
Received July 23, 2021, accepted August 21, 2021, date of publication August 31, 2021, date of current version September 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3109235

Analysis of Swarm Intelligence Based ANN
Algorithms for Attacking PUFs
AHMED OUN , (Graduate Student Member, IEEE), NOOR AHMAD HAZARI,
AND MOHAMMED Y. NIAMAT , (Life Member, IEEE)
Department of Electrical Engineering and Computer Science, The University of Toledo, Toledo, OH 43606, USA

Corresponding author: Ahmed Oun (ahmed.oun@rockets.utoledo.edu)

ABSTRACT Physical Unclonable Functions (PUFs) are used for authentication and generation of secure
cryptographic keys. However, recent research work has shown that PUFs, in general, are vulnerable to
machine learning modeling attacks. From a subset of Challenge-Response Pairs (CRPs), the remaining CRPs
can be effectively predicted using different machine learning algorithms. In this work, Artificial Neural
Networks (ANNs) using swarm intelligence-based modeling attacks are used against different silicon-based
PUFs to test their resiliency to these attacks. Amongst the swarm intelligence algorithms, the Gravitational
Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Particle Swarm Optimizer (PSO) and the Grey
Wolf Optimizer (GWO) are used. The attacks are extensively performed on six different types of PUFs;
namely, Configurable Ring Oscillator, Inverter Ring Oscillator, XOR-Inverter Ring Oscillator, Arbiter,
Modified XOR-Inverter Ring Oscillator, and Hybrid Delay Based PUF. From the results, it can be concluded
that the first four PUFs under study are vulnerable to ANN swarm intelligence-based models, and their
responses can be predicted with an average accuracy of 71.1% to 88.3% for the different models. However,
for the Hybrid Delay Based PUF and the Modified XOR-Inverter Ring Oscillator PUF, which are especially
designed to thwart machine learning attacks, the prediction accuracy is much lower and in the range of 9.8%
to 14.5%.

INDEX TERMS Hardware security, FPGA, PUF, artificial neural network, swarm intelligence, GSA, CS,
PSO, GWO, machine learning attacks.

I. INTRODUCTION
In recent years, the use of programmable devices such
as Field Programmable Gate Arrays (FPGAs) and custom
designed Application Specific Integrated Circuits (ASICs)
have increased rapidly. The increased deployment of these
devices in mission critical computing systems include, but
are not limited to, communication networks, smart grids,
defense equipment, and internet of things, has led hackers to
continually devise new techniques to breach the security of
these devices. Examples of such attacks include disabling or
degrading the function of these chips in systems like radars
and missiles. Other attempts include implanting malicious
electronic circuitry in the chips, known as Trojans, to steal
vital information for cyber-attacks. These tampered chips can
subsequently act as ‘spy chips’ by collecting confidential
data for adversaries and hackers. To counter such attacks,
chip designers have embedded additional layers of security

The associate editor coordinating the review of this manuscript and

approving it for publication was Junaid Arshad .

in these devices [1], [2]. Although researchers have long
tried to secure hardware-based systems with both software
and hardware-based approaches, this paper explicitly focuses
on techniques based on hardware-oriented security and
trust [3], [4]. These approaches mainly involve generation
of unique hardware-based cryptographic keys in the form
of Challenge-Response Pairs (CRPs). In order to generate
hardware-based unique keys, different structures of physical
unclonable functions (PUFs) have been proposed in the
past [5], [6]. Essentially, a PUF utilizes manufacturing
process variation, which is an inherent property of silicon
chips, to generate unique and unclonable CRPs. Amongst
the different types of PUFs available, the delay-based PUFs
are widely studied in CMOS-based silicon devices. The
most investigated PUFs on silicon-based devices are the
Ring Oscillator PUF (ROPUF) and the Arbiter PUF (APUF).
Most of the delay-based PUFs are strong candidates for not
only ASICs but also for FPGAs [7], [8]. The significant
advantage of using PUFs as security measures is that it does
not require on-chip memory to generate and store keys; thus,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 121743

https://orcid.org/0000-0001-6069-9261
https://orcid.org/0000-0002-1896-1569
https://orcid.org/0000-0003-0424-9498

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

it eliminates the use of on-chip memory for the security of
the hardware-based system. Another very significant feature
of the PUF is that the keys generated by the PUF are device
specific. Further, the keys change with the specific location
and placement of the PUF inside the chip, since they depend
on the random manufacturing process variations [9], [10].
It should be noted that the behavior of PUFs rely on the
random manufacturing process variations related to several
components that are used to construct it. These components
are sometimes linearly interrelated to the number of CRPs.
Because of these limitations and linearity, an attacker may
try all challenges and know the corresponding responses
within an extended period of time [6]. This kind of brute
force approach, however, generally fails because of the time
required and because of the fact that the exact location of the
PUF is unknown. It is further complicated in FPGAs, since
the location of a PUFmapped onto an FPGA, unlike an ASIC,
can be frequently changed by the designer by changing the
bit-stream file.

PUF produces a device-specific unique response for
a given challenge. This property of the PUF makes it
suitable for different applications including, authentication,
IP protection, random key generation, remote attestation, and
secured supply chain, etc. Once the CRPs can be predicted
by an attacker; as a consequence, the whole concept of
cryptographic primitive for hardware security applications,
including PUF as an authenticator, is in jeopardy. Though
PUFs are considered unclonable, researchers have shown
that they are vulnerable to machine learning-based modeling
attacks. An attacker can perform different types of attacks,
including side-channel attacks, cloning, reverse engineering,
Probably Approximately Correct (PAC) based attacks, and
eavesdropping for predicting the CRPs [11]–[15]. Side-
channel based attacks can be performed by monitoring the
voltage, current, and power values during runtime. If an
attacker wants to authenticate using PUF CRPs without
getting any access to the PUF, the attacker would be
able to do so if the attacker has the responses available
for the challenges, which can be done by eavesdropping
on some of the CRPs. Hackers can eavesdrop by using
MITM attacks by recording the network data packets and
extracting the information of the CRPs when the system
is in operation. Thus, after acquiring a set of CRPs,
a PUF can be modeled using machine learning. Side-channel
based attacks can be performed by monitoring the voltage,
current, and power during runtime. PUFs have been suc-
cessfully attacked using machine learning algorithms such as
Logistic Regression, Probably Approximately Correct learn-
ing, Evolutionary Strategy, Quick Sorting, etc. [13]–[15].
In Rührmair et al.’s research [13], the authors used quick
sorting for modeling RO PUFs. In J. Delvaux’s work [14],
the authors performed modeling attacks on APUF, PolyPUF,
OB-PUF, RPUF, LHS-PUF, and PUF FSM protocols. The
Probably Approximately Correct (PAC) learning algorithm
has been used for predicting ROPUF CRPs in [15]. In their
work, the number of CRPs required to learn the models is on

a scale of ten thousand which is high for an attacker to obtain
from the CRP set. Fault injection-based modeling attacks on
APUFs are performed in [16]. In this attackmodel, an attacker
must have physical access to the PUF. Logical Approximation
and Global Approximation attacks are performed on different
structures of Arbiter PUFs using ANN methods of RMSProp
and Gradient Descent Optimizer [17]. In this technique,
the number of CRPs required is also high. Different side
channel-based modeling attacks have been performed in [18]
and [19], which also requires physical access to the PUF
device. Khalafalla and Gebotys [20] performed deep learning
attacks on a Double Arbiter PUF. In their work, the authors
performed Logistic Regression-based deep learning attacks.
The number of CRPs required to perform such an attack is
very high and requires more than a million pairs of CRPs that
are difficult for an adversary to obtain in order to attack the
PUF.

