm. The parallelization process of the
ParaSC algorithm was implemented on an NVIDIA GeForce
GTX 1080 Ti.

Figure 6 shows three different scenarios that we used in our
simulations for path shortening where the goal configuration
of the robot is represented in orange, the green-colored boxes
represent obstacles around the manipulator, and the blue
curve and red curve are the end-effector’s trajectory along
the path generated by a sampling-based path planner and its
shortened path, respectively. For all scenarios, a path 5 was
generated using PRM which is one of the commonly used

123734 VOLUME 9, 2021



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

FIGURE 6. Motion planning scenarios with a 6 DOFs UR-5 manipulator.

FIGURE 7. Path length reduction rate of 6 variants of APSC algorithm.

sampling-based path planning algorithms, and the number of
path segments for path shortening was set to 3.

We evaluated the path shortening performance of the
proposed ParaSC algorithm by comparing the results with
APSC algorithm. Note that the results shown below is the
average of the results obtained from 100 simulation runs for
each scenario. We believe that these statistical results can
show the difference in performance more accurately since,
due to the randomness involved in APSC algorithm, the out-
comes of APSC algorithm are generally different every time
even if it is under the same condition such as the given
planned path, environment, the number of iterations, the num-
ber of selected joints, etc. Thus, for a given planned path 5
for each scenario, we ran the path shortening simulation
100 times for each algorithm and computed their average as
the performance measure for each algorithm.

B. COMPARISON OF CONVERGENCE RATE
First of all, as it is necessary to pre-determine the number of
joints to be selected in APSC algorithm, we ran simulations
using only APSC algorithm with variations of the number of
joints to be selected for path shortening and compared their
performance to determine the best case for APSC algorithm.
For this, we considered three different fixed number of joints

to be selected which are denoted as 1-DOF, 2-DOF, and
3-DOF for one joint, two joints, and three joints to be selected
respectively. Also, we let the algorithm can select the number
of joints randomly within a given range such as [1, 2], [2, 3],
and [1, 3] which are denoted as Rand(1/2), Rand(2/3), and
Rand(1-3), respectively. As an example for this case, when
the range [2, 3] is given, APSC algorithm selects 2-DOF or
3-DOF joints randomly out of 6-DOF at each iteration step as
the algorithm proceeds.

Figure 7 shows the results that compare the rate of path
length reduction at each iteration step as each algorithm
proceeds with path shortening. In the figure, the relative
path length represents the path length of the shortened path
at the current iteration step compared to the path length of
the original planned path 5. In Figure 7a, the convergence
rate of APSC algorithm for the 3-DOF case is the fastest,
followed by Rand (2/3), 2-DOF, Rand (1-3), Rand (1/2), and
1-DOF. The results for scenarios 2 and 3 in Figure 7b and 7b
show similar results but had more iterations than scenario 1.
This is because surrounding obstacles frequently hindered the
generation of new paths, resulting in a higher chance of colli-
sion checking failure when shortening a path. An interesting
observation from this result is that the performance difference
among the variants of APSC algorithm became smaller as

VOLUME 9, 2021 123735



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

FIGURE 8. Comparison of path length reduction rate.

the environment for manipulator path planning became more
complicated. This is because the benefit of using multiple
joints for shortening a path segment in each iteration step is
disappearing as it becomes more difficult to shorten a path in
multiple DOFs joint space than in one DOF joint space due
to surrounding obstacles. Therefore, as shown in Figure 7,
the convergence curves of APSC algorithm with multiple
DOFs joint selection approach the one DOF joint selection
case, and hence the overall performance of APSC algorithm
grows worse as the scenario becomes more challenging.

