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ABSTRACT Topic models are widely used unsupervised models capable of learning topics – weighted
lists of words and documents – from large collections of text documents. When topic models are used for
discovery of topics in text collections, a question that arises naturally is how well the model-induced topics
correspond to topics of interest to the analyst. In this paper we revisit and extend a so far neglected approach
to topic model evaluation based on measuring topic coverage – computationally matching model topics with
a set of reference topics that models are expected to uncover. The approach is well suited for analyzing
models’ performance in topic discovery and for large-scale analysis of both topic models and measures of
model quality. We propose newmeasures of coverage and evaluate, in a series of experiments, different types
of topic models on two distinct text domains for which interest for topic discovery exists. The experiments
include evaluation of model quality, analysis of coverage of distinct topic categories, and the analysis of the
relationship between coverage and other methods of topic model evaluation. The paper contributes a new
supervised measure of coverage, and the first unsupervised measure of coverage. The supervised measure
achieves topic matching accuracy close to human agreement. The unsupervised measure correlates highly
with the supervised one (Spearman’s ρ ≥ 0.95). Other contributions include insights into both topic models
and different methods of model evaluation, and the datasets and code for facilitating future research on topic
coverage.

INDEX TERMS Topic coverage, topic coherence, topic discovery, topic models, topic model evaluation,
topic model stability.

I. INTRODUCTION
Topic models [1] are unsupervised models that take as input
a collection of text documents and learn a set of topics,
constructs represented as weighted lists of words and docu-
ments. A topic of a topic model is expected to be interpretable
as a concept, i.e., correspond to human understanding of a
topic occurring in texts. Examples of interpretable model
topics can be found in Table 1. Topics can help an analyst
gain insight into textual content, or they can be used to
create topic-based representations of words and documents
for downstream applications. Since they were introduced,
topic models became a popular text analysis and processing
tool with numerous applications, including exploratory text
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analysis [2], information retrieval [3], natural language pro-
cessing [4], and topic discovery [5].

Although widely used, topic models are prone to ran-
dom variations and errors due to the stochastic nature of
the learning algorithms. In order to mitigate this problem,
a number of topic model evaluationmethods has been devised
[6]–[12]. These methods aim to provide tools and metrics
for the analysis of topic models and for the construction of
models with interpretable topics. For example, models can
be evaluated using measures of topic coherence [9], [11], or
using measures of model stability – a property of consistent
inference of similar topics [8], [13].

This paper upgrades an approach to topic model evaluation
based on the notion of topic coverage [10], i.e., on measuring
how well the topics of a topic model cover a set of pre-
compiled concepts. In [10] the authors describe a method for
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TABLE 1. Examples of interpretable topics of topic models built from a dataset of news texts (top) and biological texts (bottom). Each topic is
characterized by top-weighted topic words. Top-weighted topic documents are displayed for the last topic of each dataset. Topic labels are the result of
human interpretation. We note that all the biological topics correspond to concepts of phenotypes (organism characteristics).

measuring and visualizing several types of relations between
model topics and a set of concepts defined by domain experts.
The correspondence of topics to concepts is referred to as
‘‘domain relevance’’, and a concept is considered covered if
there exists a matching model topic [10]. The experiments
in [10] demonstrate the potential of the coverage approach
for performing automatic analysis of both topic models
and measures of model quality, and show that the relations
between concepts and topics depend on models’ types and
hyperparameters. Despite the demonstrated potential, there
is no follow-up work focused on coverage-based evaluation
methods.

Our work approaches topic coverage as a method of quan-
titative evaluation rooted in the use case of topic discovery.
We propose new, reliable, and practical measures of coverage,
and perform a series of experiments on two different datasets.
The experiments lead to practical recommendations for topic
modeling and provide insights into both topic models and
other methods of model evaluation. By providing new mea-
sures and the first publicly available1 coverage datasets and
tools, we facilitate future research on both topic coverage and
novel methods for topic model evaluation.

In summary, our work contributes the following:
• New measures of coverage, including the first unsuper-
vised coverage measure,

• Recommendations for the use of topic models, includ-
ing the experimental support for the use of the NMF
model [14],

• Insights into topic models, including the relationship
between coverage, the number of model topics, and the
size of reference topics,

• Insights into other methods of topic model evaluation,
including the inability of the standardmeasures of coher-
ence and stability to detect high-coverage models,

• Coverage datasets and the source code of the measures
and the experiments.