Genetic Algorithms have also been used to predict CRPs
for the ROPUF [21], [22]. In the Genetic Algorithm-based
modeling, CRPs are generated by crossover, mutation, and
then the attacks are performed, which is not consistent
for different models of ROPUFs. Mathematical modeling
of different PUFs including the Arbiter PUF and the
Ring Oscillator PUF has been performed in [23]. In this
work, the authors describe a mathematical model for the
ROPUF and perform Logistic Regression-based modeling
attacks on the Arbiter PUF and the DCMUX PUF. In this
approach, the drawback is that the CRPs depend on the
different structures of the ROPUF. ANN-based modeling
attacks on a small set of CRPs using different optimiza-
tions including RMSprop, Adam, Nadam, etc., have been
performed in [24]. However, the prediction accuracy needs
improvement.

Different metaheuristics algorithms exist in the literature to
solve optimization problems. Metaheuristics algorithms can
be classified into different categories including, Evolutionary,
Physics-based, and Swarm Intelligence-based Algorithms.
The Genetic Algorithm (GA) is the most popular Evolution-
ary based algorithm proposed by [25], which works on an
initial random solution and optimizes the solution based on
generations and mutations. Other popular Evolutionary based
algorithms are Genetic Programming (GP) [26], Evolutionary
Strategies (ES) [27], Differential Evolution (DE) [28] etc.
The popular physics-based algorithms is the Gravitational
Search Algorithm (GSA) [29] which works based on the law
of gravity, and the best solution is reached after the iteration
can produce specific agents that achieve certain fitness.
Ultimately, the heavier; the mass is, the closer the optimum
points will be. Other physics-based algorithms include Big-
Bang Big-Crunch (BBBC) [30], Central Force Optimization
(CFO) [31], Galaxy-based Search Algorithm (GbSA) [32],
Gravitational Local Search (GLSA) [33], Charged System
Search (CSS) [34] etc. Swarm Intelligence (SI) based
algorithms are a subset of the bio-inspired algorithms. SI is
a nature-inspired algorithm produced by a group of animals
or birds acting together, and the algorithm is based on

121744 VOLUME 9, 2021

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

how these animals act or behave to adapt to the different
scenarios occurring in their surroundings [35]. In Particle
Swarm Optimization (PSO) the particles chase the position
of the best particle and reach their own best position so that
the overall best solution of the swarm is obtained [36]. Other
popular swarm intelligence-based algorithm includes Ant
Colony Optimization (ACO) [37], Cuckoo Search (CS) [38],
Grey Wolf Optimizer (GWO) [39], etc., which are inspired
by hunting and searching behavior.

In 2014,Mirjalili et al. introduced theGreyWolf Optimizer
(GWO), which is a metaheuristic algorithm that simulates the
hierarchical superiority-based hunting mechanism of Grey
wolves for hunting down prey. This arrangement benefits
them to preserve stability and support each other throughout
hunting. Wolves have a strict social hierarchy consisting of
the alpha (α), beta (β), delta (δ), and omega (ω) wolves [39].
The GWO algorithm takes these features of Grey Wolf to
search optimized solution of a problem utilizing exploita-
tion and exploration; therefore, in the searching process,
the best solution position can be comprehensively estimated
by three solutions. Thus, the algorithm can significantly
decrease the probability of falling into the local optimum.
The properties of metaheuristics algorithms have motivated
their use to solve different engineering problems such as
embedded systems, electric power system [40], scheduling
Energy Storage Unit problems [41], communication network
and Distributed Compressed Sensing (DCS) problem [42].
Hence, the research on the swarm intelligence optimiza-
tion algorithms has an academic advantage and practical
importance.

In our earlier work [43], we presented an analytical study
of the vulnerability of the Configurable Ring Oscillator
PUF and the XOR-Inverter Ring Oscillator PUF against
Feed-Forward Neural Network (FNN) attacks using the
Dragonfly Algorithm. That limited study showed that both
designs are vulnerable to this type of attack. In this paper,
Artificial Neural Networks are trained using different swarm
intelligence algorithms, namely: GSA, CS, PSO and GWO
to study the vulnerability and resistance of various PUF
structures against machine learning modeling attacks. It is
assumed that an adversary is able to get hold of a subset of the
CRPs and then attempts to predict the remaining set of CRPs
by performing modeling attacks.

The contributions of this paper are listed as follows:
• Use of Artificial Neural Network based modeling
attacks on various PUFs using different Swarm Intel-
ligence algorithms, namely: The Gravitational Search
Algorithm (GSA), Cuckoo Search Algorithm (CS), Par-
ticle Swarm Optimization and the Grey Wolf Optimizer.
To the best of our knowledge, these algorithms have not
been used in studying the vulnerability of PUFs to ANN-
based attacks.

• Development of a comparative study and statistical anal-
ysis for the different Swarm Intelligence optimization
attack models’ results with respect to other machine
learning attack models. It is found that the ANN-based

GreyWolf Optimizer approach produces better accuracy
results than the other methods.

The rest of the paper is organized as follows: Section II
describes current research related to PUFs, and Section III
describes the structure of the Artificial Neural Network.
Section IV presents an introduction to the Gravitational
Search Algorithm (GSA), Cuckoo Search Algorithm (CS),
Particle Swarm Optimization and the Grey Wolf Optimizer
algorithm. Section V describes the proposed method and
approach. In Section VI, experimental and simulation results
are discussed. Section VII provides concluding remarks.

II. RESEARCH BACKGROUND: DIFFERENT
PUF STRUCTURES
A. BASIC SILICON PUFs
Ring Oscillator Physical Unclonable Functions (ROPUFs)
and Arbiter Physical Unclonable Functions (APUFs) are the
two most commonly used silicon-based PUFs [44], [45].
The basic ROPUF design is described first. Fig. 1 shows
the structure of the Ring Oscillator PUF [46]. The design
relies on delay loops, which can be produced using an
odd number of inverters. As can be seen from the figure,
the output bit is generated by the random selection of a pair
of ring oscillators. Because of the process manufacturing
variations inherent in the chip, ROs that are mapped at
different locations of the chip produce different frequencies
(fa and fb). These two frequencies (fa and fb) are compared.
If the frequency of the first RO is greater than the second, then
the output is 1; otherwise it is 0.

FIGURE 1. Ring oscillator PUF circuit.

A response bit (rab) is thus produced by a simple
comparison as shown in equation (1):

rab =

{
1, if fa > fb,
0, otherwise.

(1)

The basic structure of the Arbiter PUF is shown in Fig. 2.
The circuit produces a race among two delay paths with
an arbiter at the end [47]. In APUF, a rising edge signal
travels through two paths simultaneously. Due to process
variations, the signal on one path travels faster than the other
and generates a 1 or a 0 response. The challenge bits consist
of K external bits (C1 = b1.b2 bk) for K number of
stages. Thus, for challenge bits C1, C2, Cn, a response of
R1, R2 . . . Rn is obtained.

VOLUME 9, 2021 121745

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

FIGURE 2. Arbiter PUF.

B. CONFIGURABLE RING OSCILLATOR PUF
The Configurable ROPUF design shown in Fig. 3 was
presented in our earlier work [9]. This c-ROPUF design
was implemented on a Spartan 3E FPGA board, which
was divided into eight regions. In each region, sixteen ring
oscillators were placed in forty configurable logic blocks. The
oscillators can be selected based on the challenges provided to
the programmable XOR gates. The responses were collected
using the Agilent 16801A logic analyzer. The advantage of
this design is that it can generate a large number of CRPs
from a small chip area.

FIGURE 3. Configurable ROPUF design.

C. INVERTER RING OSCILLATOR PUF
A 5-stage Inverter Ring Oscillator PUF, as shown in Fig. 4,
is used in this study. The PUFs are mapped on Five different
Spartan 3E Xilinx boards. Each PUF consists of 512 Ring
Oscillators.

FIGURE 4. Five stage NOT based Ring Oscillator.

