IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 8, 2021, accepted August 29, 2021, date of publication August 31, 2021, date of current version September 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3109443

Analogical Reasoning With Deep Learning-Based
Symbolic Processing

HIROSHI HONDA™ AND MASAFUMI HAGIWARA ", (Senior Member, IEEE)

Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
Corresponding author: Hiroshi Honda (honda@keio.jp)

This work was supported in part by the Keio University Kenkyu-no-Susume Scholarship, and in part by the Keio Leading-edge Laboratory
of Science and Technology (KLL) Ph.D. Program Research Grant.

ABSTRACT The authors propose analogical reasoning systems based on first-order predicate logic using
deep learning. The proposed systems consist of a model combining recursive neural networks and Word2 Vec.
When unknown data is input in this trained model, similar outputs to those of the trained data are obtained.
Previous studies on symbolic inference using deep learning have focused on deductive and inductive
inferences, and they require rule templates that are manually created and provided to the models in advance.
However, it is not enough to infer unknown rules from a large amount of data on the Internet. Analogical
reasoning is a mode of inference that attempts to solve a new case based on similarity. Thus, it enables
inference of rules that were challenging to comprehend in previous studies. As a result of the experiments,
unknown rules can be efficiently inferred from known rules contained in the knowledge bases. Using the
proposed systems, the authors can extract unknown rules from five of the eight datasets consisting of three
types of knowledge bases described in Prolog. The proposed method is the first case of analogical reasoning
based on the first-order predicate logic using deep learning. Furthermore, the models used in the proposed
systems have shown high robustness when using Word2Vec. For this reason, it is suggested that the practical
applications of the proposed systems enable efficient inferences from a large amount of data that include
noisy data on the Internet.

INDEX TERMS Analogical reasoning, deep learning, knowledge base, prolog, symbolic processing,
Word2 Vec.

I. INTRODUCTION However, these studies required rule templates that were

Symbolic processing using neural networks has been widely
studied. In the 1990s, symbolic processing using multilayer
neural networks [1], [2] was studied. However, owing to the
limitations of the available hardware and training data at the
time, as well as the learning ability of the multilayer neural
networks, practical results could not be achieved.

In the 2000s, with the emergence of deep learning, the
learning ability of neural networks improved significantly.
As a result, studies on symbolic processing using neural
networks have again gained attention. Recently, studies have
been conducted to learn about the first-order predicate logic
using deep learning and to make inferences using the learned
results.

Previous studies on symbolic inference using deep learn-
ing focused on deductive and inductive inferences [3]-[10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Sunil Karamchandani

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

manually created and provided to the models in advance.
For example, “#1(X,Y):—#2(X,Z).#3(Z,Y).”. In this case,
only rules that match the rule templates can be found,
thereby alluding that these studies are not enough to infer
unknown rules from a large amount of data on the Internet.
To efficiently formulate inference, deductive and inductive
inferences as well as methods that have been utilized in con-
ventional artificial intelligence (Al) research (e.g., analogical
reasoning and hypothesis inference) are important. Therefore,
in this research, we focus on analogical reasoning using deep
learning. Analogical reasoning [11]-[13] is a mode of infer-
ence that attempts to solve a new case based on the similarity
with another case. To date, there have been studies on ana-
logical reasoning using neural networks [14]-[17], however,
our research is the first to conduct analogical reasoning using
first-order predicate logic.

One of the studies related to analogical reasoning
using first-order predicate logic is transfer learning using

121859

https://orcid.org/0000-0002-9171-5663
https://orcid.org/0000-0002-6171-0618
https://orcid.org/0000-0001-6607-1440

IEEE Access

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

a probabilistic logic model (PLM) [18], [19]. Transfer learn-
ing using PLM aims to generate a learning model for a
completely different domain using a model trained for one
domain. As transfer learning using PLM transfers all the rules
contained in the trained model to generate a hypothesis for
another domain, the number of hypotheses becomes enor-
mous. Meanwhile, our approach aims to discover unknown
rules using a trained model. By using similarity, analogical
reasoning can limit the hypothesis search space to obtain new
rules. Unlike transfer learning, analogical reasoning cannot
obtain almost all the rules of a certain domain, but new
rules can be efficiently discovered. Furthermore, analogical
reasoning can discover not only new rules in another domain
from a model trained in one domain, but also unknown rules
within the same domain.
Our study makes the following contributions:

1) Unknown rules can be inferred from a knowledge base
that contains known rules.

2) Even if the size of the knowledge base is large,
unknown rules can be extracted efficiently.

Our proposed system can efficiently extract unknown rules
from the knowledge base. Furthermore, the proposed method
is the first case of analogical reasoning based on the first-
order predicate logic using deep learning. Using knowledge
bases described in Prolog, we evaluate our proposed systems.

We begin by reviewing related research work in section II.
In section III, we describe analogical reasoning, which is the
learning target. In section IV, we propose analogical reason-
ing with deep learning-based symbolic processing. Lastly,
in Section V, we report the experimental results of the pro-
posed systems.

Il. RELATED WORK

A. ANALOGICAL REASONING

Studies on Al and cognitive science have been focused
on making machines perform analogies as humans do
[11]-[13], [20]-[24]. Initially, structure-mapping theory [11]
based on the analogy of the relation between objects was
proposed. Then, an inference engine that performed analo-
gies based on structure-mapping theory [12] was devel-
oped. Furthermore, an inference engine using similarities
between objects and similarities in problem solving [13] was
developed.

Recently, studies have been conducted to learn about the
knowledge graph using analogical reasoning with deep learn-
ing [25], [26]. However, it is difficult for them to treat the
first-order predicate logic.

B. SYMBOLIC PROCESSING WITH NEURAL NETWORKS

Prior to the emergence of deep learning, studies on sym-
bolic processing learning and inference using multilayer
neural networks were conducted. Studies on inference
for propositional logic [27]-[29] and first-order predicate
logic [30]-[35] have been conducted. In addition, studies
dealing with analogical reasoning [14], [17] were conducted.

121860

After the emergence of deep learning, deductive and
inductive inferences based on the first-order predicate logic
[4], [7]-[10] were studied using graph neural networks. Later,
studies using feedforward networks [5] and recurrent neural
networks [3], [6] were also conducted. These studies required
forms of rules or information of rules, to be provided to
models in advance, which is not sufficient to infer unknown
rules from a large amount of data on the Internet. However,
although analogical reasoning has been studied for images
and simple symbols [15], [16], it has not been considered for
the first-order predicate logic.

C. TRANSFER LEARNING

One of the studies related to analogical reasoning is transfer
learning. Since the 2000s, studies on transfer learning for
symbolic knowledge representation [18], [19], [36], [37] have
been conducted. In particular, research on transfer learning
of predicate logic using the PLM [18], [19] was being per-
formed. In transfer learning using PLM, based on a PLM of
one domain, a PLM of another domain was created. Trans-
fer learning using PLM has a problem in that the number
of hypotheses increases considerably because a model of
another domain was generated using all the rules included
in the model. Furthermore, a study was being conducted
to heuristically limit the range of hypothesis searches by
hand [38]. Therefore, it is difficult to use transfer learning
using PLM to discover new rules from a huge amount of
information such as from the Internet.

D. ZERO-SHOT LEARNING

One of the studies related to analogical reasoning is zero-
shot learning [39], [40]. Zero-shot learning aims to classify if
unknown categories are included. It classifies data including
unknown categories by measuring the similarity between
input data and known categories. Some zero-shot learning
studies used word embedding to measure similarity [41], [42],
while others used human knowledge to measure similarity
[43], [44]. However, although zero-shot learning can classify
unknown categories, it is difficult to infer unknown rules from
knowledge bases.