To evaluate the performance of the proposed ParaSC
algorithm, we compared the path shortening results of
the proposed algorithm against APSC algorithm for each
scenario. For this, we used the conventional APSC with
3-DOF which has the fastest convergence rate for all scenar-
ios. Also, we considered another variation of APSC algorithm
for comparison to show the effects of two different paral-
lelization strategies, as discussed in Section III-B, which are
parallelizations for multiple path segments and all possible
joint combinations. This APSC algorithm variant performs
path shortening for multiple path segments simultaneously as
in ParaSC algorithm, but each path segment is shortened by
the conventional APSC algorithm.

Figure 8 shows the results of convergence rate comparison
for the three path shortening algorithms, where the line and
translucent areas represent the average and a range between
the 10th and 90th percentiles of the relative path length
according to iteration, respectively. In this figure, 3-DOF
APSC is the case where APSC algorithm was applied to
only the middle path segment out of three path segments
as in its conventional algorithm. On the other hand, 3-DOF
APSC (Parallel) is the case of APSC algorithm with the par-
allelization strategy for multiple path segments as described
above. As shown in the figure, the effect of simultaneous
path shortening of multiple path segments is clearly notice-
able because the relative path length reduction of 3-DOF
APSC (Parallel) is much faster than 3-DOF APSC case in
all three scenarios. In particular, the performance of 3-DOF
APSC (Parallel) was similar to that of ParaSC in Scenario 1.
From these results, we can confirm that the strategy of

TABLE 3. Comparison between ParaSC and 3-DOF APSC.

multiple path segments parallelization alone is certainly
effective for faster path shortening process. Another impor-
tant observation from these results is that the performance
gap between ParaSC and the other two algorithms became
larger in Scenarios 2 and 3 than the case of Scenario 1.
Specifically, ParaSC showed a smaller deviation from the
average convergence rate, and reached the lowest relative
path length in fewer iterations than the others in most trials.
This implies that the second parallelization scheme proposed
in this paper, which considers all joint combinations simul-
taneously, is much more effective in situations when the
environment for path planning becomes more complicated.

In Table 3, we specifically compared the performance
between the proposed algorithm and the APSC algorithm
with 3-DOF joint selection. As shown in the table, for the
same quality of path improvement in terms of the relative
path length, the number of loop iterations of ParaSC was sig-
nificantly smaller than that of 3-DOF APSC in all cases. For
example, to generate a shortened path with 30% relative path
length, ParaSC took roughly 35.7%, 14.5%, 6.6% of the loop
iterations needed by 3-DOF APSC in Scenarios 1, 2, and 3,

123736 VOLUME 9, 2021



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

FIGURE 9. Number of consecutive non-successful steps before saturation.

FIGURE 10. Comparison of execution time of ParaSC and 3-DOF APSC.

respectively. This clearly indicates that the proposed ParaSC
parallelization framework can generate a well-shortened path
with much fewer iterations and its path-shortening perfor-
mance is substantially more robust to the environment com-
plexity than APSC algorithm.

C. ANALYSIS OF THE IMPROVED CONVERGENCE RATE
Another way to evaluate the performance of the proposed
parallelization algorithm for path-shortening is to count the
number of consecutive iteration steps with an unsuccessful
path segment update. An unsuccessful path segment update
occurs when there are collisions, or when the selected path
segment has already been shortened in the previous steps.
Since the unsuccessful path segment update is most likely to
occur due to collisions until the path shortening process con-
verges, we measured the number of unsuccessful consecutive
iteration steps until the algorithm converged. Figure 9 shows
a comparison of ParaSC and 3-DOF APSC. The number of
occurrences in the figure is the average number of occur-
rences from 100 simulation runs for each algorithm. As we
can see from the figure, ParaSC algorithm has a much lower
number of unsuccessful consecutive path segment update
steps compared to APSC algorithm. This is one of the crucial
reasons for the much faster convergence performance of the
proposed algorithm.