1https://github.com/dkorenci/topic_coverage

The analysis of topic coverage is based on a set of reference
topics and on measures of coverage that compute how well
the model topics match the reference topics. Reference topics
represent the topics of interest that topic models are expected
to discover. Once a set of reference topics is compiled, cov-
erage of reference topics by a single topic model instance is
the proportion of reference topics covered by model topics.
A single reference topic is covered if there exist one or more
matching model topics. We use the term ‘‘reference topic’’
instead of the term ‘‘reference concept’’ used in [10] in order
to emphasize that a reference topic is a construct represented
in the same way as a model topic – as a weighted list of words
and documents.

The workflow of coverage-based model evaluation con-
sists of three steps. In the first step a set of reference topics is
constructed. In the second step a set of topic models is built,
expectedly by varying model types and hyperparameters.
In the third step the measures of coverage are applied to
topic model instances and the coverage scores are analyzed.
In the case of using coverage to analyze other measures of
model quality, these measures are applied to topic models
and their scores are correlated with the output of the coverage
measures.

The coverage approach described in this paper evaluates
the models’ performance in the process of topic discovery,
a prominent application of topic models. During the process
of topic discovery an analyst examines and interprets the
topics of topic models in order to find useful topics that can
offer insight and be used for subsequent text analysis. Topic
discovery with topic models has been applied, inter alia,
in news analysis [5], [15], [16], political science [17], [18],
neuroscience [19], and biology [20]. Table 1 contains exam-
ples of topics of interest in an analysis of news issues, and
topics useful for an analyst interested in biological concepts.

From the perspective of topic discovery, coverage achieved
by a topic model simply quantifies how useful the model
would be to an analyst interested in discovering the reference
topics. In case of an exploratory analysis carried out to obtain

VOLUME 9, 2021 123281



D. Korenčić et al.: Topic Coverage Approach to Evaluation of Topic Models

a broad topical overview, an example set of reference topics
would contain high-level topics covering important aspects
of texts. In a more focused analysis, the reference topics
would correspond to more specific topics of interest. We
note that our approach to coverage is focused primarily on
discovering reference topics, and that a reference topic might
match more than one model topic. This situation can occur
in practice but it does not imply a degradation of models’
performance. In other words, two topic models that cover the
same number of reference topics relay the same amount of
useful information to the analyst.

In this paper, the design and evaluation of coverage mea-
sures and the coverage experiments are carried out on two
datasets. These datasets represent two different domains for
which interest for topic discovery exists: journalistic news
text and biological text. Each of the two datasets consists of
a text corpus, a set of reference topics, and a set of topic
models. Each set of reference topics is based on the output
of an existing topic discovery study. The two datasets are
described in detail in Section II.

The measures of coverage are a basis of a coverage experi-
ment – their reliability determines the reliability of the results,
and ease of their construction influences the feasibility of the
experiments. Therefore the main contribution of our work
consists of the new measures of topic coverage. Measure of
coverage proposed in [10] matches model topics with refer-
ence topics via a probabilistic model fitted on data derived
from human scores of topic matching. However, the model
and the process of its construction are complex, the topic
matching scores are crowdsourced from non-experts asked
to assess similarity of scientific topics, and the measure is
not validated. While the described measure may be used to
demonstrate the coverage approach and the related visual-
ization apparatus, it is hard to reproduce and not suitable for
calculation of reliable coverage scores.

We propose a conceptually simple measure of coverage,
described in Section III-A, that matches model and reference
topics using a standard binary classifier based on a small
set of distance-based features. The classifier is trained on a
dataset of topic pairs labeled by trained annotators acquainted
with the topic semantic, and it achieves matching perfor-
mance close to human agreement.

Supervised measures of coverage rely on human annota-
tion of topic pairs, a time-consuming process that hinders
quick application of these measures on new datasets. There-
fore an important contribution of this paper is the measure
described in Section III-B, which is the first unsupervised
measure of coverage. It uses topic distance as a criterion
for topic matching and operates by integrating a range of
coverage scores calculated for a range of distances. We show
that this measure has a very high rank correlation with our
supervised measure. The unsupervised measure can be effort-
lessly deployed on new datasets and used for model selection
and evaluation by way of ranking a set of topic models.
Furthermore, the measure is based on a curve that is a useful
tool for visual analysis and comparison of topic models.

The two proposed measures have applications beyond cov-
erage, which we demonstrate in Section VII-B3 by adapting
them to measure model stability. The stability measure based
on supervised matching provides an experimental support for
the interpretation of stability as the property of consistent
uncovering of the same concepts. The stability measure based
on the adaptation of the unsupervised coverage measure cor-
relates almost perfectly with a standard stability measure
while being much faster to compute.