D. XOR-INVERTER ROPUF
The XOR-Inverter based Ring Oscillator PUF is shown
in Fig. 5. This design consists of NAND, XOR, and Inverter

FIGURE 5. XOR-Inverter based ROPUF design.

gates and has been implemented on ten different Xilinx
FPGA boards in our research lab [24]. The design has
been implemented using hard macros so that the oscillator
provides fixed routing, and the frequencies are not affected
by routing delays. The ROs are enabled for a certain period
of time to generate a response for a fixed challenge. For
different challenges applied through the challenge generator,
the frequencies at the output are collected through the
frequency counter. Each challenge generates a single bit
of response by comparing frequencies between the two
oscillators.

E. MODIFIED XOR-INVERTER ROPUF
This design, shown in Fig. 6, is a modification of the
XOR-Inverter ROPUF introduced in our earlier work for
thwarting machine learning modeling attacks [24]. As shown
in the figure, the new challenges are generated from the
challenge generator which consists of an XOR and a Linear
Feedback Shift Register (LFSR) network. The design has
been modified in a way that the ring oscillators are selected in
a pair with the same routing. The difference between the two
oscillator frequencies should lie within a specific threshold
frequency to avoid bit-flips. If the oscillators do not meet this
criterion, they are moved to another CLB slice.

FIGURE 6. Modified design of XOR-Inverter based ROPUF.

F. HYBRID DELAY BASED PUF
The Hybrid Delay based AROPUF (Arbiter-Ring Oscillator
PUF), shown in Fig. 7, was proposed in our earlier work [48].

121746 VOLUME 9, 2021

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

FIGURE 7. Hybrid Delay based AROPUF design.

The hybrid model was also designed to prevent machine
learning basedmodeling attacks. This design is a combination
of the Arbiter PUF and the Ring Oscillator PUF. A one-bit
response is generated by providing a n-bit challenge to the
APUF. The CRPs are randomized using theMersenne Twister
Random Number Generator [49]. The randomized CRPs are
paired sequentially to form n-bit responses. The final output
of the architecture is an n-bit response corresponding to
a n-bit challenge.

III. ARTIFICIAL NEURAL NETWORK
An Artificial Neural Network (ANN) is a network structure
of connected artificial neurons that can model complex
relationships between inputs and outputs using computational
and statistical data modeling tools. The neural networks
consist of different layers termed as the input layer, output
layer, and hidden layer. The first layer from where the
network takes the input is known as an input layer, whereas
the last layer of the network is termed as an output layer. The
layers in between are termed as hidden layers. The number
of hidden layers varies depending on the design [50]. The
structure of the neural network is shown in Fig. 8.

FIGURE 8. Artificial neural network structure.

The input layer is connected and assigned a weight to the
hidden layers. Similarly, the hidden layer is connected to the
output layers; consequently, the output of any input layer act
as an input of the next layer. For each node, weights are
assigned and adjusted based on the input-output relationship.
The output of a 3-layer feed-forward neural network can be
given by:

Yj = bj +
3∑
i=1

wi,jxi (2)

where, Yj is the output, bj is base, wi,j is the weights, and xi
is the input. The input of a hidden layer is modified by some
nonlinear function, sigmoid, which is the activation function:

Sigmoid (z) =
1

1+ e−z
(3)

The weights are updated and calculated according to the
difference obtained from model output and the actual output
of the training data [51]. This difference is calculated using
loss or cost function, which is minimized until the training
loss is minimum or goes very close to zero.

IV. SWARM INTELLIGENCE
Swarm Intelligence (SI) is a cooperative system based on a
group of agents that achieve a common goal by cooperating
according to their behavior and system organization. The
fundamental concept behind swarm intelligence techniques
is the replication of the behavior of the natural collective
system [52]. Amongst the many available swarm intelligence
algorithms, the Gravitational Search Algorithm (GSA),
Cuckoo Search Algorithm (CS), Particle Swarm Optimiza-
tion (PSO), and the Grey Wolf Optimizer (GWO) algorithms
are frequently used. These algorithms, in general, are
simple and computationally efficient. Specifically, these
algorithms have higher viability, robustness, stability, and
search efficiency, and have a fast convergence rate [53].
Moreover, these algorithms are able to optimize a vast search
space with a fixed size population to solve different complex
design optimization problems. For a detailed comparative
analysis of the various swarm intelligence algorithms, the
reader is again referred to [53].

A. GRAVITATIONAL SEARCH ALGORITHM
Gravitational Search Algorithm (GSA) is a swarm opti-
mization technique proposed by Rashedi et al., based on
gravity concepts and different masses’ interaction [29]. In this
algorithm, the solutions of different agents’ populations
interact with one another via the theory of Newtonian gravity
force and the laws of motion. The solution’s performance
is measured by different masses. Due to gravitational force,
the masses are dragged towards each other, which creates
a global movement of all objects approaching the objects
with greater masses. The exploration step occurs when a
mass moves towards a heavier mass, and the exploitation is
when heavier masses move slowly. Accordingly, each mass
can convey information with different masses and see their

VOLUME 9, 2021 121747

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

situation through the gravitational force. The mass’s position
compares to a problem’s solution; then, the best solution is
achieved with the heavier agent. The initial population is
generated randomly, and the position of the agents are defined
as:

Xi = (x1i , . . . , x
d
i , . . . , x

n
i) for i = 1, 2, . . . ,N (4)

where xdi presents the position of ith agent in the d th

dimension. The gravitational search algorithm sets the initial
value of the constant G:

G (t) = G0e−∝t/T (5)

where G0 and∝ is initialized at the beginning of the iteration
and T is the total number of iterations. The agents update the
velocity and the position according to these equations:

vi (t + 1) = rand i × vi (t)+ ai (t) (6)

xi (t + 1) = xi (t)+ vi (t + 1) (7)

where, rand i is a uniform random variable in the interval
[0, 1]. This random number is used to give a randomized
characteristic to the search.

The total force acting on agent i at iteration t , was
calculated as follows:

Fdi (t) =
∑

j∈Kbest ,j6=i

rand jFdij (t) (8)

where Kbest represents the set of k agents with best fitness
and biggest mass.

The pseudo code for the GSA is shown below [29]:

Algorithm 1 Gravitational Search Algorithm

1. Objective function f (x) , x = (x1, x2, . . . xd ,)T

2. Initialize the population of n agents xi
3. while t < Max of Iterations do
4. Evaluate the fitness for each agent
5. for each searching
6. Update the G(t), best(t),worst(t) and Mi(t)
7. end for
8. Calculation of the total force in different directions.
9. Calculation of acceleration and velocity.

10. Updating agents’ position.
11. t = t + 1
12. end while
13. Return the best solution

B. CUCKOO SEARCH ALGORITHM
Cuckoo search algorithm (CS) is a nature-inspired opti-
mization algorithm proposed by Yang in 2009 to solve
optimization problems based on the cuckoo bird’s breeding
behavior and search approach of laying its eggs in the best
host nest [38]. The CS algorithm is based on the brood
parasitism of cuckoo birds. The species lay their eggs in other
host bird nests to be brooded by the proxy mother bird and
use the host bird assistance to hatch their eggs. The hatching

probability of similar eggs to the host bird’s eggs is high.
In some cases, the other bird recognizes the different eggs,
so they throw the eggs away, destroy them, and even leave
their nests to build another one in a distinct location. The
CS algorithm uses better solutions to substitute not-so-good
solutions in the nests. As a result, it can enhance search
capabilities to improve the relationship between exploration
and exploitation. The CS algorithm is performed through
the following three rules: first: each cuckoo bird chooses a
random nest to lay only one egg; second, the best nests with
a good quality of eggs will carry over for the next population;
third, a host bird can detect a different egg with a probability
of pa ∈ [0, 1] for a constant number of available host nests.
Hence, the host bird may either throw the different eggs or
leave the nest and build a new one. One of the essential CS
features is Lévy flights to generate new candidate solutions
rather than a simple random walk. The following Lévy flight
is performed to generate new solutions x(t+1) for the ith

cuckoo:

x(t+1)i = x(t)i + α ⊕ Lévy(λ) (9)

where α > 0 is the step size. The product⊕means entry-wise
multiplications. The Lévy step size probability distribution is
represented by:

Lévy ∼ u = t−λ, (1 < λ ≤ 3) (10)

which has an infinite variance with an infinite mean. The
pseudo-code of CS algorithm is shown below [38]:

Algorithm 2 Cuckoo Search Algorithm

1. Objective function f (x) , x=(x1, x2, . . . xd ,)T

2. Initialize the population of n host nests xi
3. while t < Max of Iterations do
4. Get a cuckoo randomly by Lévy flights
5. Evaluate its fitness fi
6. Randomly choose n nest fj
7. If (fi > fj)
8. Replace j by the new solution
9. End if

10. Abandon a fraction of pa of worse nests and
build new ones at new locations via Lévy flights

11. Keep the best solutions
12. Rank the solutions and find the current best
13. t = t + 1
14. end while
15. Return the best solution

C. PARTICALE SWARM OPTIMIZATION
In 1995, Eberhart and Kennedy proposed the Particle Swarm
Optimization (PSO), which mimics the social behavior and
search techniques of a swarm of animals, or a flock of birds,
or a school of fish, when they adapt their environment to
search for their food [36]. The particles communicate and
shares its information to find the optimum path to reach its

121748 VOLUME 9, 2021

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

FIGURE 9. Update Particle position and velocity in the search space.

food sources. The shortest path followed is the particle’s
best position. Based on the current positions of the local and
global positions in the search space, each particle identifies
and updates its position until the global-optimum position is
achieved. Fig. 9 shows how the particle changes its position
within the search space to obtain food [54].

Particle movements affect all other individuals within the
group, each one of them has its position and velocity defined
by equation (11), which presents the best position achieved
with respect to all neighbor’s best position.

p (t + 1) = p (t)+ v(t + 1) (11)

Here p (t + 1) denotes the updated location of the particle
in the swarm, gbest defines the global best, p (t) represents
the current location of the particle in the swarm, and v (t + 1)
is the new velocity of the particle in the swarm based on
the location of the gbest . Based on the current velocity and
position of each particle, its own best position pbest and
the entire population’s best position gbest , the particle’s new
velocity and position can be determined as:

v (t + 1) = ω ∗ v (t)+ c1 ∗ r1 ∗ [pbest (t)− p (t)]

+ c2 ∗ r2 ∗ [gbest (t)− p(t)] (12)

where pbest is the best position of the particle, gbest is the
best position of the swarm, v (t) is the current velocity, and
r1, r2 are random numbers from uniform distribution. Both
c1, c2 are acceleration coefficients and ω is the inertia weight.
The pseudo-code of the Particle Swarm Optimization (PSO)
algorithm is shown below [54]:

D. GREY WOLF OPTIMIZER
In 2014, Mirjalili and others introduced the Grey Wolf
Optimizer (GWO), which is an algorithm that illustrates
the Grey Wolf’s hierarchical hunting pattern based on how
wolves obey a strict social hierarchy [39]. This pattern
maintains the stability and assists other wolves during the
hunt. The complete wolf pack must follow the orders of
the wolf with the most durability and fighting ability.
Fig.10 shows the classification of the social hierarchy in a

Algorithm 3 Particle Swarm Optimization Algorithm
1. Initialization Particle’s Position
2. Initialization Particle’s velocity
3. Calculate the fitness values of each particle
4. while t < Max of Iterations do
5. Update the position according to Equation 11
6. Update the velocity according to Equation 12
7. Choose the particle having the best fitness value as

the g-best
8. Compare P-best of each particle with g-best of swarm
9. t = t + 1

10. end while
11. Return g-best particle

FIGURE 10. Grey wolf social hierarchy.

grey wolf pack consisting of the alpha (α), beta (β), delta (δ)
and omega (ω) wolves:

1) ALPHA (α)
The leader of the pack, at the top of the hierarchy, is mostly
responsible for making decisions because it is considered the
most qualified wolf among the pack.

2) BETA (β)
The adviser wolf at the second level in the hierarchy, which
helps the alpha in decision-making or other pack activities.
A beta follows the leader’s directions to maintain discipline
over the pack.

3) DELTA (δ)
Stands at the third level in the hierarchy, Delta follows the
orders of alpha and beta wolves, but dominates and leads the
omegas.

4) OMEGA (ω)
The lowest level in the grey wolf social hierarchy, the omega
wolves, always follow the commands of all the other
dominant wolves in the social hierarchy.

The hunting behavior of the GWO algorithm is guided
by the three wolves α, β, and δ, while the ω wolves follow
them. Fig.11 illustrates how the position can be updated in
the search space for the three wolves. Alpha is the closest
location in the search space to prey Xα , which is considered
as the first best wolf, Xβ is the second-best location for beta
wolf, and delta is the third best wolf location Xδ . The rest of

VOLUME 9, 2021 121749

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

FIGURE 11. Wolves position surrounding the prey.

the pack, omega wolves, will update their positions according
to alpha, beta, and delta positions. The locations of wolves are
updated as follows:

ED =
∣∣∣ EC · EXP (t)− EX (t)∣∣∣ (13)

EX (t + 1) = EXP (t)− EA · ED (14)
EA = 2Ea · Er1 − Ea (15)
EC = 2 · Er2 (16)

where, t represents iteration, EA and EC are coefficient vectors,
EXP is the prey position vector, EX is the wolf positions, Ea is the
linear coefficient, and Er1 and Er2 are random vectors located
in the scope [0, 1]. The calculation of distances between the
position of current individual and individual of alpha, beta,
and delta are:

EDα =
∣∣∣ EC1 · EXα − EX

∣∣∣ (17)

EDβ =
∣∣∣ EC2 · EXβ − EX

∣∣∣ (18)

EDδ =
∣∣∣ EC3 · EXδ − EX

∣∣∣ (19)

where EXα , EXβ , EXδ are the position vectors, EC1, EC2, EC3 are
randomly generated vectors, EX represents the position vector
of current individual. Therefore, the mathematical models for
grey wolf hunting are calculated by:

EX1 = EXα − EA1 · EDα (20)
EX2 = EXβ − EA2 · EDβ (21)
EX3 = EXδ − EA3 · EDδ (22)

EX (t + 1) =
EX1 + EX2 + EX3

3
(23)

where EA1, EA2, EA3 are randomly generated vectors.
The pseudo code for the GWO is shown below [39]:

V. PROPOSED METHOD
During modeling the vulnerability of PUFs, researchers
have used many techniques such as Fault injection-based
modeling attacks, Genetic Algorithm, Genetic Programming,
and Evolutionary Strategies to model PUF CRPs. From their
results, it has been observed that these algorithms require
a large number of CRPs to model PUF characteristics;
moreover, the attacker may need to have physical access to

Algorithm 4 Grey Wolf Optimization Algorithm
1. Initialize the population of the Grey Wolves
2. Initialize for a, A, and C
3. Calculate the fitness values of each wolf Xα , Xβ , and

Xδ

4. while t < Max of Iterations do
5. for each searching wolf
6. Update position using equation 6
7. end for
8. Update a, A, and C
9. Calculate the fitness values of all wolves

10. Update the positions of Xα , Xβ , and Xδ

11. t = t + 1
12. end while
13. Return Xα

the PUFs. The motivation for choosing swarm intelligence
algorithms is that SI algorithms have fewer parameters
than evolutionary methods to adjust, which makes them
flexible, robust, and distributive. SI algorithms are easy
to implement, more reliable for finding solutions to many
complex problems, and converge faster than other algorithms.
Also, SI optimizers maintain a large search space of can-
didate information throughout the iterations. Furthermore,
the mathematical model’s implementation mechanism is very
well developed to avoid local optimization and improve
performance, making it easier to combine with practical
engineering problems. The Swarm Optimization algorithms
are used to build ANN models to analyze the vulnerability
of the different PUFs described earlier for modeling attacks.
These training algorithms adjust the weights and biases of
the ANN until the highest response prediction accuracy can
be obtained by finding the optimum set of weights and
biases. Based on the objective (loss/error) function for the
SI algorithms, the weights are adjusted in each iteration in
order to minimize the loss/error function that is used in neural
networks to minimize the training error. The Mean Square
Error function (MSE), which is the most commonly used
parameter for the evaluation of the neural network, is defined
in equation (24).