D. COMPARISON OF COMPUTATION TIME
In Figure 8, we compared the path shortening performance
of ParaSC and 3-DOF APSC based on the number of loop
iterations. This comparison shows that ParaSC converges to
a well-shortened path with much fewer loop iterations than
3-DOFAPSC. Thus it is reasonable to conjecture that ParaSC
takes much less ‘‘time’’ to shorten a path than 3-DOF APSC
as well. To verify this conjecture, we implemented the paral-
lelization parts of ParaSC algorithm on a GPU as described in
Section IV, and compared the computation times of ParaSC
with those of 3-DOF APSC for all three scenarios. As before,
the results shown below are the average of 100 simulation
runs for each scenario.

For comparison, the average execution time for each algo-
rithm was measured for the same path length. All simulations
were conducted on a computer with Intel Core i7-7700K
CPU, 4.2GHz, 64GB RAM, and NVIDIA GTX 1080 Ti.
We note that GPU memory allocation time was excluded
from the execution time of ParaSC. This is because we imple-
mented the parallelization parts of ParaSC on a GPU so that
all parameters required for GPU memory allocation, such as
the number of nodes constituting the given path, the number
of path segments to be divided, and the number of joint
combinations, can be determined before ParaSC starts to run
on the GPU.

VOLUME 9, 2021 123737



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

FIGURE 11. Comparison of end-effector path for ParaSC and 3-DOF APSC for the same computation time spent for path shortening in Scenario 3.
(Blue line is the original path and red line is the shortened path at that moment.)

Figure 10 shows the time taken for each algorithm to
shorten a given path. In Scenario 1, we can see that both
algorithms can generate a well-shortened path in less than
15 milliseconds. Note that Scenario 1 is the case where there
are no obstacles around the manipulator. Thus, in this case,
the shortened path is most likely to be collision-free for any
joint combination selected for path shortening except the
case of self-collision. This is why the computation times
for both algorithms are fairly small in this scenario. The
result also shows the effectiveness of the parallelization in
ParaSC since it took only less than half of the time taken by
3-DOF APSC for a well-shortened path even in this simple
situation.

As one can anticipate from the results shown in Figure 8,
the computation time difference between ParaSC and 3-DOF
APSC was larger when there were obstacles around the
manipulator. This result is shown in Figures 10b and 10c. In
these situations, unlike in Scenario 1, it is more likely to have
collisions, due to surrounding obstacles, when shortening a
path segment via linear interpolation. Thus APSC algorithm
was forced to spend more time repeating the steps selecting
a path segment, shortening the path segment, and collision
checking of the shortened path segment until it successfully
found a path segment that could be shortened without incur-
ring collisions. On the other hand, thanks to the paralleliza-
tion for both multiple path segment processing and all joint
combinations in ParaSC, it was substantially less likely to

waste time during the path shortening process. This is why
the computation time for ParaSC is substantially smaller than
those of 3-DOF APSC in both scenarios, supporting the idea
that the parallelization strategy proposed in ParaSC is much
more effective for faster path shortening in practice when a
manipulator is operated around obstacles.

To check whether the path shortening speed was improved
using ParaSC, we conducted a statistical hypothesis test.
For this, we stated the following null hypothesis (H0) and
alternative hypothesis (H1) where µt1 and µt2 are the average
execution time of 3-DOF APSC and ParaSC, respectively.

H0 : µt1 = µt2

H1 : µt1 > µt2

Both algorithms shortened the same initial path for each
scenario, and the simulation was run 100 times for each rela-
tive path length. Thus, it can be assumed that the simulation
data we obtained are large, independent samples. Table 4
shows the results of the hypothesis test at the 5% level of
significance (z0.05 ≈ 1.65 in this test). In this hypothe-
sis test, H0 were rejected for all relative path lengths in
scenarios 1, 2, and 3. These results imply that ParaSC short-
ens the path faster than 3-DOF APSC.