The evaluations of topic models that we perform lead to
recommendations for the choice of topic models used in
topic discovery. The experiments in Section IV, where we
evaluate coverage of topic models of different types, show
that the NMF model [14], [21] is a good default choice for
topic discovery due to high coverage, its ability to precisely
pinpoint the reference topics, and consistent performance
on both datasets. The experiments in Section V, where we
measure the coverage of reference topics divided into size
categories, support the use of larger models with more topics.
These findings have practical implications since the LDA
model [1] with a modest number of topics is often a default
choice for topic discovery.

Our research of the neglected coverage approach also
contributes to the broader field of topic model evaluation.
Namely, the amount of work in this field is modest in com-
parison with the amount of research focused on new model
architectures. On the other hand, there are still no satis-
factory methods for automatic semantic validation of topic
models [12], [22]. This hinders the applicability of topic
models in computational social sciences [12] and for expert
analysis of text collections [22]. Popular measures of topic
coherence [9] are designed to correlate with human coherence
scores [11], but it is unclear how well they correlate with
models’ performance in practice [12], [22]. Only recently
has an experimental validation of coherence measures been
performed [22], and it revealed that these measures are not a
reliable guide for model selection [22]. Another approach to
automatic model evaluation is based on measures of stability,
a property of consistent inference of highly similar models.
Stability is claimed to be a desirable property of models
applied in computational social sciences [23], [24] or for topic
discovery [13]. However, to the best of our knowledge no
validation of stability measures has been performed.

In contrast to the topic coherence and model stability
measures, which express abstract model qualities, coverage is
grounded in the use case of topic discovery and the coverage
scores are interpretable in terms of a match with ground truth
reference topics – a set of interpretable topics of interest
to an analyst. On the other hand, coverage-based evaluation
relies on a fixed topic modeling scenario, defined by a text
collection (model input) and a set of reference topics (model
output). Therefore coverage cannot be applied for model
selection in future applications, but rather for large scale
automatic analysis of both topic models and measures of
model quality. While the measures, experiments, and datasets
we contribute are a starting point, the findings based on
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analysis of coverage will becomemore robust as new datasets
representing new application settings are constructed and
made available.

Experiments in this paper provide new data points that
improve the understanding of both topicmodels andmeasures
of models quality. In Section V we measure the coverage
of reference topics divided into size categories. The results
show that small models with fewer topics can cover only
large (frequently occurring) reference topics, while the larger
models are able to uncover topics of all sizes. The experiment
described in Section VI is motivated by the use case of news
topic discovery in social sciences. We measure coverage of
news topics categorized as either corresponding to a news
issue or not, and as being either abstract or concrete. The
experiment demonstrates that semantic categories of topics
influence their coverage by topic models.

In Section VII we apply the measures of coverage to
analyze the measures of topic coherence [9] and model sta-
bility [8]. Comparison of coverage and topic coherence, per-
formed in Section VII-A, shows that no strong and consistent
correlation between the two exists. These results are consis-
tent both with a prior comparison of coverage and coher-
ence [10], and with a recent study that validates coherence
measures [22]. The experiments in Section VII-B, examining
the relation between coverage and model stability, are to
the best of our knowledge the first attempt to semantically
analyze measures of stability. The experiments show no cor-
relation between the two, demonstrating that model stability
does not necessarily imply model quality.

II. DATASETS
We perform the coverage experiments on two distinct text
domains – news text and biological text. For each text domain
we construct a dataset, which consists of three components:
a text corpus, a set of reference topics, and a set of topic
models. Such a dataset is the basis for coverage experiments
and the construction of coverage measures. We refer to these
two datasets as the news dataset and the biological dataset.
The two datasets represent two different text genres: jour-

nalistic texts describing political news and expert biological
texts describing microorganisms. The datasets are based on
text corpora and reference topics from two previous experi-
ments in which topic models were used for topic discovery
on news [25] and biological [20] text. The reference topics
therefore represent useful output of topic discovery, while
being representative of concepts discoverable by standard
topic models. The set of topic models built for each dataset
contains models of standard types, configured with varying
number of topics. We next describe the three components of
the two datasets.

A. TEXT CORPORA
A text corpus is a basis of a dataset since both the reference
topics and the topic models are derived from the corpus texts.
The dictionary and the document index associated with a

corpus are a basis for representing the reference and model
topics as topic-word and topic-document vectors.

1) NEWS CORPUS
The news dataset is based on the corpus of mainstream US
political news collected by [25] for evaluating topic model
approaches to news agenda analysis. The texts were collected
from popular news sites during a three-month period, after
which filtering of non-news texts and deduplication was per-
formed, resulting in a total of 24.532 texts. Topic modeling
was preceded by text preprocessing that consisted of stop-
word removal, morphological normalisation, and removal of
low- and high-frequency words. The final dictionary contains
23.155 words.