Ill. ANALOGICAL REASONING WITH

SYMBOLIC PROCESSING

Here, we used Prolog [45], a subset of first-order predicate
logic for symbolic processing. In this section, we describe the
methods of analogical reasoning based on representations in
Prolog.

A. MECHANISM OF ANALOGICAL REASONING

Fig. 1 shows the mechanism of analogical reasoning. The
target domain is the domain for which the properties should
be known, while the source domain is subjected to analogy.
If there is similarity between problem A in the source domain
and problem B in the target domain, solution A, the solu-
tion to problem A, is mapped to solution B, the solution to
problem B. Thereafter, an analogy can be made by finding

VOLUME 9, 2021

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

IEEE Access

Source Domain

Problem A

Similarity |

Problem B

Target Domain

Mapping

Solution B

FIGURE 1. Mechanism of analogical reasoning.

Source Domain
Resolution
mother(X, Y) female(X), parent(X,Y)
Similarity Mapping
Resolution
father(X, Y) female(X), parent(X,Y)
Target Domain

FIGURE 2. Example of analogical reasoning for rules.

similarities between the problem in the target domain and that
in the source domain.

There are two types of similarity: (1) similarity between
objects in the target and source domains, and (2) between
relationships within those objects. Analogical reasoning for
rules performs analogies based on the similarity of rela-
tionships, and analogical reasoning for unification performs
analogies based on the similarity of objects. In our proposed
systems, the reasoning ability is enhanced by combining
both analogical reasoning for rules and unification. Our pro-
posed systems use Word2 Vec to measure similarities for both
objects and relationships.

B. ANALOGICAL REASONING FOR RULES

We describe how to apply the mechanism of analogy to
Prolog rules. Fig. 2 shows an example of analogical reasoning
for rules. Consider the case where the rule shown in (1) exists
in the source domain and the fact shown in (2) exists in the
target domain. Rule (1) expresses that if X is a woman and
X is Y’s parent, then X is Y’s mother. In Prolog programs,
uppercase letters such as ‘X’ and ‘Y’ mean variables. The
one in front of the operator ‘:-’ is called the head, and the
one in the back the body. The rule is that if the body is
true, then the head is also true. The operator ‘, indicates a
conjunction of clauses. This means that the clauses must be
true. Equation (2) expresses the fact that X is Y’s father.

mother(X,Y) : —female(X), parent(X, Y). (1)
father(X, Y). (2

VOLUME 9, 2021

Source Domain
Unification
male(X) male(X)
Similarity Mapping
Unification
female(X) male(X)
Target Domain

FIGURE 3. Example of analogical reasoning for unification.

Here, we consider the head on the left side of the rule in
(1) as a problem and the body on the right side of the rule
in (1) as a solution. Then, by finding the similarity between
the head of (1) and the fact in (2), the body of (1) is mapped
to the body of the rule with the head of (2). In other words,
the rule shown in (3) can be inferred. This method of analogy
is hereinafter called ‘‘analogical reasoning for rules”.

father(X,Y) : female(X), parent(X, Y). 3)

Now, referring to rule (3), the father is a woman, which is
against the fact. Just by analogical reasoning for rules, it is
not always possible to obtain the correct rules. Therefore, we
use analogical reasoning for the unification described in the
next section.

C. ANALOGICAL REASONING FOR UNIFICATION

We describe how to apply the analogy mechanism to unifica-
tion, which is the determination of whether a given goal is the
same as a fact [45]. In Prolog programs, we can ask whether
two clauses are unified by connecting the two clauses with
the operator ‘=’. Fig. 3 shows an example of analogical rea-
soning for unification. Consider the case where the question
shownin (4)is “true” in the target domain, and the fact shown
in (5) exists in the source domain.

male(X) = male(X). “4)
female(X). (%)

Here, we consider the clause on the left side of (4) as a
problem and that on the right side of (4) as a solution. Then,
by finding similarities between the clause on the left side of
(4) and the fact in (5), the clause on the right side of (4) is
mapped to the solution of (5). As such, it can be inferred
that the question shown in (6) becomes “‘true.” This method
of analogy is hereinafter called “analogical reasoning for
unification”.

By applying the unification shown in (6) to rule (3),
as obtained by analogical reasoning for rules, the rule in (7)
can be derived. In the rule shown in (7), the father is a male,
which is the correct rule.

female(X) = male(X). (6)
father(X,Y) : —male(X), parent(X, Y). @)
121861

IEEE Access

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

(OutputModel in Fig.7 Line8)
female (mary) , parent (mary , bob)

Embedding
(one-hot)

Attentlon
Encoder

IIIIII“IIII

Embedding } Decoder
(WordZVec + Graycode)

mother (mary, bob) .
(FactList[i] in Fig.7 Line8)

FIGURE 4. Proposed rule analogy model.

IV. PROPOSED ANALOGICAL REASONING WITH DEEP
LEARNING-BASED SYMBOLIC PROCESSING

In this section, we first describe a method for implementing
the analogical reasoning described in section III via deep
learning. Next, we describe the proposed system that uses
these methods for inferring rules from fact sets.

A. DEEP LEARNING-BASED SYMBOLIC PROCESSING
Using the model [6], which combines Seq2Seq with Atten-
tion [46] and Word2Vec [47]-[49], the learning of analogical
reasoning for rules as well as unification is realized. The pro-
posed model presents the advantage that resolution and uni-
fication can be performed even when unknown data are input
using Word2Vec. We believe that a model using Word2Vec
is effective in finding the similarity between problems in the
source and target domains, which is the purpose of analogical
reasoning. The similarity is measured by the distance between
the embedding vectors of different words.

1) LEARNING RULE ANALOGY

Fig. 4 shows a rule analogy model, which is realized using
the resolution model [6]. This model is trained to produce the
word string of the body, which is on the right side of the rule
when the word string of the head, which is on the left side of
the rule, is input. Rules may include variables.

First, in the input embedding layer, the word sequence
of the head is converted into a combined vector of word
embedding by Word2Vec and Gray code [50]. Gray code
has the property that presents the Hamming distance between
adjacent codes, before and after always as 1. On the one hand
logical symbols such as ‘C, ‘), ©)’, ‘=", and ‘. and proper
nouns of atoms such as “mary” and “bob” are embedded in
Gray code. On the other hand, common nouns of atoms such
as “mother” are embedded in Word2Vec.

Word2Vec is a method for obtaining distributed representa-
tions of words from a large amount of text data using a neural
network. The input embedding layer uses GoogleNews-
vectors-negative300 [47]-[49], a Word2Vec that has been
trained. This has been trained on a dataset of approximately
100 billion words. Words are represented by 300-dimensional
vectors, holding vectors of three million words.

121862

(OutputModel in Fig.7 Line29)

Embeddmg
m one- hot
Encoder

IIIIIIIIIIU

Decoder

Embedding
(Word2Vec + Graycode)

male (bob) = male (bob)
(TestData[k] in Fig.7 Line29)

FIGURE 5. Proposed unification analogy model.

Second, the combined vector generated by the input
embedding layer is passed to Seq2Seq with Attention.
Seq2Seq with Attention consists of the following: Encoder,
Decoder, and Attention. When the Encoder receives an input
sequence, it produces a compressed vector. Attention cal-
culates the degree of attention given to each word in the
input sequence based on the context of the output sequence.
A weight that depends on the degree of attention is added
to the compression vector. When the Decoder receives vec-
tors from the Encoder and Attention, it generates an output
sequence.