Figure 11 shows the snapshot images that compare the
quality of the path generated by ParaSC and 3-DOF APSC
as the path shortening computation progressed for the case

123738 VOLUME 9, 2021



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

TABLE 4. Hypothesis test results at the 5% level of significance for speed
improvement verification by ParaSC. (P: ParaSC, A: 3-DOF APSC).

of Scenario 3. As one can see from this result, ParaSC
was able to generate a well-shortened path in less than
20 milliseconds even in an environment with many surround-
ing obstacles, while the path generated by 3-DOF APSC after
20 milliseconds of path shortening computation was still not
much different from the original one.

E. COMPARISON WITH OPTIMIZATION-BASED METHODS
In this section, the path shortening performance of ParaSC is
compared with that of an optimization-based method. As dis-
cussed in Section I, there are various optimization-based path
planners available as open-source, such as CHOMP, STOMP,
and TrajOpt. In this work, we chose CHOMP and TrajOpt
as representative optimization-based methods, which smooth
the given path using functional optimization and sequential
quadratic programming, respectively. Especially, since Tra-
jOpt uses sequential convex optimization, we believe that it is
relatively fast among optimization-based methods if an initial
collision-free path is given. In this work, we used the Tra-
jOpt and CHOMP algorithms implemented in MoveIt motion
planning framework [37]. A new scenario was configured,

FIGURE 12. Scenario 4: A new scenario for comparison path shortening
performance of ParaSC, 3-DOF APSC, CHOMP, and TrajOpt.

TABLE 5. Computation time comparison for ParaSC, 3-DOF APSC, TrajOpt,
and CHOMP.

FIGURE 13. Computation time comparison between ParaSC, 3-DOF APSC,
TrajOpt, and CHOMP.

as shown in Figure 12, in order to evaluate the performance
of each algorithm in a more complex environment than other
scenarios used in the previous sections.

Table 5 and Figure 13 are the comparisons of the com-
putation time taken to perform path shortening for each

VOLUME 9, 2021 123739



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

FIGURE 14. Comparison of end-effector path and computation time for ParaSC, 3-DOF APSC, CHOMP, and TrajOpt in Scenario 4. (Blue line is the original
path and red line is the shortened path.)

algorithm. Note that the results presented in the table and
the figure are the averages of 100 simulation runs for each
relative path length reduction. As shown in the figure, ParaSC
shortened the initial path the fastest on average. Furthermore,
comparing the min/max times in the table, no matter how
fast CHOMP and TrajOpt performed path smoothing, they
took longer than the maximum run time of 3-DOF APSC
and ParaSC. In Figure 14, we also compared the path qual-
ity of each algorithm in terms of end-effector path after
20% relative path length shortening. As one can see from
the figure, all of the algorithms successfully generated a
collision-free shortened path. However, the result shows that
the end-effector movement in CHOMP is less smooth than
the other algorithms even if it took a substantially longer time
to generate the shortened path. In the comparison between
ParaSC and 3-DOF APSC, we can see that ParaSC can gen-
erate a shortened path much faster than 3-DOF APSC similar
to the results in the other scenarios.

VI. CONCLUSION
In general, shortcut-based algorithms are effective for
improving the quality of a path generated by sampling-based
path planners. However, conventional shortcut-based path
shortening techniques are not satisfactory in terms of compu-
tation time to be used in real-time path planning applications
due to its high probability of unsuccessful path segment
update caused by a random joint selection process. However,
the parallelization framework proposed in this paper canmax-
imize the efficiency of each step in shortcut-based approach
for faster path shortening by finding the best joint combina-
tion using parallelism and by performing on several segments
of a path at the same time. Simulation results showed that
the proposed algorithm, Parallelized Shortcut (ParaSC), can
generate a well-shortened path in a substantially shorter time
than existing shortcut-based path shortening algorithms such
as Adaptive Partial Shortcuts (APSC) through smaller loop
iterations and GPU parallel computing. Also, from the results
of performance comparisons with optimization-based path
smoothing algorithms, Covariant Hamiltonian Optimization
for Motion Planning (CHOMP) and Trajectory Optimization

forMotion Planning (TrajOpt) in this work, it is demonstrated
that ParaSC clearly outperformed CHOMP and TrajOpt in
computation time while it can generate a well-shortened path
with enough smoothness compared to the one generated by
CHOMP in terms of end-effector movement.