2) BIOLOGICAL CORPUS
The basis of the biological dataset is the corpus of texts
about bacteria and archea microorganisms used for the dis-
covery of phenotype topics [20]. This corpus contains texts
about 1.640 distinct species obtained from five sources:
the Wikipedia, the MicrobeWiki containing texts about
microorganisms, the HAMAP proteomes database containing
protein-related microorganism data, the PubMed database of
paper abstracts, and the PubMed Central database of full-
text papers. The final corpus contains 5994 documents. The
documents were preprocessed by removing English stop-
words, parts of the texts containing references, and the words
with frequency less than four, after which the words were
stemmed. The final dictionary used in coverage experiments
contains 6259 words that occur in at least 4 of the original
text sources.

B. REFERENCE TOPICS
The set of reference topics defines the measured coverage –
by definition, topic models with high coverage are the models
capable of detecting a large proportion of reference top-
ics. We conduct our experiments with two sets of reference
topics – the news and the biological reference topics. Each set
of reference topics is based on an output of a topic discovery
study, i.e., obtained by human inspection and interpretation
of topic models’ topics. In other words, these reference topics
are an interpretable and error-free output of topic models, and
represent useful concepts discoverable by model topics.

News reference topics are a result of an analysis of the
media agenda [25] performed with topic models built form
news articles. In other words, the news topics represent a
broad range of topics that occur in the news. These topics
correspond to persons, organizations, events and stories, and
abstract concepts such as news issues and topics related to
economy and politics. Biological reference topics are a result
of topic discovery performed on biological texts describing
microorganisms [20], and correspond to concepts of phe-
notypes, organism characteristics, such as termophilia and
various types of pathogenicity.

Using a set of reference topics that the topic models are
able to discover is a decision made to ensure that models’
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coverage will not be skewed due to the nature of reference
topics. Namely, we wish to avoid the scenario where the
models display low performance and are mutually indistin-
guishable because the reference topics represent a subset of
topics hard to cover. Therefore we alleviate the coverage
problem and leave the harder cases of reference topics for
future research. We hypothesize that examples of such hard
cases are very specific concepts and high-level abstract con-
cepts devised by humans. Despite being within the models’
reach, the reference topics used in the experiments are not
trivial to uncover. The subsequent coverage analysis shows
that the models cover at best 64% of the reference topics in
the case of news topics, while for the biological topics the
best case coverage is 44%.

From the machine perspective, a reference topic is repre-
sented in the same way as any model topic – with a vector
of topic-word weights and vector of topic-document weights.
The components of these vectors correspond, respectively,
to the words in the corpus dictionary and to the indices of
the corpus documents. This way all the topic-related com-
putations necessary for the calculation of coverage, such as
calculation of distance between topics, make no distinction
between the reference topics and the model topics.

Each set of reference topics is constructed in three main
steps. The first step consists of building the topic models.
In the second step the models’ topics are inspected, inter-
preted, and filtered. Only uninterpretable news topics are fil-
tered out and no concept-type restrictions are imposed, while
all the biological topics that do not correspond to phenotypes
are filtered out. Finally, the topic-word and topic-document
vectors of the reference topics are constructed from the corre-
sponding model topics. Each of the two methods of reference
topics construction reflects the specifics of the corresponding
topic discovery approach [20], [25]. The details of the meth-
ods are described in Appendix A.

C. TOPIC MODELS
There exists a large number of topic model types repre-
senting a range of assumptions and approaches to modeling
text structure. We apply the proposed coverage methods to
evaluate models from two standard categories – probabilistic
topic models [26] and topic models based on non-negative
matrix factorization [14], [21]. There exist numerous model
variants belonging to these two categories, as well as alter-
native architectural approaches such as geometric [27] and
neural [28] topic models. However, the structure of a topic
model is not an apriori guarantee for model performance [29],
and each model should be validated within the context of
its application [29]. Therefore we focus on the evaluation of
topic models commonly used in topic discovery and leave the
evaluation of many other models for future work.

In the coverage experiments that follow we evaluate mod-
els from the categories of parametric and nonparametric
probabilistic models, and a model based on non-negative
matrix factorization. The evaluated models all make mini-
mal assumptions about the structure of text, similar to the

assumptions of the seminal LDAmodel [1]. This makes these
models applicable to a generic use case of topic discovery
performed on a collection of text documents. Specifically,
each of the models assumes that the text of a document can be
approximated with a weighted mixture of topics, where each
topic is a weighted list of words. Other text-related variables
such as sentiment and various metadata [26] are not included
in the models’ structure.