Long short-term memory (LSTM) [51] is used for the
Encoder and Decoder. We apply Bi-LSTM, capable of han-
dling future as well as past information to the Encoder. The
Bi-LSTM consists of three layers and has a 128-dimensional
output layer. A stateless LSTM that does not inherit short-
term memory is applied to the Decoder. Stateless LSTM has
a 128-dimensional output layer and uses Maxout [52] as the
activation function.

Third, the output of Seq2Seq with Attention is passed to the
output embedding layer, embedded in one-hot, and thereafter
produced as the word string of the body.

For this model to learn, the rules of the source domain
are given to the model as training data. For the learning in
this study, the dropout rate was set to 0.1, the batch size was
set to 128, and learning was performed for 20 epochs. Using
Adam [53] as the optimizer, the parameters were set to o =
0.001, B1 =10.9, B2 =0.999, and eps = 1e-08. By providing
the facts of the target domain to the trained model, analogical
reasoning for rules is realized.

2) LEARNING UNIFICATION ANALOGY

Fig. 5 shows a unification analogy model, which is realized
by using the unification model [6]. This model is trained
to insert a question as to whether it can be unified. It is
likewise trained to produce ‘“‘true’ as the output when uni-
fication is possible and ““false” when unification is not pos-
sible. The related questions may include variables. Unlike
the prolog processing system, this model does not instantiate
variables and outputs. For example, when the question shown
in (8) is input to this model, “true.” is the output instead

VOLUME 9, 2021

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

IEEE Access

Analogical Reasoning System

Rule
father(tom, X).

father(X,Y).
Problem of (Fact in Fig.7)

Target Domain

\ 4

Referencing
Data

Knowledge
Base

Analogy [(build model() in Fig.7 Line26)
Engine

Analogy Model
(FactList[i] in Fig.7 Line8) O

female(tom), parent(tom, X). g 8

(OutputModel in Fig.7 Line8)

Building Models

Unification

Analogy Model
female(tom) = male(tom) .

(TestData[k] in Fig.7 Line29) |O
true. i 8

OutputModel in Fig.7 Line29)

Referencing Data

father(X,Y) :- male(X), parent(X, Y). etc.
W (HypothesisList in Fig.7 and Fig.8)

father(X,Y) :- male(X), parent(X, Y).

Solution of (RuleList in Fig.8)

Evaluator

Target Domain <

FIGURE 6. Proposed analogical reasoning system.

of “X = bob.”.
male(X) = male(bob). ®)

First, in the input embedding layer, the word sequence
of the question is converted into a combined vector of
word embedding by Word2Vec and Gray code. Logical sym-
bols such as ‘(C’,), ©)’, ‘=", and ‘. and proper nouns of
atoms such as “bob” are embedded in Gray code. Common
nouns of atoms such as “male” are embedded in Word2Vec.
GoogleNews-vectors-negative300 is applied to Word2Vec as
well as to the rule analogy model.

Second, the combined vector generated by the input
embedding layer is passed to Seq2Seq with Attention. The
configuration of Seq2Seq with Attention is the same as that
of the rule analogy model.

Third, the output of Seq2Seq with Attention is passed to the
output embedding layer, embedded in one-hot, and thereafter
produced as the word string of “‘true.”” or “false.”.

To learn the proposed model, the question of whether it
can be unified, which belongs to the source domain, is given
to the model as training data. For the learning in this study,
the dropout rate was set to 0.1, the batch size was set to 128,
and learning was performed for 20 epochs. Using Adam as the
optimizer, the parameters were set to « = 0.001, g1 = 0.9,
B2 =0.999, and eps = 1e-08. By inputting questions based on
facts, belonging to the source domain, into the trained model,
analogical reasoning for unification is realized.

B. PROPOSED ANALOGICAL REASONING SYSTEM

This section describes the proposed analogical reasoning sys-
tem using the rule analogy and the unification analogy mod-
els. When a certain fact is input into this system, an analogy is
performed using the knowledge base described in Prolog, and

VOLUME 9, 2021

rules, of which heads are the fact, are produced. For example,
when the fact shown in (9) is input into this system, the rules
shown in (10) are produced by analogical reasoning even if
there is no rule with (9) in the knowledge base.

father(X,Y). 9
father(X,Y) : —male(X), parent(X, Y). (10)

Fig. 6 shows the configuration of the proposed analog-
ical reasoning system. This system consists of an analogy
engine and an evaluator. When the analogy engine receives
a fact, it generates multiple rules whose heads are the fact as
hypotheses. Thereafter, it passes them to the evaluator. When
the evaluator receives the hypotheses, it evaluates them using
the knowledge base and produces verified hypotheses as out-
puts. The following describes the details of each component
of this system.

1) ANALOGY ENGINE

The analogy engine performs analogies using the rule anal-
ogy model described in section IV-A-1, and the unification
analogy model described in section IV-A-2. The analogy
engine uses the rule analogy model, learned in advance, using
the rules stored in the knowledge base. It uses the unification
analogy model generated during the analogy process, using
the facts stored in the knowledge base.

Fig. 7 shows the algorithm used by the analogy engine.
First, the analogy engine references the knowledge base and
lists facts that can be unified with Fact. (Lines 2—4) The
facts are stored in FactList. The function unify() performs the
same processing as the unification of the Prolog processing
system. At this time, terms created by replacing arguments
of the facts with a variable are added to FactList. (Line 5)
Replacement with a variable by the function variabilization()

121863

IEEE Access

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

Algorithm 1: Analogical Reasoning Algorithm
Input: a fact written in Prolog Fact

Output: rules written in Prolog HypothesisList
11 FactList <[]

2: fori=0to size(KnowledgeBase) do

if unify(KnowledgeBaseli], Fact)

4 append(FactList, KnowledgeBase[i])

5: append(FactList, variableization(KnowledgeBasel[i]))
6: RuleResultList < []
7

8

w

: for /=0 to size(FactList) do
OutputModel < rule_analogy _model(FactList[i])
9: append(RuleResultList, OutputModel)
10: RuleResults < extract_high_correct_rate(RuleResultList , a)
11: HypothesisList < []
12: for i =0 to size(RuleResults) do
13: AtomList < []

14: AtomList < split_into_atoms(RuleResults[i])

15: ConvertAtomList < []

16: forj=0to size(AtomList) do

17: FactList] <[]

18: FactList2 <[]

19: TrainingData < []

20: TestData « []

21: for k=0 to size(KnowledgeBase) do

22: if unify(KnowledgeBase[k], AtomList[j])

23: append(FactListl, KnowledgeBaselj])
24: else

25: append(FactList2, KnowledgeBaselj])
26: TrainingData < convert_training_data(FactList2)

27: TestData < convert_test_data(FactListl, FactList2)

28: unification_analogy_model < build_model(7rainingData)
29: UnificationResultList < []

30: for k=0 to size(TestData) do

31: QOutputModel < unification_analogy_model(7estData[k])
32: append(UnificationResultList, OutputModel)
33: UnificationResults < extract_high_correct_rate(UnificationResultList, [)
34: append(ConvertAtomList, UnificationResults)

35: Hypothesis < convert_atom(RuleResult, ConvertAtomList)

36: append(HypothesisList, Hypothesis)
37: return HypothesisList

FIGURE 7. Analogical reasoning algorithm.

is an operation that replaces one of the fact arguments with
a variable X. For example, if (11) is replaced by a variable,
(12) and (13) are generated.

father(tom, bob). (11)
father(X, bob). (12)
father(tom,X). (13)