In this paper, we showed that ParaSC is capable of gen-
erating a well-shortened path in less than a few tens of
milliseconds in most cases of scenarios that we configured
for simulations. Such computation time for path shortening is
much faster than other algorithms, and is also fast enough to
be used alongside human workers in practice. Based on these
results, it is expected that ParaSC can be a useful algorithm to
be used in part of a robot manipulator path planning frame-
works for the purpose of collaborative robotics. Currently,
it is still on-going work to integrate ParaSC with MoveIt
motion planning framework so that it can be used in conjunc-
tion with various sampling-based path planning algorithms
implemented in the framework. Also, we plan to implement
an experimentation setup using an actual UR-5 robot manip-
ulator to evaluate and demonstrate the performance of the
proposed ParaSC algorithm in real-life collaborative robot
operation tasks.

REFERENCES
[1] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, ‘‘Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,’’ IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580,
Aug. 1996.

[2] S. M. LaValle, ‘‘Rapidly-exploring random trees: A new tool for path plan-
ning,’’ Dept. Comput. Sci., Iowa State Univ., Ames, IA, USA, Tech. Rep.
TR 98-11, 1998.

[3] P. Leven and S. Hutchinson, ‘‘A framework for real-time path planning in
changing environments,’’ Int. J. Robot. Res., vol. 21, no. 12, pp. 999–1030,
Dec. 2002.

[4] J. Bruce and M. Veloso, ‘‘Real-time randomized path planning for robot
navigation,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst. (IROS),
Lausanne, Switzerland, Jun. 2002, pp. 2383–2388.

[5] J. Pan, C. Lauterbach, and D. Manocha, ‘‘g-Planner: Real-time
motion planning and global navigation using GPUs,’’ in Proc.
AAAI Conf. Artif. Intell., vol. 24, no. 1, Atlanta, GA, USA, 2010,
pp. 1245–1251.

[6] R. Guernane and N. Achour, ‘‘An algorithm for generating safe and
execution-optimized paths,’’ inProc. 5th Int. Conf. Autonomic Autonomous
Syst., Valencia, Spain, Apr. 2009, pp. 16–21.

123740 VOLUME 9, 2021



J. H. Seo et al.: Parallelization Algorithm for Real-Time Path Shortening of High-DOFs Manipulator

[7] H. Wang, H. Wang, J. H. Huang, B. Zhao, and L. Quan, ‘‘Smooth point-to-
point trajectory planning for industrial robots with kinematical constraints
based on high-order polynomial curve,’’ Mech. Mach. Theory, vol. 139,
pp. 284–293, Sep. 2019.

[8] J. Huang, X. Du, and L.-M. Zhu, ‘‘Real-time local smoothing for five-
axis linear toolpath considering smoothing error constraints,’’ Int. J. Mach.
Tools Manuf., vol. 124, pp. 67–79, Jan. 2018.

[9] B. Han and S. Liu, ‘‘RRT based obstacle avoidance path planning for
6-DOF manipulator,’’ in Proc. IEEE 9th Data Driven Control Learn. Syst.
Conf. (DDCLS), Liuzhou, China, Nov. 2020, pp. 822–827.

[10] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, ‘‘CHOMP: Gradient
optimization techniques for efficient motion planning,’’ in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), Kobe, Japan, May 2009, pp. 489–494.

[11] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
‘‘STOMP: Stochastic trajectory optimization for motion planning,’’ in
Proc. IEEE Int. Conf. Robot. Autom., Shanghai, China, May 2011,
pp. 4569–4574.

[12] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil,
K. Goldberg, and P. Abbeel, ‘‘Motion planning with sequential convex
optimization and convex collision checking,’’ Int. J. Robot. Res., vol. 33,
no. 9, pp. 1251–1270, 2014.