Regardless of type, each model is represented simply as
a set of topics, and each topic is represented with vectors
of topic-word and topic-document weights. As noted earlier,
the reference topics are represented in the same way. This
black-box view of topic models makes the proposed cov-
erage methods applicable to a wide variety of topic model
types.

First of the model types we experiment with is the seminal
Latent Dirichlet Allocation model LDA [1]. The LDA model
is representative for a wide variety of model types, many of
which are its direct extension. LDA assumes a fixed number
of topics, and the topic-word and topic-document relations
are modeled with matrices of word-in-topic and topic-in-
document probabilities. Probabilistic inference algorithms,
such as variational inference [1] and Gibbs sampling [30],
are capable of learning the topic data from a set of unlabeled
text documents. The LDA model has been widely applied
in many topic modeling tasks, including topic discovery [5],
[16], [30]–[33].

The secondmodel type is a modification of the LDAmodel
to which we will refer to as ‘‘asymmetric LDA’’ (aLDA). The
LDA model assumes that the prior for the document-topic
distribution is symmetric, which means that all the topics
have an equal prior probability of appearing in a document.
In contrast, the aLDA model allows for an asymmetric prior
learnable from data, implying topics with varying prior prob-
abilities. This allows for more flexibility in modeling of the
document-topic relation and in effect allows for the topics to
be recognized, on the level of the text collection, as being
larger or smaller. This approach potentially leads to higher
topic quality [34] and better detection of smaller topics [35].
The aLDA variant we experiment with is implemented in the
HCA software package [36], by way of using normalized
Gamma priors to model the document-topic distribution.

The third model type is a nonparametric topic model based
on Pitman-Yor priors [36], denoted PYP. Unlike the other
models, the PYP model is able to learn the number of topics
from data. The PYP model, denoted NP-LDA in [36], is an
extension of the nonparametric HDP topic model based on
Hierarchical Dirichlet Process [37]. The HDP model gen-
eralizes the LDA model by using a probability distribution
over a countably infinite collection of topics [37]. The PYP
model generalizes the HDP model by using the more flexible
Pitman-Yor process [38] to model a distribution over the
infinite set of topics. The nonparametric models have been
applied for topic discovery [39] and it is our intuition that the
added flexibility of learning the number of topics might lead
to better coverage, especially coverage of the smaller topics.
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The fourth topic model type, denoted NMF, utilizes
non-negative matrix factorization [14], [21]. The NMFmodel
is based on approximation of the text collection, represented
as matrix of document-word weights, in terms of a product of
non-negative matrices containing document-topic and topic-
word weights. In other words, the topics are the latent factors
optimized to approximate the original text matrix under the
assumption of non-negativity. The NMF model has been suc-
cessfully used for topic discovery in several scenarios [19],
[20], [40], [41], and has the potential to produce topics with
quality equal to or better than the quality of LDA topics [42].

Finally, we describe the set of topic model instances used
in the coverage experiments. For each of the model types,
with the exception of the nonparametric PYP model, the
parameter T defining the number of model topics is varied,
as this important parameter defines a model’s capacity and
affects the structure of its topics. Namely, T influences topic
granularity [5], [7], [43], [44], in such a way that a small T
leads to broad and general topics, while a large T results in
fine-grained and specific topics. The news and the biological
datasets contain, respectively, 133 and 112 reference topics.
We build the topic models by varying T between values of 50,
100, and 200. These choices of T correspond, respectively,
to a number of topics that is smaller then, approximately
equal, and larger than the number of reference topics. For the
nonparametric PYPmodel the maximum number of learnable
topics is set to 300.

For each combination of the model type and the number
of topics, 10 model instances are built with different random
seeds in order to account for stochastic variation, i.e., to
obtain a more robust assessment of coverage. Therefore,
for each dataset a total of 100 model instances are built:
10 instances for each pair of the model type (LDA, aLDA,
or NMF) and the number of topics (50, 100, or 200), plus
additional 10 instances of the nonparametric PYP model.

For each of the two datasets the topic model instances are
inferred from the texts of the corresponding corpus, prepro-
cessed by performing stopword removal and word normal-
ization. The text corpora and the preprocessing methods are
described in Section II-A. Appendix B contains the details of
topic model construction that include the choice of hyperpa-
rameters, learning algorithms, and software tools.