Second, FactList is appended into the rule analogy model
(the function rule_analogy_model()), and the analogy result
is obtained (Lines 7-9). The results are stored in the RuleRe-
sultList. From RuleResultList, the top rules from the one with
the highest ratio among the rules, of which the body argu-
ments are all explained by the head argument, are extracted
(Line 10). For example, if the head of the rule is (14), the argu-
ments of (15), which is the body of the rule, are “tom” and
“bob,” like the head. Thus, all the arguments of the body
are explained. Meanwhile, the arguments of (16), which is
the body of the rule, are “jim” and ‘“ken”; these are not
explained by the arguments of (14). The rules are extracted
by the function extract_high_correct_rate() and stored in
RuleResults. The parameter « is the number of rules to be
extracted.

father(tom, bob). (14)
female(tom), parent(tom, bob). (15)
female(tom), parent (jim, ken). (16)

121864

Algorithm 2: Hypothesis Testing Algorithm

Input: rules written in Prolog HypothesisList

Output : rules written in Prolog RuleList

1: RuleList <[]

2: fori=0to size(HypothesisList) do

3: UnifiedRuleList < unify(KnowledgeBase, HypothesisList[i])
4 Head < extract_head(HypothesisList[i])

5 UnifiedHeadList < unify(KnowledgeBase, Head)

6: if size(UnifiedRuleList) / size(UnifiedHeadList) >=y
7
8:

: append(HypothesisList, HypothesisList[i])
return RuleList

FIGURE 8. Hypothesis testing algorithm.

Next, hypotheses are generated for each rule in RuleResults
(Lines 12-36). The body of the rule is split into terms by the
function split_into_atoms() (Line 14). For example, if there
is arule (17), the terms (18) and (19) are obtained. The terms
are stored in AtomList.

father(X,Y) : —female(X), parent(X, Y). (17
female(X). (18)
parent(X,Y). (19)

The facts stored in the knowledge base are unified for each
decomposed term (Lines 16-25). The facts that can be unified
with AtomList are stored in FactListl, and those that cannot
be unified are stored in FactList2. FactList2 is used to create
training data to learn a unification analogy model using the
function convert_trainning_data() (Line 26). For example,
when (20), a unifiable fact with the term (18) is obtained,
the training data shown in (21) are created. The training data
are stored in TrainingData.

male(tom). (20)
male(X) = male(tom).true. 21

FactList] and FactList2 are combined to create test data
for testing the unification analogy model using the function
convert_test_data() (Line 27). For example, when (22), a fact
that can be unified with the term (18), is obtained, the test data
shown in (23) are created. The test data are sorted in TestData.

female(mary). (22)
male(X) = female(mary).true. (23)

A unification analogy model is built using TrainingData
by the function build_model() (Line 28). After that, TestData
is put into the unification analogy model (the function unifi-
cation_analogy_model()), and the analogy result is obtained
(Lines 30-32). The function unification_analogy_model()
is trained from scratch in each iteration. This is because
the atom to be analogized must be unknown to the model.
For example, when test data containing the unknown word
“female” are input to the trained unification analogy model,
the model outputs results that can be unified with “female”
by similarity expressed in Word2Vec. The results are stored
in UnificationResultList. From UnificationResultList, the top
terms from the one with the highest ratio of outputting *“true”

VOLUME 9, 2021

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

IEEE Access

TABLE 1. Training datasets of kinsources and correct answer rate of

models.
Rule Analogy Model
Dataset A-1 A-2
Training Data 26,709 25,199
Validation Data 3,215 3,196
Test Data 3,325 3,804
Correct answer 08842 0.9008

Rate

Unification Analogy Model

Dataset B-1 B-2 B-3 B-4

Training Data 66,971 67,103 29,906 38,863

Validation Data 8,402 8412 3,685 4815

Test Data 8,363 8,383 3,705 4,877

If(‘l’t’e’“’ answer 1.0000 1.0000 1.0000 1.0000
TABLE 2. Results of rule analogy models by kinsources.

Number of Match

Dataset Analogy Form of Head Form of Body Rate

Test Data (a=1)

1215 mother(X.Y). ;‘;i‘jff&y) 0.6724

A-1 1,180 daughter(X.Y). ;‘;i‘jff(‘;x) 04712

689 wife(X.Y). :;j)ljg()“) 03149

1272 father(X.Y). ii‘g:fg% 0.5460

4-2 1341 son(X.Y). 'f)fl‘f;‘fg‘)x) 0.4459

712 husband(X.Y). ;Z‘f;:fg{() 02725

are extracted (Line 35). The terms are extracted by the func-
tion extract_high_correct_rate() and stored in ConvertAtom-
List. The parameter $ is the number of terms to be extracted.

Third, hypotheses are generated using RuleResult and
ConvertAtomList by the function convert_atom() (Line 35).
Specifically, a hypothesis is generated by replacing the term
of the body of RuleResult with ConvertAtomList. For exam-
ple, hypotheses (24), (25), (26), and (27) are obtained from
RuleResult shown in (17). These hypotheses are stored in the
HypothesisList. In addition, facts are input into this system
one by one, and the hypotheses obtained by one process are
meant for one clause.

father(X,Y) : —female(X), parent(X, Y). (24)
father(X,Y) : —male(X), parent(X, Y). (25)
father(X, Y) : —female(X), spouse(X, Y). (26)
father(X,Y) : —male(X), spouse(X, Y). 27

2) EVALUATOR
When the evaluator receives HypothesisList from the analogy
engine, hypothesis verification is conducted with reference to

VOLUME 9, 2021

TABLE 3. Results of unification analogy models by kinsources.

Number of Match
Dataset Analogy Form of Question Rate
Test Data (B=3)
B-1 1,184 female(X)=male(X). 1.0000
B-2 1,184 male(X)=female(X). 1.0000
B-3 3,905 parent(X,Y)=spouse(X,Y). 1.0000
B-4 3,905 spouse(X,Y)=parent(X,Y). 1.0000
TABLE 4. Results of analogical reasoning system by kinsouces.
Number of Di
Dataset Hidden Discovered Rules 18001‘52
Rules
mother(X,Y):-
female(X),parent(X,Y).
daughter(X,Y):-
A1 3 female(X),parent(Y,X). 10000
wife(X,Y):-
female(X),spouse(X,Y).
father(X,Y):-
male(X),parent(X,Y).
son(X,Y):-
A2 3 male(X),parent(Y,X). 1.0000
husband(X,Y):-

male(X),spouse(X,Y).

the knowledge base. Fig. 8 shows the algorithm based on the
evaluator test hypothesis.

First, the evaluator refers to the knowledge base to unify
each hypothesis and collects rules that can be unified with
the hypothesis by the function unify() (Line 3). The function
unify() performs the same processing as the unification of
the Prolog processing system. For example, if there is a
hypothesis shown in (25), (28) is obtained as a rule that can
be unified.

father(tom, bob) : — male(tom), spouse(tom, bob). (28)

Second, the evaluator collects facts that can be unified
with the head of the hypothesis (Lines 4-5) by the function
extract_head(). For example, in the case of the hypothesis
shown in (25), (29) is obtained as a fact that can be unified.

father(tom, bob). (29)

Third, the evaluator calculates the ratio between the num-
ber of hypothetical rules that can be unified with the knowl-
edge base and the number of facts that can be unified with
the head of the hypothesis. If the ratio is greater than or equal
to y, the hypothesis is adopted. Otherwise, less than y, it is
rejected (Lines 6-7). Here, the parameter was set to y = 1.0.

V. EVALUATION EXPERIMENTS

Using three types of knowledge bases described in Prolog,
we trained models and built analogical reasoning systems.
Next, the results of the evaluation experiments are shown

121865

IEEE Access

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

TABLE 5. Training datasets of IMDb and correct answer rate of models.