Mean_Square_Error =
1
n

n∑
i=1

(
Yexp − Yobsi

)2 (24)

where the performance of the network is evaluated based on
the difference between the predicted responses (Yobsi) and the
actual responses (Yexp). The average MSE obtained from all
training samples is based on the best solutions of the previous
iteration. While the current weights and biases of the neural
network are updated, theMSE gradually decreases; therefore,
after enough iterations, the algorithms can achieve the best
solution. For a challenge vector C = [C1,C2, . . . ,Cm] of
size m, Configurable Ring Oscillator, Inverter based Ring
Oscillator, XOR Inverter based ring oscillator, and the Arbiter
PUF will generate a response vector R = [r1, r2, . . . , rm].

121750 VOLUME 9, 2021

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

The CRPs are fed to the ANN network, where each bit of the
challenge vector represents one neuron, and the response bit
is the outcome of the neural network. For modeling of the
PUFs, it is assumed that if an attacker gets hold of a small
set of CRPs (C, r) =

[
(C1, r1) , (C2, r2) . . . , (Cm, rm)],

then it can be modeled by the ANN-based models using
swarm optimization, GSA, CS, PSO and GWO algorithms to
predict the remaining set of CRPs. Formodeling theModified
XOR-Inverter ROPUF and the Hybrid Delay based PUF, the
challenge vector is defined as C = [C1,C2, . . . ,Cm]T , and
the response matrix for the individual PUF is given as:

R =


r11 r12 . . . r1n
r21 r22 . . . r2n
...

... . . .
...

rm1 rm2 . . . rmn

 (25)

where both the challenge and response bits are of the same
size. The prediction accuracy for n bit response can be
calculated as:

Prediction accuracy =
∑n

r=1
nCr/number of challenges

(26)

Algorithm 5 outlines the steps of how the model trains
the Artificial Neural Network based on Swarm Intelligence
Algorithms.

Algorithm 5 Training ANN Using SI Algorithms
1. Initialize all the parameters of Swarm Algorithm
2. Constricting of ANN learning structure
3. Initialize the weights and biases of the Neural Network
4. while t < Max of Iterations do
5. Map the Challenges Vector C = [C1, C2, . . . , Cm]

into the input layer of AN
6. Calculate the predicted response R
7. Compare the predicted response R to the actual

response R
8. Calculate the new global optimum value of weights

and biases using swarm algorithm
9. Update the weights and biases of the ANN using

Swarm Intelligence optimizers
10. t = t + 1
11. end while
12. Return weights, biases and predicted accuracy

A. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of the proposed algorithm
(Algorithm 5) accounts for the execution time of the
algorithm based on its structure. For Algorithm 5, the compu-
tational complexity for each step can be described as follows:
• The computational complexity of initialization the
weights and biases is O(N × dim) time, where N
represents the population size and dim represents the
dimension of the problem.

• In step 5 (mapping the challenge vector) of the proposed
algorithm, for each iteration, the challenge vector is
mapped into the input layer of ANN with constant
computational complexity of O(1); the iteration loop
technically runs in O(Iter), therefore the final time
complexity for mapping is O(Iter).

• The calculation of predicting the response and compar-
ing it with the actual response in steps 6 and 7 have a
computational complexity of (Iter × L), where L is the
total number of training CRPs.

• For step 8, in each iteration the computational complex-
ity represents the calculation of the new global optimum
value of weights and biases (Iter × N).

• Step 9 represents the updated weights and biases values
with computational complexity of (Iter × N × dim).

• Since the total number of iterations is not more than
IterMax, the total time complexity is: O(IterMax) +
O(IterMax × L) + O(IterMax × N) + O(IterMax × N ×
dim) + O(dim × N).

As seen from the above analysis, the proposed algorithm’s
computational complexity depends on the size of population
(N), dimension (dim), and iterations (Iter).

VI. EXPERIMENTAL RESULTS ANALYSIS AND
DISCUSSIONS
To analyze the vulnerability of the various PUFs to ANN-
based attacks using Swarm Intelligence algorithms, a subset
of the randomly chosen CRPs is used as the training
set. An accuracy score evaluates the attack resistance in
terms of the percentage of successful response predictions.
The Swarm Intelligence algorithms used to train the ANN
network to predict PUF CRPs are implemented using Python
3.5 (64 Bit) frameworks. For training the CRPs, a 2.3 GHz
PC with 16 GB RAM and 2GB Graphics card is used. The
response prediction accuracy is determined by using cross-
validation of ten blocks K-fold method [55]. One of these
ten partitions is used as the test set, while the other nine
cumulatively serve as the training set. The ANN learning
network structure used in the experiment is a 3- Multi-
Layer Perceptron (MLP) with 33 nodes in the hidden layer.
It is observed that the ANN method dramatically improves
the learning rate for the first four PUFs, but still fails to
learn the last two dual-mode PUFs. Different parameters and
hyperparameters used in ANN for training and prediction
of the CRPs are listed in Table 1. In order to verify the
performance of the proposed method, we chose well-known
ANN-based optimization algorithms (RMSprop, Adadelta,
Adam, and Nadam) for the purpose of comparison under
the same experimental environment and the same platform
for a fair comparison. Furthermore, we used the same ANN
structure in terms of the number of hidden layers, nodes,
and activation functions. The number of individuals that have
been used for all the algorithms is 100, and each run stops
when the maximal number of 1000 iterations is achieved.
Finally, a statistical analysis of the method’s results has been
performed.

VOLUME 9, 2021 121751

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

TABLE 1. Parameters values used.

A. MACHINE LEARNING ANN-BASED
MODELING ATTACKS
ANN-based models using four well-known optimization
algorithms are used to perform attacks on different PUFs.
These models are RMSprop, Adadelta, Adam, and Nadam
optimizations. The ANN structure in terms of the number
of hidden layers, nodes, and activation functions are shown
in Table 1. Moreover, the training conditions of the network-
based model are given in table 2.

TABLE 2. Initial parameters set in ANN optimizers.

As shown in Table 3, it is observed that the best
accuracy for response prediction is 85.0% for the ANN-based
modeling with Adam on the Configurable ROPUF.

TABLE 3. ANN-based prediction accuracy for PUFs.

In the case of the Hybrid Delay based PUF and the
Modified XOR-Inverter ROPUF, the two PUFs which are
specially designed to thwart machine learning attacks, it is
noted that the models are unable to predict the responses

with higher prediction accuracy. The best prediction accu-
racy of 10.7% is observed for the Nadam optimization.
Figs. 12(a), (b), (c), (d), (e), (f) show plots of the
prediction accuracies versus the number of iterations for
the Inverter ROPUF, Configurable ROPUF, XOR-Inverter
ROPUF, Arbiter PUF, Hybrid Delay based PUF, and
Modified ROPUF, respectively. It can be concluded from
these plots that the prediction accuracy of the Nadam
algorithm is higher than the other algorithms. Fig. 13 shows
the loss function of the different ANN-based optimization
algorithms. It is observed from this figure that the Nadam
optimizer converges faster than the other optimization
algorithms.