[13] S. Berchtold and B. Glavina, ‘‘A scalable optimizer for automatically gen-
erated manipulator motions,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Munich, Germany, Sep. 1994, pp. 1796–1802.

[14] P. Isto, ‘‘Constructing probabilistic roadmaps with powerful local planning
and path optimization,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
Lausanne, Switzerland, Sep. 2002, pp. 2323–2328.

[15] G. Sánchez and J.-C. Latombe, ‘‘A single-query bi-directional probabilistic
roadmap planner with lazy collision checking,’’ in Robotics Research.
Berlin, Germany: Springer, 2003, pp. 403–417.

[16] P. S. Schmitt, W. Neubauer, W. Feiten, K. M. Wurm, G. V. Wichert,
and W. Burgard, ‘‘Optimal, sampling-based manipulation planning,’’ in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Singapore, May 2017,
pp. 3426–3432.

[17] T. Zahroof, A. Bylard, H. Shageer, and M. Pavone, ‘‘Perception-
constrained robot manipulator planning for satellite servicing,’’ in Proc.
IEEE Aerosp. Conf., Big Sky, MT, USA, Mar. 2019, pp. 1–10.

[18] R. Guernane and M. Belhocine, ‘‘A smoothing strategy for PRM
paths application to six-axes MOTOMAN SV3X manipulator,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Edmonton, AB, Canada, 2005,
pp. 4155–4160.

[19] D. Hsu, J.-C. Latcombe, and S. Sorkin, ‘‘Placing a robot manipulator amid
obstacles for optimized execution,’’ in Proc. IEEE Int. Symp. Assem. Task
Planning (ISATP), Porto, Portugal, Jul. 1999, pp. 280–285.

[20] R. Luna, I. A. Sucan, M. Moll, and L. E. Kavraki, ‘‘Anytime solution
optimization for sampling-based motion planning,’’ in Proc. IEEE Int.
Conf. Robot. Autom., Karlsruhe, Germany, May 2013, pp. 5068–5074.

[21] K. Hauser and V. Ng-Thow-Hing, ‘‘Fast smoothing of manipulator trajec-
tories using optimal bounded-acceleration shortcuts,’’ in Proc. IEEE Int.
Conf. Robot. Autom., Anchorage, AK, USA, May 2010, pp. 2493–2498.

[22] R. Zhao and D. Sidobre, ‘‘Trajectory smoothing using jerk bounded short-
cuts for service manipulator robots,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Hamburg, Germany, Sep. 2015, pp. 4929–4934.

[23] R. Geraerts and M. H. Overmars, ‘‘Clearance based path optimization for
motion planning,’’ in Proc. IEEE Int. Conf. Robot. Autom., New Orleans,
LA, USA, Apr. 2004, pp. 2386–2392.

[24] J. Polden, Z. Pan, N. Larkin, and S. van Duin, ‘‘Adaptive partial shortcuts:
Path optimization for industrial robotics,’’ J. Intell. Robot. Syst., vol. 86,
no. 1, pp. 35–47, Apr. 2017.

[25] S. Memeti, L. Li, S. Pllana, J. Kołodziej, and C. Kessler, ‘‘Benchmarking
OpenCL, OpenACC, OpenMP, and CUDA: Programming productivity,
performance, and energy consumption,’’ in Proc. Workshop Adap. Res.
Manage. Sched. Cloud Comput. (ARMS-CC), Washington DC, USA, 2017,
pp. 1–6.

[26] G. Ränger and T. Rauber, ‘‘General purpose GPU programming,’’ in
Parallel Programming: For Multicore Cluster System. 2nd ed. New York,
NY, USA: Springer, 2013, pp. 404–406.

[27] X. Fei, K. Li, W. Yang, and K. Li, ‘‘CPU-GPU computing: Overview,
optimization, and applications,’’ in Innovative Research and Applications
in Next-Generation High Performance Computing. Hershey, PA, USA: IGI
Global, 2016, pp. 159–193.