III. MEASURES OF TOPIC COVERAGE
Measures of topic coverage compute scores that quantify how
well the topics of a topic model cover a set of reference
topics. In this section we propose two distinct measures of
topic coverage – the SupCov measure, based on supervised
approximation of human intuition of topic matching, and an
unsupervised AuCDC measure, designed to approximate the
supervised measure and serve as a quickly deployable model
selection tool. The AuCDC measure calculates coverage by
using a distance threshold as a topic matching criterion and
aggregates the coverages obtained by varying the threshold.

The measures we propose are the first coverage measures
that are validated and straightforward to construct, while the

AuCDC measure is the first unsupervised measure of cover-
age. These measures are the main contribution of this paper
since they improve both the reliability and the feasibility of
the coverage experiments.

A. COVERAGE BASED ON SUPERVISED TOPIC MATCHING
The supervised topic coverage measure mimics the procedure
in which a human annotator assesses weather there exists a
model topic that matches a reference topic. Model coverage
can be calculated from this matching information as a propor-
tion of reference topics matched by at least one model topic.

Although this procedure would result in coverage scores
based on human knowledge, it is time-consuming and
impractical, especially for large sets of topic model instances.
We solve this problem by constructing a supervised model
that approximates human intuition of topic matching. Once
such a model is available, it can be used for automatic calcu-
lation of coverage of arbitrarily many topic models.

We base our solution on a dataset of topic pairs labeledwith
matching scores of human annotators. Maching of two topics
is defined as the equality of concepts obtained by the topics’
interpretation. The topic matching problem is cast as a prob-
lem of binary classification of topic pairs into matching and
not-matching classes. Several standard classification models
are constructed and evaluated, and the best performing model
is used in the subsequent experiments for coverage score cal-
culation. The process of data annotation and model building
is performed for both the news and the biological dataset.

In order to calculate the supervised coverage of a set of
R reference topics by a topic model with T topics, every
reference topic has to be matched, in the worst case, with
every model topic. The matching operation consists of fea-
ture construction and of the computation of the classifier’s
output. Our features consist of distances between topic-word
and topic-document vectors, which can be calculated in time
proportional to either the vocabulary size V or to the num-
ber of documents D. The application of the classification
model to the features requires constant time. Therefore the
asymptotic complexity of calculating supervised coverage is
O(RT (V + D)).

1) TOPIC PAIRS DATASET
In order to learn a matching model that generalizes well to
different types of topics, the dataset of topic pairs is sampled
from both the reference topics and the topics of topic models
of different types and sizes.

However, in a randomly sampled set of topic pairs a
large majority of pairs consists of non-matching topics. This
means that supervised topic matching is an imbalanced learn-
ing problem [45], [46], a scenario in which inference of
high-performing models is hindered since only a small frac-
tion of learning examples that define the structure of the
positive class is available. In our case, the positive examples
are pairs of matching topics.

Solutions to this problem include active learning and
resampling methods [45], but we opt for a simpler solution
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applicable to topic pairs. This solution relies on the intuition
that mutual distance of two topics is in an inverse correlation
with the probability of topics’ semantic match. Concretely,
we sample topic pairs according to mutual distance of topics
in order to achieve a higher proportion of pairs with mutu-
ally close topics that have higher probability of matching.
An inspection of a validation sample of topic pairs confirms
that the described procedure leads to a balanced dataset. The
elaboration of the problem and the details of the solution can
be found in Appendix C.

The final dataset of representative topic pairs used for
model construction is created in the following way. First,
a large set of topics is created by building one model instance
for each combination of model type and number of top-
ics and taking all the topics of the chosen instances. Next,
three copies of each of the reference topics are added to the
topic set in order to make the number of reference topics
approximately equal to the number of topics of each of the
model types. After that a set of all the distinct pairs of two
different topics is created and these pairs are divided into
ten subsets corresponding to equidistant intervals of topics’
cosine distance. Finally, 50 pairs are sampled randomly from
each of the subsets, leading to a total of 500 topic pairs.
Of these 500 pairs, 300 pairs labeled by the annotators are
used for model learning, while the remaining pairs are used
for training and calibration of the human annotators.

2) ANNOTATION OF TOPIC PAIRS
Next we describe the procedure used to annotate topics pairs
with human scores of topic matching. The key aspect, which
defines the nature of thematching approximated by the super-
vised model, is the definition of a topic match. We define
a topic match as conceptual quality of topics – two topics
are considered equal if they are interpretable as the same
concepts, where the interpretation of a topic as a concept
is as specific as possible. This definition is in line with the
approach of measuring precise coverage of the reference
topics – we wish to assign high scores to models with topics
that match the reference topics precisely. The alternative to
this approach would be to focus on matching similar topics,
such as sub-topics, super-topics, and overlapping topics.