B. SWARM INTELLIGENCE BASED MODEL ATTACKS
In this section, we describe how the Swarm Intelligence
algorithms are used to train the ANN. However, for these
algorithms to reach their maximum performance and achieve
the best results, proper settings of the initial parameters are
required. The parameters chosen for SI algorithms to simulate
the GSA, CS, PSO, and GWO algorithms are selected based
on references [29], [38], [39], [54], and are given in Table 4.
ANN-based models are trained for 1000 iterations and the
algorithms are tested with an initial population of individuals
in the range of 5-150. However, no improvement in prediction
accuracy is achieved by increasing the number of individuals
to more than 100; therefore, the number of individuals is kept
at 100.

TABLE 4. Initial parameters set in swarm algorithms.

Table 5 lists experimental results for the accuracy, standard
deviation, and runtime for four different PUFs using the

121752 VOLUME 9, 2021

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

FIGURE 12. ANN-based prediction accuracy vs. number of Iteration for different PUFs.

FIGURE 13. Loss function vs. number of Iteration for different ANN
optimizers.

GSA, CS, PSO and GWO Swarm Intelligence algorithms.
From the table, it is evident that the PUF structures

are vulnerable to Swarm Intelligence-based model attacks
with prediction accuracies ranging from 71.1% - 88.3%.
In contrast, for the machine learning ANN-based models, the
prediction accuracies range from 68.0% to 85.0 %. Also, it is
found from Table 3 and Table 5 that the prediction accuracies
are much better for each of the listed PUFs when the
GSA, CS, PSO and GWO based modeling attacks are used.
Figs. 14 (a), (b), (c), (d), (e), (f) show plots of the prediction
accuracies versus the number of iterations for the different
PUF designs. It can be concluded from these plots that
the prediction accuracy of the GWO algorithm is higher
than the other algorithms. Also, the plots show that the
GWO converges fast. For the two PUFs that were especially
designed to thwart machine learning-based attacks, namely:
the Hybrid Delay based PUF and the Modified XOR-Inverter
ROPUF, it is found that the prediction accuracies using the
Swarm Intelligence algorithms are in the range of 9.8% to

VOLUME 9, 2021 121753

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

FIGURE 14. Swarm-based prediction accuracy vs. number of iteration for different PUFs.

14.5%, as shown in Table 5. Although in the low range,
the prediction accuracies are better than those obtained from
Machine Learning ANN-based attacks which range from
7.5% -10.7%. Here, also, it is observed that the performance
of the GWO model is better than the others in terms of
prediction accuracies. Fig. 15 shows the loss function of
the different swarm-based algorithms. It is observed from
the figure that the GWO converges faster than the other
algorithms.

C. COMPARATIVE ANALYSIS AMONG
DIFFERENT ALGORITHMS
The prediction accuracies are much better for each of the
listed PUFs when swarm-based modeling attacks are used.
Table 6 summarizes the prediction accuracies for the six
different types of PUFs under study. It is observed from

FIGURE 15. Loss function vs. number of Iteration for different swarm
algorithms.

121754 VOLUME 9, 2021

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

TABLE 5. Swarm-based prediction accuracy, standard deviation, and runtime for PUFs.

TABLE 6. Prediction accuracy comparison for different algorithms.

this table that the prediction accuracies, when the Swarm
Intelligence models (GSA, CS, PSO & GWO) are used, are
much better than the other algorithms for each of the listed
PUFs. For easy comparison, the results in Table 6 are also
shown in the chart of Fig. 16. It is clear from this figure that
the GSA, CS, PSO and GWO optimizations in ANN give
better prediction accuracy results than Adadelta, RMSprop,
Adam, and Nadam optimization algorithms. The Swarm
Intelligence-based model attacks have prediction accuracies
ranging from 71.1% - 88.3%. In contrast, for the machine
learning ANN-based models, the prediction accuracies range
from 68.0% to 85.0%. The prediction accuracies for the
modified PUFs (Hybrid and Modified Inverter) are less
because these PUFs have been especially designed to thwart
machine learning attacks. It is found that the prediction
accuracies using the Swarm Intelligence algorithms are in
the range of 9.8% to 14.5%, while the results obtained
from Machine Learning ANN-based attacks with range from
7.5% −10.7%.

D. STATISTICAL ANALYSIS OF THE RESULTS
This subsection explains the statistical analysis of the various
algorithm results, where multiple comparison procedures
have been employed. In order to apply statistical analysis,
a null hypothesis is defined, which implies that all the
algorithms have the same performance without a significant
difference; therefore, a denial of this hypothesis suggests
the existence of differences between these algorithms. If the
hypothesis is rejected, a significance value α is applied to
decide the rejection level. The p-values are used to describe
the significance of the hypothesis test. If the p-value is
more significant than α, then there is not enough evidence
to reject the null hypothesis. Otherwise, the hypothesis is
rejected, which indicates that the algorithms have different
performances. The Nonparametric Friedman test is used to
compute p-values to define significant differences between
the algorithms’ prediction accuracy [56]. Then, a significance
value α = 0.05 is chosen. In computing the Friedman Value
Ff , the test ranks the algorithms according to the highest

VOLUME 9, 2021 121755

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

FIGURE 16. Prediction accuracies for different types of PUFs using different optimization models.

TABLE 7. Average rankings of the algorithms by Friedman test.

prediction accuracy (Rank 1), the second highest (Rank 2),
down to the lowest ranking. The Friedman test computes Ff
Value as:

Ff =
12n

k (k + 1)

[∑
R2 −

k (k + 1)2

4

]
(27)

where, R is the ranks, n is the number of PUF datasets,
k is the number of algorithms, and the statistic is distributed
according to Ff with k − 1 degrees of freedom [57], [58].
Table 7 shows the obtained average rankings of the algo-

rithms by the Friedman Test based on prediction accuracy.
GWO has the best performance in prediction accuracy

among all algorithms; therefore, it has a rank of 1 and will
be used as the control algorithm. The result obtained from
the Friedman test, including its corresponding associated
p-value, is shown in Table 8. From the table, it is observed
that the p-value is lower than the level of significance
(0.05); therefore, there are significant performance differences
between the algorithms, which implies that the null
hypothesis is rejected. Considering the differences between
the algorithms, we need a post-hoc procedure to identify
these differences and then find out the p-value in order to

TABLE 8. Results of the Friedman tests.

TABLE 9. Adjusted p-values. GWO is the control algorithm.

determine the hypothesis rejection degree. Holm’s procedure
has been used to determine whether the control algorithm
presents statistical differences concerning the remaining
algorithms [59].

Holm’s procedure compares the control algorithm, GWO,
with the other remaining algorithms, which consider a
multiple comparison procedure. The test statistic, z value,
is used to find the corresponding probability from the table
of the normal distribution:

Z =
Ri − Rj√

k(k+1)
6N

(28)

121756 VOLUME 9, 2021

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

where, Ri and Rj are the average rankings by the Friedman
test of the algorithms compared [60]. These unadjusted p
values are used to compute p-Holm sequentially and test the
hypotheses ordered by their significance level of confidence
α. Table 9 shows that when the highest prediction accuracy
algorithm (GWO) is used as a control algorithm, it performs
better than Adadelta, RMSprop, Nadam and GSA with
α = 0.05, and GWO outperforms all the algorithms with
α = 0.10 except PSO.

VII. CONCLUSION
Various Machine Learning based attack models have been
used recently to breach the security of PUFs. In this
work, we study six different types of PUFs to ascertain
their resiliency to such attacks. We especially focus on
swarm intelligence-based algorithms to further study the
vulnerability of these PUFs to learning attacks. To the best
of our knowledge, swarm-based algorithms have not been
investigated earlier to test the security of PUFs. In this paper,
Artificial Neural Networkmodeling attacks on different types
of PUFs using the Gravitational Search Algorithm (GSA),
Cuckoo Search Algorithm (CS), Particle Swarm and Grey
Wolf Optimization are presented. From the results, it is
observed that the swarm intelligence algorithms produce
better response prediction accuracy results (71.1% - 88.3%)
when compared to other well-known Machine Learning
ANN-based algorithms (68.0% - 85.0%). Amongst the SI
algorithms, the GWO algorithm performs better in predicting
the CRPs than the rest. It is observed that the Configurable
ROPUF is the most vulnerable and its response can be
predicted with an accuracy of 88.3% when the GWO is
used. For the Modified XOR-Inverter ROPUF, which has
been especially designed to thwart machine learning attacks,
it is found that the Grey Wolf Optimizer can predict the
response with 14.5% accuracy. Although swarm intelligence
algorithms used in this paper require considerable computa-
tional time, the prediction accuracy of the proposed method is
better thanANN-basedmodels. For futurework, the proposed
method can be used to improve the performance metrics of
PUFs and for developing countermeasures against modeling
attacks.