TABLE 7. Results of unification analogy models by IMDb.

Rule Analogy Model Number of Match
, , Dataset Analogy Form of Question Rate
Dataset A'-1 A'-2 Test Data (B=3)
Training Data 90,904 77,103 243 person(X)=company(X). 0.8313
T B-1
Validation Data 11,373 9,653 280 person(X)=movie(X). 0.0000
Test Data 11,373 9,632 243 company(X)=person(X). 0.0000
B'-2
Correct answer Rate 0.9489 0.9499 280 company(X)=movie(X). 0.0000
Unification Analogy Model 78 movie(X)=person(X). 0.1538
B'-3
Dataset B'-1 B'-2 B'-3 B'-4 85 movie(X)=company(X). 0.0000
Training Data 88,868 91,229 90,821 46,650 1,176 produce(X,Y)=distribution(X,Y). 0.9932
Validation Data 11,147 11,404 11,361 5,815 B'-4 1,220 produce(X,Y)=sfx(X.Y). 0.0328
Test Data 11,147 11417 11,372 5,742 1,654 produce(X,Y)=acting(X.Y). 0.0097
Correct answer Rate 1.0000 1.0000 1.0000 1.0000
TABLE 8. Results of analogical reasoning system by IMDb.
TABLE 6. Results of rule analogy models by IMDb.
Number of Db
Dataset Hidden Discovered Rules ISCOEZZ
Number of Match Rules
Dataset Analogy Form of Head Form of Body Rate - B
Test Data (a=1) e, | productlon(())((,)Y)‘— ie(Y) 1.0000
- compan ,movie(Y), .
person(X), rod]:we}(IX Y)
A'-1 2,076 production(X,Y). movie(Y), 0.3801 P ent
produce(X,Y). A'-2 1 - 0.0000
company(X),
A'-2 3,784 producer(X,Y). movie(Y), 0.3554
produce(X,Y).

using three types of knowledge bases followed by their
discussion.

A. EXPERIMENTS USING KINSOURCES

We used Kinsources [54] to train the models and build
analogical reasoning systems. Kinsources is a collection of
data representing blood relationships. The knowledge base
described in Prolog consisted of 5,887 atoms and 10 kinds
of predicates.

Table 1 shows the datasets used for the training rule anal-
ogy models and unification analogy models as well as the cor-
rect answer rates of the models. Datasets A-1 and A-2 were
used to train rule analogy models and were built based on the
rules included in the knowledge base. Datasets A-1 and A-2
consisted of three types of rules with predicates in the head.
Datasets B-1, B-2, B-3, and B-4 were used to train the
unification analogy models and were built based on the
facts included in the knowledge base. Datasets B-1, B-2,
B-3, and B-4 consisted of questions containing three types
of predicates. The correct answer rate is the rate [6] at which
the output of the model exactly matches the test data.

Table 2 shows the results of the rule analogy using the rule
analogy models of Table 1. Table 3 shows the results of the
unification analogy using the unification analogy models of
Table 1. The match rate in Table 3 is the rate at which the
output from the model is ““true.” Table 4 shows the results

121866

obtained by incorporating Datasets A-1 and A-2 into the
analogical reasoning systems described in section IV-B. The
parameters of the analogy engine were set to « = 1 and
B = 3. The number of hidden rules in Table 4 represents
the number of rules removed from the dataset. The hidden
rules were analogized by the analogical reasoning systems.
The discovered rules in Table 4 were actually discovered by
the proposed systems. The discovered rate in Table 4 was the
rate of the rules discovered in the hidden rules. It can be said
that the higher the discovery rate, the higher the ability of the
systems to discover the rules.

B. EXPERIMENTS USING IMDb

We used IMDb, a movie- and television-related database [55],
to train the models and build analogical reasoning sys-
tems. The knowledge base described in Prolog consisted
of 20,658 atoms and 14 types of predicates.

Table 5 shows the datasets used in training the rule analogy
and unification analogy models. Table 5 shows the accurate
answer rates and was formulated based on the rules included
in the knowledge base. Datasets A’-1 and A’-2 consisted of
five types of rules with predicates in the head. Datasets B’-1,
B’-2, B’-3, and B’-4 were used to train the unification analogy
models and were built based on the facts included in the
knowledge base. Datasets B’-1, B’-2, B’-3, and B’-4 consisted
of questions containing eight types of predicates.

Table 6 shows the results of the rule analogy using the rule
analogy models of Table 5. Table 7 shows the results of the

VOLUME 9, 2021

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

IEEE Access

TABLE 9. Training datasets of clutrr and correct answer rate of models.

Rule Analogy Model

Dataset A"-1 A"-2
Training Data 90,904 77,103
Validation Data 11,373 9,653
Test Data 11,373 9,632
Correct answer Rate 0.9489 0.9499
Unification Analogy Model
Dataset B"-1 B"-2
Training Data 88,868 91,229
Validation Data 11,147 11,404
Test Data 11,147 11,417
Correct answer Rate 1.0000 1.0000

unification analogy using the unification analogy models of
Table 5. Table 8 shows the results obtained by incorporating
Datasets A’-1 and A’-2 into the analogical reasoning systems
described in section IV-B. The parameters of the analogy
engine were set to @ = 1 and § = 3. The number of hidden
rules, the discovered rules, and the discovery rate in Table 8§
have the same meaning as Table 4.

C. EXPERIMENTS USING CLUTRR

We used clutrr [56], a benchmark dataset generator used to
test relational reasoning on text, to train models and build
analogical reasoning systems. The dataset used here was gen-
erated with taskl and relation length 2. We built the knowl-
edge base described in Prolog from the dataset. Atoms that
appeared only in bodies were replaced with the variable Y.
The knowledge base consisted of 42 atoms and 16 types of
predicates.

Table 9 shows the datasets used in training the rule analogy
and unification analogy models. It also shows the correct
answer rates, built based on the rules included in the knowl-
edge base. Datasets A”-1 and A”-2 consisted of seven types
of rules with predicates in the head. Datasets B”-1 and B”-2
were used to train the unification analogy models and were
built based on the facts included in the knowledge base. Both
B”-1 and B”-2 consisted of questions containing seven types
of predicates.

Table 10 shows the results of the rule analogy using the
rule analogy models of Table 9. Table 11 shows the results of
the unification analogy using the unification analogy models
of Table 9. Table 12 shows the results obtained by incorpo-
rating Datasets A”-1 and A”-2 into the analogical reasoning
systems described in section IV-B. The parameters of the
analogy engine were set to « = 3 and 8 = 3. The number
of hidden rules, the discovered rules, and the discovery rate
in Table 12 have the same meaning as Table 4.

VOLUME 9, 2021

TABLE 10. Results of rule analogy models by clutrr.