More precisely, two topics – constructs described by
weighted lists of words and documents – can differ both
semantically, on the level of interpreted concepts, and due
to the noise caused by stochastic topic model learning algo-
rithms. This random variations manifest as a certain propor-
tion of random or unrelated words and documents within
the topic. On the semantic level, we define topic equality
as matching of concepts obtained by interpreting topics as
specifically as possible. Matching of concepts is defined as
equality or near equality of concepts, allowing small vari-
ations and similar aspects of a same concept. Stochastic
differences are accounted for by labeling topics as equal but
with presence of noise. This is the case when one or both
topics contain a noticeable amount of noise but the topics

are still interpretable and the equality of interpreted concepts
exists as previously defined.

Based on the previous definition, a pair of topics is labeled
with 1 in case of topic equality, i.e., when concepts match
without noise. A pair is labeled with 0.5 in case of a match
with the presence of noise or small semantic variation, and
with 0 when the concepts do not match. Preliminary exper-
iments showed that such labeling is simpler and more con-
sensual for annotators than labeling on the binary scale that
accounts only for the possibilities of match and mismatch.

In order to ensure the quality and consistency of annota-
tions, the annotation was conducted according to the method-
ology of content analysis [47] – precise instructions were pro-
vided, the annotators had the knowledge required to interpret
the texts and the topics, and were trained until the measure of
mutual agreement reached a satisfactory level.

The annotation process resulted in a set of 300 topic pairs,
each annotated by three annotators. The annotated pairs serve
as training data in the process of building the supervised
model of topic matching. The details of the annotations pro-
cess are described in Appendix D.

3) SUPERVISED TOPIC MATCHER
At the heart of the proposed supervised measure of topic
coverage is a binary classification model that approximates,
for a pair of topics, human assessment of weather the topics
match or not. This model is used to compute weather refer-
ence topics are covered by topics learned by a topic model.
In this section we describe the method of construction of such
a classification model.

The classification problem is defined in the following
way. Each topic pair was annotated by three annotators
with one of the three possible labels. The matching labels
are 1 – concepts obtained by topic interpretation match,
0.5 – topics match but either certain amount of noise or a
small semantic variation exist, and 0 – no match. Binary
labels are obtained by averaging the labels and applying the
decision threshold of 0.75 – if the label average is above 0.75
the topic pair is assigned the positive class that designates a
match, and negative class otherwise. In other words, topics
are labeled as matching if at least two of the annotators
labeled the pair as matching while the third annotator labeling
the pair as at least partially matching. The averaging of the
annotators’ scores is performed in order to obtain more robust
labels and the definition of the positive and negative class
corresponds to matching of topics on a precise level.

We consider four standard classification models: logis-
tic regression [48], support vector machine [49] with radial
basis function kernel, random forest [50], and multilayer
perceptron [48].

Topic pairs are represented as features based on four mea-
sures of distance: cosine distance, Hellinger distance [51],
L1 distance, and L2 distance. These four distance measures
are applied to both the pair of normalized topic-word vectors
and to the pair of normalized topic-document vectors. Thus
the input for classification of a topic pair consists of eight
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distance-based features, four based on topic-related words
and four based on topic-related documents.

For each classification model, hyperparameter optimiza-
tion is performed using nested five-fold crossvalidation in
combination with the F1 measure as the performance met-
ric. Nested five-fold crossvalidation is used to obtain robust
assessment of the quality of the model variant with optimized
hyperparameters [52]. The optimization is performed on the
entire dataset of 300 labeled topic pairs. The details of fea-
ture construction and model construction are described in
Appendix E.

The performances of the optimized classification models,
for both datasets, are laid out in Table 2. For each model
and dataset, the table contains both the average and the
standard deviation of F1 calculated on five outer folds of
nested five-fold crossvalidation. Model performance data is
complemented with the scores of mutual agreement of human
annotators, also measured by F1. The human agreement is
calculated as averageF1 score of a single annotator predicting
the class labels obtained by averaging the annotations of the
two remaining annotators. Specifically, annotators’ binary
class labels are calculated by averaging the annotators’ scores
and applying the 0.75 threshold to decide if the topics in a pair
match.

TABLE 2. Performance of human annotators and supervised models on
the task of matching topic pairs. Both the average scores and the
standard deviations are displayed.