REFERENCES
[1] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and

Y. Makris, ‘‘Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,’’ Proc. IEEE, vol. 102, no. 8, pp. 1207–1228,
Aug. 2014.

[2] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, ‘‘Hardware Trojan
attacks: Threat analysis and countermeasures,’’ Proc. IEEE, vol. 102, no. 8,
pp. 1229–1247, Aug. 2014.

[3] M. Tehranipoor, H. Salmani, and X. Zhang, Integrated Circuit Authentica-
tion, vol. 10. Cham, Switzerland: Springer, 2014, pp. 973–978.

[4] F. Koushanfar, ‘‘Hardware metering: A survey,’’ in Introduction to
Hardware Security and Trust. New York, NY, USA: Springer, 2012,
pp. 103–122.

[5] G. Suh and S. Devadas, ‘‘Physical unclonable functions for device
authentication and secret key generation,’’ in Proc. DAC, 2007, pp. 9–14.

[6] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, ‘‘Physical unclonable
functions and applications: A tutorial,’’ Proc. IEEE, vol. 102, no. 8,
pp. 1126–1141, Aug. 2014.

[7] S. Gören, O. Ozkurt, A. Yildiz, H. F. Ugurdag, R. S. Chakraborty, and
D. Mukhopadhyay, ‘‘Partial bitstream protection for low-cost FPGAs
with physical unclonable function, obfuscation, and dynamic partial self
reconfiguration,’’ Comput. Electr. Eng., vol. 39, no. 2, pp. 386–397,
Feb. 2013.

[8] N. A. Hazari, F. Alsulami, and M. Niamat, ‘‘FPGA IP obfuscation using
ring oscillator physical unclonable function,’’ in Proc. IEEE Nat. Aerosp.
Electron. Conf. (NAECON), Dayton, OH, USA, Jul. 2018, pp. 105–108.

[9] F. Amsaad, T. Hoque, and M. Niamat, ‘‘Analyzing the performance of a
configurable ROPUF design controlled by programmable XOR gates,’’ in
Proc. IEEE 58th Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2015,
pp. 1–4.

[10] M. Choudhury, N. Pundir, M. Niamat, and M. Mustapa, ‘‘Analysis of
a novel stage configurable ROPUF design,’’ in Proc. IEEE 60th Int.
Midwest Symp. Circuits Syst. (MWSCAS), Boston, MA, USA, Aug. 2017,
pp. 942–945.

[11] J. Sölter, ‘‘Cryptanalysis of electrical PUFs via machine learning
algorithms,’’ M.S. thesis, Technische Univ. München, München, Germany,
2009.

[12] U. R. Ührmair, F. Sehnke, J. S. Ölter, G. Dror, S. Devadas, and
J. Ü. Schmidhuber, ‘‘Modeling attacks on physical unclonable functions,’’
in Proc. 17th ACM Conf. Comput. Commun. Secur. (CCS), 2010,
pp. 237–249.

[13] U. Röhrmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, ‘‘PUF modeling
attacks on simulated and silicon data,’’ IEEE Trans. Inf. Forensics Security,
vol. 8, no. 11, pp. 1876–1891, Nov. 2013.

[14] J. Delvaux, ‘‘Machine-learning attacks on polyPUFs, OB-PUFs, RPUFs,
LHS-PUFs, and PUF-FSMs,’’ IEEE Trans. Inf. Forensics Security, vol. 14,
no. 8, pp. 2043–2058, Aug. 2019.

[15] F. Ganji, S. Tajik, and J.-P. Seifert, ‘‘PAC learning of arbiter PUFs,’’
J. Cryptograph. Eng., vol. 6, no. 3, pp. 249–258, Sep. 2016.

[16] J. Delvaux and I. Verbauwhede, ‘‘Fault injection modeling attacks on
65 nm arbiter and RO sum PUFs via environmental changes,’’ IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 61, no. 6, pp. 1701–1713, Jun. 2014.

[17] J. Shi, Y. Lu, and J. Zhang, ‘‘Approximation attacks on strong PUFs,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10,
pp. 2138–2151, Oct. 2020.

[18] J. Delvaux and I. Verbauwhede, ‘‘Side channel modeling attacks on 65 nm
arbiter PUFs exploiting CMOS device noise,’’ in Proc. IEEE Int. Symp.
Hardw.-Oriented Secur. Trust (HOST), Austin, TX, USA, Jun. 2013,
pp. 137–142.

[19] X. Xu and W. Burleson, ‘‘Hybrid side-channel/machine-learning attacks
on PUFs: A new threat?’’ in Proc. Design, Automat. Test Eur. Conf. Exhib.
(DATE), Dresden, Germany, 2014, pp. 1–6.

[20] M. Khalafalla and C. Gebotys, ‘‘PUFs deep attacks: Enhanced modeling
attacks using deep learning techniques to break the security of double
arbiter PUFs,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE),
Florence, Italy, Mar. 2019, pp. 204–209.

[21] Q. Guo, J. Ye, Y. Gong, Y. Hu, and X. Li, ‘‘Efficient attack on non-linear
current mirror PUF with genetic algorithm,’’ in Proc. IEEE 25th Asian Test
Symp. (ATS), Hiroshima, Japan, Nov. 2016, pp. 49–54.

[22] I. Saha, R. R. Jeldi, and R. S. Chakraborty, ‘‘Model building attacks on
physically unclonable functions using genetic programming,’’ in Proc.
IEEE Int. Symp. Hardw.-Oriented Secur. Trust (HOST), Austin, TX, USA,
Jun. 2013, pp. 41–44.

[23] Y. Xu, Y. Lao, W. Liu, Z. Zhang, X. You, and C. Zhang, ‘‘Mathematical
modeling analysis of strong physical unclonable functions,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 12,
pp. 4426–4438, Dec. 2020.

[24] N. A. Hazari, A. Oun, and M. Niamat, ‘‘Analysis and machine learning
vulnerability assessment of XOR-inverter based ring oscillator PUF
design,’’ in Proc. IEEE 62nd Int. Midwest Symp. Circuits Syst. (MWSCAS),
Dallas, TX, USA, Aug. 2019, pp. 590–593.

[25] J. H. Holland, ‘‘Genetic algorithms,’’ Sci. Amer., vol. 267, no. 1, pp. 66–73,
1992.

[26] J. R. Koza and J. R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, vol. 1. Cambridge, MA, USA:
MIT Press, 1992.

[27] N. Hansen, S. D. Müller, and P. Koumoutsakos, ‘‘Reducing the time
complexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES),’’Evol. Comput., vol. 11, no. 1, pp. 1–18,Mar. 2003.

VOLUME 9, 2021 121757

A. Oun et al.: Analysis of Swarm Intelligence Based ANN Algorithms for Attacking PUFs

[28] R. Storn and K. Price, ‘‘Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,’’ J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[29] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, ‘‘GSA: A gravitational
search algorithm,’’ J. Inf. Sci., vol. 179, no. 13, pp. 2232–2248, 2009.

[30] O. K. Erol and I. Eksin, ‘‘A new optimization method: Big bang-big
crunch,’’ Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006.