Number Match
of
Dataset Analogy Form of Head Form of Body the
Test Data (a=3)
sister(Y,Z),father(X,Y). 0.1229
son(Y,Z),

415 mother(X,Z). grandfather(X,Y). 0.0964
brother(Y,Z),
father(X,Y). 0.0892
daughter(Y,Z),

. uncle(X,Y). 0.1406

569 sister(X,Z). father(Y,Z),son(X,Y). 0.1002
son(Y,Z),uncle(X,Y). 0.0545
wife(Y,Z),son(X,Y). 0.1236

348 daughter(X.2). 30"(\;1»2>(s‘\’;‘;)*‘°f<x”)- 0.1178

aughter(Y,Z),
brother(X,Y). 0.0891
brother(Y,Z),
A"-] grandfather(X,Y). 0.1667
- 360 grandmother(X,Z). sister(Y,Z), 0.1417
grandfather(X,Y). .
father(Y,Z),father(X,Y). 0.0361
wife(Y,Z),
0.1729

376 granddaughter(X,Z). 5;1:;%?2;(52\)()
grandson(X,Y). 0.1649
father(Y,Z),son(X,Y). 0.1111
father(Y,Z),

279 aunt(X,Z). brother(X.Y). 0.0609
father(Y,Z),father(X,Y). 0.0502
brother(Y,Z),son(X,Y). 0.1245

. daughter(Y,Z),

249 niece(X,Z). brother(X,Y). 0.0683
son(Y,Z),brother(X,Y). 0.0402
father(Y,Z),
mother(X,Y). 0.0651

430 father(X,Z). son(Y,Z),
grandmother(X,Y). 0.0628
father(Y,Z),sister(X,Y). 0.0419
brother(Y,Z),
sister(X,Y). 0.1244

603 brother(X,Z). father(Y,Z),
daughter(X,Y). 0.0896
sister(Y,Z),sister(X,Y). 0.0564
son(Y,Z),sister(X,Y). 0.2158

329 son(X,Z). daughter(Y,Z),
sister(X,Y). 0.0669
father(Y,Z),

4"-2 mother(X,Y). 0.2041

338 grandfather(X,Z). father(Y,Z),sister(X,Y). 0.0740
mother(Y,Z),
mother(X,Y). 0.0266
grandson(Y,Z),
sister(X,Y). 0.1940

338 grandson(X,Z). husband(Y.7)
granddaughter(X,Y). 0.1511
father(Y,Z),sister(X,Y). 0.1870
Tather(Y.2),

246 uncle(X,2). mother(X,Y). 0.1138
father(Y,Z),
daughter(X,Y). 0.0285

256 nephew(X,Z). son(Y,Z),sister(X,Y). 0.3672

D. COMPUTATIONAL COMLPEXITY AND SEARCH
EFFICIENCY COMPARISON

We compared the computational complexity and search effi-
ciency of the baseline and proposed methods. The number
of hypotheses generated is used as the computational com-
plexity, while the number of rules discovered per number of
hypotheses is used as the search efficiency.

In the baseline, templates such as (30) were created from
known rules, and unknown rules were searched by setting
atoms to anonymous variables of the templates by brute force.
In (30), “_”’ means anonymous variables.

-X,Y):—X),-(X,Y). (30)

121867

IEEE Access

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

TABLE 11. Results of unification analogy models by clutrr.

Number of Match

Dataset Analogy Form of Question Rate
Test Data (B=3)

15 father(X,Y)=mother(X,Y). 1.0000

17 father(X,Y)=grandmother(X,Y). 0.1765

13 brother(X,Y)=grandmother(X,Y). 0.1538

21 son(X,Y)=daughter(X,Y). 0.5263

12 son(X,Y)=granddaughter(X,Y). 0.4828

20 grandfather(X,Y)=grandmother(X,Y). 0.2000

B"-1 19 grandson(X,Y)=daughter(X,Y). 0.5263
26 grandson(X,Y)=granddaughter(X,Y). 0.5000

18 uncle(X,Y)=grandmother(X,Y). 0.6667

15 uncle(X,Y)=aunt(X,Y). 0.2000

23 husband(X,Y)=daughter(X,Y). 0.4783

14 husband(X,Y)=wife(X,Y). 0.4286

21 husband(X,Y)=granddaughter(X,Y). 0.2381

19 mother(X,Y)=son(X,Y). 0.9474

15 mother(X,Y)=father(X,Y). 0.2667

14 sister(X,Y)=grandson(X,Y). 0.5455

13 sister(X,Y)=son(X,Y). 0.3333

16 sister(X,Y)=father(X,Y). 0.1667

21 daughter(X,Y)=son(X,Y). 1.0000

19 daughter(X,Y)=grandson(X,Y). 0.0526

" 20 grandmother(X,Y)=son(X,Y). 0.9474
B'-2 17 grandmother(X,Y)=father(X,Y). 0.2667
26 granddaughter(X,Y)=grandson(X,Y). 0.3077

12 granddaughter(X,Y)=son(X,Y). 0.0833

25 aunt(X,Y)=son(X,Y). 1.0000

16 aunt(X,Y)—father(X,Y). 0.6250

11 wife(X,Y)=son(X,Y). 0.5455

12 wife(X,Y)=grandson(X,Y). 0.3333

12 wife(X,Y)=father(X,Y). 0.1667

The number of hypotheses generated at baseline was cal-
culated using (31). R1 is the number of templates generated
from the knowledge base, T is the number of terms contained
in the template, and k is the number of terms in the knowledge
base that have the same number of arguments as the template
term.

Ry T;
=TTk (1)

i=1 j=1

The number of hypotheses generated by the proposed
method was calculated using (32). R2 is the number of facts
input to this system, « (1 or 3 in our experiments), and 8 (3 in
our experiments) are parameters of the analogy engine, and
T (2 or 3 in our experiments) is the number of terms included
in the rules of analogy results.

np :Zai~ﬂiTi (32)

=

Table 13 shows the results of comparing the baseline
with the proposed method for computational complexity and
search efficiency.

E. DISCUSSION

In the experiments using Kinsources, we extracted all three
rules in each of the two datasets. Specifically, we inferred the
mother from the father rules, the daughter from the son rules,
and the wife from the husband rules. Inversely, we were able

121868

TABLE 12. Results of analogical reasoning system by clutrr.

Number

of . Discovery
. D Rul
Hidden iscovered Rules Rate

Rules

Dataset

mother(X,Z):-
daughter(Y,Z),grandmother(X,Y).
mother(X,Z):-
son(Y,Z),grandmother(X,Y).
mother(X,Z):-
brother(Y,Z),mother(X,Y).
mother(X,Z):-
sister(Y,Z),mother(X,Y).
sister(X,Z):-
daughter(Y,Z),aunt(X,Y).
sister(X,Z):-
son(Y,Z),aunt(X,Y).
sister(X,Z):-
father(Y,Z),daughter(X,Y).
sister(X,Z):-
28 mother(Y,Z),daughter(X,Y).
daughter(X,Z):-
wife(Y,Z),daughter(X,Y).
grandmother(X,Z):-
sister(Y,Z),grandmother(X,Y).
grandmother(X,Z):-
mother(Y,Z),mother(X,Y).
grandmother(X,Z):-
father(Y,Z),mother(X,Y).
grandmother(X,Z):-
brother(Y,Z),grandmother(X,Y).
granddaughter(X,Z):-
wife(Y,Z),granddaughter(X,Y).
granddaughter(X,Z):-
husband(Y,Z),granddaughter(X,Y).
neice(X,Z):-
brother(Y,Z),daughter(X,Y).
brother(X,Z):-
father(Y,Z),son(X,Y).
brother(X,Z):-
mother(Y,Z),son(X,Y).
grandfather(X,Z):-
father(Y,Z),father(X,Y).
grandfather(X,Z):-
mother(Y,Z),father(X,Y).
grandson(X,Z):-
husband(Y,Z),grandson(X,Y).
grandson(X,Z):-
wife(Y,Z),grandson(X,Y).

A"-1 0.5714

A"-2 28 0.2143

to infer the father from the mother rules, the son from the
daughter rules, and the husband from the wife rules.

In the experiments using IMDb, we extracted rules from
one dataset. However, we were unable to extract rules from
another dataset. Specifically, we inferred the rule of producer
from the rule of production. However, we were unable to infer
the rule of production from the rule of producer. This might
be because the unification of “company (X) = person (X)”
could not be analogized.