[28] E. Wynters, ‘‘Parallel processing on NVIDIA graphics processing units
using CUDA,’’ J. Comput. Sci. Colleges, vol. 26, no. 3, pp. 58–66,
Jan. 2011.

[29] Y. Munekawa, F. Ino, and K. Hagihara, ‘‘Design and implementation of
the smith-waterman algorithm on the CUDA-compatible GPU,’’ in Proc.
8th IEEE Int. Conf. Bioinf. BioEngineering, Athens, Greece, Oct. 2008,
pp. 1–6.

[30] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze,
‘‘A fast stereo matching algorithm suitable for embedded real-time sys-
tems,’’ Comput. Vis. Image Understand., vol. 114, no. 11, pp. 1180–1202,
2010.

[31] C.-L. Hung and S.-W. Guo, ‘‘Fast parallel network packet filter system
based on CUDA,’’ Int. J. Netw. Distr. Comput., vol. 2, no. 4, pp. 198–210,
Oct. 2014.

[32] D. B. Kirk and W. H. Wen-Mei, ‘‘CUDA memories,’’ in Programming
Massively Parallel Processors: A Hands-on Approach. 2nd ed. Waltham,
MA, USA: Morgan Kaufmann, 2013, pp. 97–104.

[33] N. Wilt, ‘‘Memory,’’ in The CUDA Handbook: A Comprehensive Guide to
GPU Programming. 1st ed. Upper Saddle River, NJ, USA: Pearson, 2013,
pp. 156–157.

[34] J. Sanders and E. Kandrot, ‘‘Texture memory,’’ in CUDA by Exam-
ple: An Introduction to General-Purpose GPU Programming. 1st ed.
Upper Saddle River, NJ, USA: Addison-Wesley, 2010, pp. 115–137.

[35] C. Ericson, ‘‘Bounding volume hierarchies,’’ in Real-time Collision
Detection. 1st ed. San Francisco, CA, USA: Morgan Kaufmann, 2004,
pp. 261–266.

[36] M. E. A. Quigley, ‘‘ROS:An open-source robot operating system,’’ inProc.
ICRA Open Source Softw. Workshop, 2009, pp. 1–6.

[37] I. A. Sucan and S. Chitta. Moveit. Accessed: Jul. 12, 2021. [Online].
Available: https://moveit.ros.org/

JI HWAN SEO received the B.S. degree in trans-
disciplinary studies from Daegu Gyeongbuk Insti-
tute of Science and Technology (DGIST), Daegu,
South Korea, in 2019, where he is currently pur-
suing the Ph.D. degree with the Department of
Information and Communication Engineering.

HYUNTAE LEE received the B.S. degree in
physics from the School of Electrical and Electron-
ics Engineering, Chung-Ang University, Seoul,
South Korea, in 2018, and the M.S. degree from
the Information and Communication Engineer-
ing Department, Daegu Gyeongbuk Institute of
Science and Technology (DGIST), Daegu, South
Korea, in 2020. He researched real-time motion
planning and robotic manipulator control.

KYOUNG-DAE KIM (Member, IEEE) received
the Ph.D. degree in electrical and computer
engineering from the University of Illinois at
Urbana–Champaign, USA, in 2011. He is
currently an Assistant Professor with the Depart-
ment of Information and Communication Engi-
neering, DGIST. Prior to joining DGIST, he was an
Assistant Professor with the Department of Elec-
trical and Computer Engineering, University of
Denver, USA. He was a Postdoctoral Research

Associate with the Department of Electrical and Computer Engineering,
Texas A&M University, USA. His research interests include developing
theories, tools, and software frameworks to improve reliability and autonomy
of cyber-physical systems, and their application to real systems, such as smart
transportation systems, and collaborative robotic systems.

VOLUME 9, 2021 123741