[31] R. A. Formato, ‘‘Central force optimization: A new metaheuristic with
applications in applied electromagnetics,’’ Prog. Electromagn. Res.,
vol. 77, pp. 425–491, Jan. 2007.

[32] H. S. Hosseini, ‘‘Principal components analysis by the galaxy-based search
algorithm: A novel metaheuristic for continuous optimisation,’’ Int. J.
Comput. Sci. Eng., vol. 6, nos. 1–2, pp. 132–140, 2011.

[33] B. Webster and P. J. Bernhard, ‘‘A local search optimization algorithm
based on natural principles of gravitation,’’ Florida Inst. Technol.,
Melbourne, FL, USA, Tech. Rep. #CS-2003-10, 2003.

[34] A. Kaveh and S. Talatahari, ‘‘A novel heuristic optimization method:
Charged system search,’’ActaMechanica, vol. 213, nos. 3–4, pp. 267–289,
2010.

[35] S. Selvaraj and E. Choi, ‘‘Survey of swarm intelligence algorithms,’’ in
Proc. 3rd Int. Conf. Softw. Eng. Inf. Manage. (ICSIM). New York, NY,
USA: Association for Computing Machinery, Jan. 2020, pp. 69–73.

[36] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int.
Conf. Neural Netw. (ICNN), vol. 4, 1995, pp. 1942–1948.

[37] M. Dorigo, M. Birattari, and T. Stutzle, ‘‘Ant colony optimization,’’ IEEE
Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[38] X.-S. Yangc and S. Deb, ‘‘Cuckoo search via Lévy flights,’’ in Proc. World
Congr. Nature Biologically Inspired Comput. (NaBIC), 2009, pp. 210–214.

[39] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[40] A. Kumar and S. Chakarverty, ‘‘Design optimization for reliable embedded
system using cuckoo search,’’ in Proc. 3rd Int. Conf. Electron. Comput.
Technol. (ICECT), Apr. 2011, pp. 264–268.

[41] M. Abdulgader, S. Lakshminarayanan, and D. Kaur, ‘‘Efficient energy
management for smart homes with grey wolf optimizer,’’ in Proc. IEEE
Int. Conf. Electro Inf. Technol. (EIT), May 2017, pp. 388–393.

[42] H. Liu, G. Hua, H. Yin, and Y. Xu, ‘‘An intelligent grey wolf optimizer
algorithm for distributed compressed sensing,’’ Comput. Intell. Neurosci.,
vol. 2018, pp. 1–10, Jan. 2018.

[43] A. Oun and M. Niamat, ‘‘Defense mechanism vulnerability analysis of
ring oscillator PUFs against neural network modeling attacks using the
dragonfly algorithm,’’ in Proc. IEEE Int. Conf. Electro Inf. Technol. (EIT),
Jul. 2020, pp. 378–382.

[44] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, ‘‘Silicon physical
random functions,’’ in Proc. 9th ACM Conf. Comput. Commun. Secur.
(CCS), 2002, pp. 148–160.

[45] A. Maiti and P. Schaumont, ‘‘Improving the quality of a physical
unclonable function using configurable ring oscillators,’’ inProc. Int. Conf.
Field Program. Log. Appl., Aug. 2009, pp. 703–707.

[46] M. T. Rahman, D. Forte, J. Fahrny, and M. Tehranipoor, ‘‘ARO-PUF:
An aging-resistant ring oscillator PUF design,’’ in Proc. Design, Automat.
Test Eur. Conf. Exhib. (DATE), 2014, pp. 1–6.

[47] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas,
‘‘Extracting secret keys from integrated circuits,’’ IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 13, no. 10, pp. 1200–1205, Oct. 2005.

[48] N. Pundir, F. Amsaad, M. Choudhury, and M. Niamat, ‘‘Novel technique
to improve strength of weak arbiter PUF,’’ in Proc. IEEE 60th Int. Midwest
Symp. Circuits Syst. (MWSCAS), Aug. 2017, pp. 1532–1535.

[49] M.Matsumoto and T.Nishimura, ‘‘Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator,’’ ACM Trans.
Model. Comput. Simul., vol. 8, no. 1, p. 330, Jan. 1998.

[50] M. I. Velazco and C. Lyra, ‘‘Optimization with neural networks trained by
evolutionary algorithms,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
vol. 2, 2002, pp. 1516–1521.

[51] A. West and D. Saad, ‘‘Adaptive back-propagation in on-line learning of
multilayer networks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 8, 1996,
pp. 323–329.

[52] X.-S. Yang and M. Karamanoglu, ‘‘Swarm intelligence and bio-inspired
computation: An overview,’’ in Swarm Intelligence and Bio-Inspired
Computation. Amsterdam, The Netherlands: Elsevier, 2013, pp. 3–23.

[53] L. Brezočnik, I. Fister, and V. Podgorelec, ‘‘Swarm intelligence algorithms
for feature selection: A review,’’Appl. Sci., vol. 8, no. 9, p. 1521, Sep. 2018.

[54] Y. Shi, ‘‘Particle swarm optimization: Developments, applications and
resources,’’ in Proc. Congr. Evol. Comput., vol. 1, 2001, pp. 81–86.

[55] R. Kohavi, ‘‘A study of cross-validation and bootstrap for accuracy
estimation and model selection,’’ in Proc. IJCAI, 1995, vol. 14, no. 2,
pp. 1–7.

[56] M. Friedman, ‘‘The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,’’ J. Amer. Statist. Assoc., vol. 32,
no. 200, pp. 675–701, Dec. 1937.

[57] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 4th ed. London, U.K.: Chapman & Hall, 2006.

[58] J. Derrac, S. García, D. Molina, and F. Herrera, ‘‘A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,’’ Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3–18, Mar. 2011.

[59] S. Holm, ‘‘A simple sequentially rejective multiple test procedure,’’ Scand.
J. Statist., vol. 6, pp. 65–70, Jan. 1979.

[60] W. Daniel, Applied Nonparametric Statistics, 2nd ed. Boston, MA, USA:
Duxbury Thomson Learning, 2000.

AHMED OUN (Graduate StudentMember, IEEE)
received the M.S. degree in electrical engineering
from the University of Bridgeport, Bridgeport,
CT, USA, in December 2012. He is currently
pursuing the Ph.D. degree with the Department
of Electrical Engineering and Computer Science,
The University of Toledo, Toledo, OH, USA. From
January 2014 to May 2017, he served as a Project
Manager for General Electric International Inc.
His research interests include hardware oriented

security and trust, testing of digital VLSI circuits, field-programmable gate
arrays, swarm and machine learning algorithms, optimization techniques,
neural networks, and the IoT devices.

NOOR AHMAD HAZARI received the B.Sc.
degree in electrical and electronics engineering
from Khulna University of Engineering and Tech-
nology (KUET), Khulna, Bangladesh, and the
Ph.D. degree in electrical engineering from The
University of Toledo, Toledo, OH, USA. He is
currently working as a Postdoctoral Fellow at
The University of Toledo on the ‘‘Assured and
trusted digital microelectronics’’ project funded by
the U.S. Air Force. His research interests include

hardware security, FPGA design security, PUFs, machine learning, and
blockchain technology for hardware security.

MOHAMMED Y. NIAMAT (Life Member, IEEE)
received the bachelor’s degree in electrical engi-
neering from Aligarh Muslim University, Aligarh,
India, the master’s degree in electrical engi-
neering from the University of Saskatchewan,
Saskatchewan, Canada, and the Ph.D. degree from
The University of Toledo, OH, USA, in 1989.
From 1996 to 1997, he was a Visiting Associate
Professor with the Center for Reliable Computing,
Stanford University. He is currently the focus

Group Leader for the High-Performance Computing Research Group,
Department of Electrical Engineering and Computer Science, The University
of Toledo. He has supervised more than 50 graduate students, including Noor
Ahmad Hazari and Ahmed Oun.

121758 VOLUME 9, 2021