In the experiments using clutrr, we extracted 22 rules
from both datasets. The results of this experiment indi-
cated that the proposed system could analogize even if the
dataset contained multiple rules with the same head. (For
example, ‘“‘mother(X,Z):-daughter(Y,Z),grandmother(X,Y).”
and “mother (X,Z):-son(Y,Z),grandmother(X,Y).””) The pro-
posed system could not discover all rules, but it discovered
them at a rate of 57.14% for A”’-1, and 21.43% for A"’-2.
It is also possible to analogize repeatedly with this system
using the discovered rules.

As a result of comparing the baseline and the proposed
method, the number of hypotheses generated in the proposed
method was smaller in any of the datasets than in the baseline.
In addition, the search efficiency of the proposed method was

VOLUME 9, 2021

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

IEEE Access

TABLE 13. Results of computational complexity and search efficiency.

Knowled: Number of Search
b::ew cage Method Dataset hypotheses efficienc
generated y
A-1 256 0.0117
Baseline
A-2 256 0.0117
Kinsources
Proposed A-l 12 0.2500
method A2 12 0.2500
A1 1089 0.0009
Baseline
A'-2 1089 0.0009
IMDb
Proposed Al 8 0.1250
method A2 4 N/A
A"-1 4096 0.0068
Baseline
A"-2 4096 0.0068
clutrr
Proposed A1 162 0.0988
method A2 183 0.0328

better than that of the baseline, except for the datasets for
which the rules could not be found. It is considered that the
larger the size of the knowledge base, the more advantageous
the computational complexity and search efficiency of the
proposed method, compared to the baseline.

Using the proposed analogical reasoning system,
we extracted unknown rules from six datasets consisting of
three types of knowledge bases. However, rules could not be
extracted from all three datasets. The success or failure of
rule extraction depends on how well the rule analogy and
the unification analogy are obtained. In other words, if the
similarity between the problem in the target domain and the
problem in the source domain can be well represented by
the models, it will be possible to extract many rules. The
proposed models express the similarity of the problems using
distributed word expression via Word2Vec. Therefore, there
is a possibility that the performance of analogical reasoning
systems can be improved by refining Word2Vec.

VI. CONCLUSION AND FUTURE WORK

Here, we proposed analogical reasoning systems based on
first-order predicate logic using deep learning. We have
implemented analogical reasoning by training symbolic pro-
cessing models using deep learning and using these mod-
els which produce concepts similar to unknown data [6].
Experimental results show that our systems could efficiently
extract unknown rules from previously learned rules through
analogical reasoning.

Our system is the first to enable analogization by first-order
predicate logic using deep learning. The proposed system
enables the inference of rules that were difficult in previous
studies. Furthermore, the models used in this system have
demonstrated high robustness when using Word2 Vec. For this
reason, it is inferred that it is possible to make analogies from
data that include noisy data on the Internet.

VOLUME 9, 2021

Future tasks include improving the performance of analog-
ical reasoning systems by improving Word2Vec and analogi-
cal reasoning using large-scale data on the Internet.

REFERENCES

[1]1 G. E. Hinton, “Preface to the special issue on connectionist symbol pro-
cessing,” Artif. Intell., vol. 46, nos. 1-2, pp. 1-4, Nov. 1990.

[2] D. S. Touretzky, “BoltzCONS: Dynamic symbol structures in a connec-
tionist network,” Artif. Intell., vol. 46, nos. 1-2, pp. 5-46, Nov. 1990.

[3] N. Cingillioglu and A. Russo, “DeepLogic: Towards end-to-end differ-
entiable logical reasoning,” 2018, arXiv:1805.07433. [Online]. Available:
http://arxiv.org/abs/1805.07433

[4] W. W. Cohen, “TensorLog: A differentiable deductive database,” 2016,
arXiv:1605.06523. [Online]. Available: http://arxiv.org/abs/1605.06523

[5] H. Dong, J. Mao, T. Lin, C. Wang, L. Li, and D. Zhou, “Neural logic
machines,” in Proc. Int. Conf. Learn. Represent., New Orleans, LA, USA,
2019, pp. 1-22.

[6] H. Honda and M. Hagiwara, “Question answering systems with
deep learning-based symbolic processing,” [IEEE Access, vol. 7,
pp. 152368-152378, 2019, doi: 10.1109/ACCESS.2019.2948081.

[7]1 P. Minervini, M. Bosnjak, T. Rocktischel, and S. Riedel, ‘“Towards neural
theorem proving at scale,” 2018, arXiv:1807.08204. [Online]. Available:
http://arxiv.org/abs/1807.08204

[8] T. Rocktaschel and S. Riedel, “End-to-end differentiable proving,” in
Proc. Annu. Conf. Neural Inf. Process. Syst., vol. 30,2017, pp. 3788-3800.

[9] L. Serani and A. S. D. Garcez, “Logic tensor networks: Deep learning
and logical reasoning from data and knowledge,” in Proc. 11th Int. Work-
shop Neural-Symbolic Learn. Reasoning (NeSy) Co-Located With Joint
Multi-Conf. Hum.-Level Artif. Intell. (HLAI), New York, NY, USA, 2016,
pp. 1-12.

[10] G. Sourek, V. Aschenbrenner, F. Zelezny, and O. Kuzelka, “Lifted rela-
tional neural networks,” in Proc. NIPS Workshop Cogn. Comput., Inte-
grating Neural Symbolic Approaches Co-Located With 29th Annu. Conf.
Neural Inf. Process. Syst. (NIPS), Montreal, QC, Canada, 2015, pp. 1-21.

[11] D. Gentner, “Structure-mapping: A theoretical framework for analogy,”
Cognit. Sci., vol. 7, no. 2, pp. 155-170, 1983.

[12] B. Falkenhainer, K. D. Forbus, and D. Gentner, “The structure-mapping
engine: Algorithm and examples,” Artif. Intell., vol. 41, no. 1, pp. 1-63,
Nov. 1989.

[13] K.J.Holyoak and P. Thagard, “Analogical mapping by constraint satisfac-
tion,” Cognit. Sci., vol. 13, no. 3, pp. 295-355, Jul. 1989.

[14] M. Hagiwara and Y. Anzai, ‘‘Analogical reasoning by neural network,” in
Proc. Seattle Int. Joint Conf. Neural Netw. (IJCNN), Seattle, WA, USA,
1991, p. 995.

[15] F. Hill, A. Santoro, D. Barrett, A. Morcos, and T. Lillicrap, ‘“‘Learning to
make analogies by contrasting abstract relational structure,” in Proc. Int.
Conf. Learn. Represent., New Orleans, LA, USA, 2019, pp. 1-18.

[16] S. Reed, Y. Zhang, Y. Zhang, and H. Lee, “Deep visual analogy-
making,” in Proc. Annu. Conf. Neural Inf. Process. Syst., vol. 28, 2015,
pp. 1252-1260.

[17] Y. Salu, “A neural network for analogical reasoning,” in Proc. IEEE
Int. Conf. Neural Netw. (ICNN), Orlando, FL, USA, Jun./Jul. 1994,
pp. 4772-47717.

[18] R. Kumaraswamy, P. Odom, K. Kersting, D. Leake, and S. Natarajan,
“Transfer learning via relational type matching,” in Proc. IEEE Int. Conf.
Data Mining, Atlantic City, NJ, USA, Nov. 2015, pp. 811-816.

[19] L. Mihalkova and R. Mooney, ‘““Transfer learning by mapping with mini-
mal target data,” in Proc. AAAI Workshop Transf. Learn. Complex Tasks,
Chicago, IL, USA, 2008, pp. 1-6.

[20] J. Carbonell and G. Jaime, “Learning by analogy: Formulating and gener-
alizing plans from past experience,” in Machine Learning, vol. 1. Berlin,
Germany: Springer, 1983, pp. 137-161.

[21] D. Gentner and K. D. Forbus, “Computational models of analogy,” Wiley
Interdiscipl. Rev., Cognit. Sci., vol. 2, no. 3, pp. 266-276, May 2011.

[22] D. Hofstadter, Fluid Concepts and Creative Analogies: Computer Models
of the Fundamental Mechanisms of Thought. New York, NY, USA: Basic
Books, 1996, p. 528.

[23] J.E.Hummel and K. J. Holyoak, “Distributed representations of structure:
A theory of analogical access and mapping,” Psychol. Rev., vol. 104, no. 3,
p. 427, 1997.

[24] L. B. Larkey and B. C. Love, “CAB: Connectionist analogy builder,”
Cognit. Sci., vol. 27, no. 5, pp. 781-794, Sep. 2003.

121869

http://dx.doi.org/10.1109/ACCESS.2019.2948081

IEEE Access

H. Honda, M. Hagiwara: Analogical Reasoning With Deep Learning-Based Symbolic Processing

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

H. Liu, W. Yuexin, and Y. Yiming, “Analogical inference for multi-
relational embeddings,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 2168-2178.

Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao, ‘““Relation-aware
entity alignment for heterogeneous knowledge graphs,” in Proc. 28th Int.
Joint Conf. Artif. Intell., Aug. 2019, pp. 5278-5284.

A. S. D. Garcez and G. Zaverucha, ““The connectionist inductive learning
and logic programming system,” Appl. Intell., vol. 11, no. 1, pp. 59-77,
Jul. 1999, doi: 10.1023/A:1008328630915.

J. W. Shavlik and G. G. Towell, “‘An approach to combining explanation-
based and neural learning algorithms,” Connection Sci., vol. 1, no. 3,
pp. 231-253, 1989.

G. G. Towell and J. W. Shavlik, “Knowledge-based artificial neural
networks,” Artif. Intell., vol. 70, nos. 1-2, pp. 119-165, 1994, doi:
10.1016/0004-3702(94)90105-8.

L. Ding, “Neural prolog—The concepts, construction and mechanism,”
in Proc. IEEE Int. Conf. Syst., Man Cybern. Intell. Syst. 21st Century,
Oct. 1995, pp. 3603-3608.

M. V. M. Franca, G. Zaverucha, and A. S. D. Garcez, “Fast relational
learning using bottom clause propositionalization with artificial neural
networks,” Mach. Learn., vol. 94, no. 1, pp. 81-104, Jan. 2014, doi:
10.1007/510994-013-5392-1.

S. Holldobler, ““A structured connectionist unification algorithm,” in Proc.
8th Nat. Conf. Artif. Intell., Boston, MA, USA, 1990, pp. 587-593.

E. Komendantskaya, “Unification neural networks: Unification by error-
correction learning,” Log. J. IGPL, vol. 19, no. 6, pp. 821-847, Dec. 2011,
doi: 10.1093/jigpal/jzq012.

L. Shastri, “Neurally motivated constraints on the working memory capac-
ity of a production systemfor parallel processing,” in Proc. 14th Annu.
Conf. Cogn. Sci. Soc., Bloomington, IN, USA, 1992, pp. 159-164.

P. Minervini, S. Riedel, P. Stenetorp, E. Grefenstette, and T. Rocktischel,
“Learning reasoning strategies in end-to-end differentiable proving,” in
Proc. 37th Int. Conf. Mach. Learn., 2020, pp. 6938-6949.

W. Huayan and Q. Yang, “Transfer learning by structural analogy,” in
Proc. 25th AAAI Conf. Artif. Intell., San Francisco, CA, USA, 2011,
pp. 1-6.

H. Thomas and K. Forbus, ‘““Transfer learning through analogy in games,”
Ai Mag., vol. 32, no. 1, pp. 70-83, 2011.

R. Kumaraswamy, N. Ramanan, P. Odom, and S. Natarajan, “Interactive
transfer learning in relational domains,” Kiinstliche Intelligenz, vol. 34,
no. 2, pp. 181-192, Jun. 2020.

H. Larochelle, D. Erhan, and Y. Bengio, “Zero-data learning of new tasks,”
in Proc. 23rd AAAI Conf. Artif. Intell., Chicago, IL, USA, 2008, pp. 1-6.
M. Palatucci, D. Pomerleau, G. Hinton, and T. M. Mitchell, ‘“Zero-shot
learning with semantic output codes,” in Proc. NIPS, Vancouver, BC,
Canada, 2009, pp. 1-9.

121870

(41]

(42]

[43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]
(51]

[52]

[53]

(54]
[55]

[56]

R. Socher, M. Ganjoo, C. D. Manning, and A. ng, “Zero-shot learning
through cross-modal transfer,” in Proc. Adv. Neural Inf. Process. Syst.,
2013, pp. 935-943.

S.Reed, Z. Akata, H. Lee, and B. Schiele, “Learning deep representations
of fine-grained visual descriptions,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 49-58.

Z. Xie, W. Cao, X. Wang, Z. Ming, J. Zhang, and J. Zhang, ‘A biolog-
ically inspired feature enhancement framework for zero-shot learning,”
in Proc. 7th IEEE Int. Conf. Cyber Secur. Cloud Comput. (CSCloud)/6th
IEEE Int. Conf. Edge Comput. Scalable Cloud (EdgeCom), Aug. 2020,
pp. 120-125.

Z. Xie, W. Cao, and Z. Ming, “A further study on biologically inspired
feature enhancement in zero-shot learning,” Int. J. Mach. Learn. Cybern.,
vol. 12, no. 1, pp. 257-269, Jan. 2021.

1. Bratko, Prolog Programming for Artificial Intelligence, 2nd ed. Reading,
MA, USA: Addison-Wesley, 1990, p. 597.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. ICLR, San Diego, CA,
USA, 2015, pp. 1-15.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” in Proc. Workshop ICLR,
Scottsdale, AZ, USA, 2013, pp. 1-12.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Proc.
NIPS, Lake Tahoe, NV, USA, 2013, pp. 3111-3119.

T. Mikolov, W. Yih, and G. Zweig, ‘““Linguistic regularities in continuous
space word representations,” in Proc. NAACL HLT, Atlanta, GA, USA,
2013, pp. 746-751.

F. Gray, ‘“Pulse code communication,” U.S. Patent 263205 8A,
Mar. 17, 1953.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

1. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio,
“Maxout networks,” in Proc. 30th Int. Conf. Mach. Learn., Atlanta, GA,
USA, 2013, pp. 1319-1327.

D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.
org/abs/1412.6980

Kinsources: A Collaborative Web Platform for Kinship Data Sharing.
Accessed: May 19, 2018. [Online]. Available: https://www.kinsources.net/
IMDb: Internet Movie Database. Accessed: Nov. 29, 2019. [Online].
Available: http://klog.dinfo.unifi.it/data/imdb/ext.pl.gz

K. Sinha, S. Sodhani, J. Dong, J. Pineau, and W. L. Hamilton, “CLUTRR:
A diagnostic benchmark for inductive reasoning from text,” 2019,
arXiv:1908.06177. [Online]. Available: http://arxiv.org/abs/1908.06177

VOLUME 9, 2021

http://dx.doi.org/10.1023/A:1008328630915
http://dx.doi.org/10.1016/0004-3702(94)90105-8
http://dx.doi.org/10.1007/s10994-013-5392-1
http://dx.doi.org/10.1093/jigpal/jzq012