Table 2 shows that the logistic regression model has
the highest F1 values on both datasets. The support vector
machine model is a close second, while the other two models,
multilayer perceptron and random forest, are not far behind.
In addition to logistic regression having top F1 scores, it is
structurally the simplest model with the smallest number of
hyperparameters, which we view as an additional advantage.
We therefore choose the logistic regression model as the basis
of the supervised coverage measure, i.e., as the model for
matching reference topics with model topics in order to cal-
culate coverage of the reference set. The final models used to
measure coverage in the following experiments are obtained,
for each dataset, by first optimizing the hyperparameters with
five-fold crossvalidation and then learning the final model
with optimized hyperparameters. Both hyperparameter opti-
mization and model learning are performed on the entire set
of 300 labeled topic pairs.

The classification results show that the performance of the
supervised models is close to the mutual agreement of human
annotators. This shows that the described process leads to

supervised models that can approximate human assessment
of topic matching well. Specifically, the human scores of
topic matching, based on the equality of the interpreted con-
cepts, can be approximated well from a small set of features
based on distances between topic-word and topic-document
vectors.

This finding is applicable wherever there is a need for auto-
matic matching of topic-like constructs defined by weighted
words and documents. In the context of application of super-
vised topic matcher for coverage calculation, the previous
results support the claim that the computed coverage will be
reliable and close to human assessment.

B. COVERAGE-DISTANCE CURVE
The construction of the supervised measure of coverage
requires a time-consuming process of construction of a
labeled dataset of topic pairs. This process includes both
recruiting and training of annotators with sufficient knowl-
edge of the text domain, and the process of topic annotation.
Conversely, an unsupervised measure of coverage could be
quickly applied to a new evaluation scenario. We propose
such a measure and show that it correlates very well with the
supervised measure SupCov, which makes it applicable for
ranking and selection of topic models by coverage.

The unsupervised measure, similarly to supervised cov-
erage, computes coverage of a set of reference topics by
matching them to the model topics. However, the decision
weather two topics match is based simply on a measure of
topic distance and a distance threshold – two topics match if
their distance is below a threshold. For a specific threshold,
the coverage of reference set is the proportion of reference
topics for which a matching model topic exists. In order
to render the measure threshold invariant, the final cover-
age score is calculated by varying the distance threshold
and integrating all the coverages corresponding to different
threshold values. More precisely, by varying the distance
threshold and calculating corresponding coverage values a
curve is formed, composed from points with x-coordinates
corresponding to thresholds and y-coordinates correspond-
ing to coverages. In other words, this curve is a graph of
a function that maps distance thresholds to corresponding
coverages. We call this curve the Coverage-distance curve
and refer to it as CD-curve. The final coverage measure,
whichwe label as AuCDC, is then calculated as the area under
the CD-curve.

The CD-curve illustrates the dependence of coverage on
the topic distance used as a criterion of topic match. It can
therefore be used as a tool for graphical analysis of the
coverage of a single topic model and for coverage-based
comparison of a number of models. Figure 1 contains
CD-curves depicting coverages of news reference topics by
LDA and NMF models with 50 topics. It can be seen that
for the cosine distance threshold of 0.4, coverages for LDA
and NMF are approximately 20% and 35%, respectively. This
means that if two topics are considered equal when their
cosine distance is 0.4 or smaller, 20% of reference topics
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FIGURE 1. Coverage-distance curves depicting coverage of reference topics by the LDA and NMF models
with 50 topics, for the collection of news texts.

are matched by at least one LDA model topic, with this
percentage being 35% in case of the NMF model. Inversely,
the curve can be used to determine the distance threshold, i.e.,
the required precision of topic matching, necessary to achieve
certain level of coverage. The corresponding values of the
AuCDC coverage score are 0.410 for the LDA model and
0.434 for the NMFmodel. However, the curves illustrate finer
differences in the nature of coverage. Concretely, the NMF
model has better coverage for smaller distance thresholds
while the LDA model has better coverage for larger thresh-
olds. This means that the NMF topics match the reference
topics more precisely and give better coverage under the
assumption of stricter criteria of topic match. On the other
hand, the LDA model has better coverage when topic match
is more approximate and a reference topic is allowed to be
matched by a model topic at a lower degree of similarity. This
example also illustrates the intuition behind theAuCDC score
– a model with a higher score is expected to have a more
elevated CD-curve than a model with a lower score, which
means that it covers more reference topics at lower distance
thresholds.

CD-curve and AuCDC measure have both similarities and
differences with the popular receiver operating characteris-
tics (ROC) curve and the associated Area Under the ROC
Curve (AUC) metric [53] applicable for evaluation of pre-
dictive machine learning models. The difference is that the
AUC measures the performance of a set of related predictive
models, usually instances obtained by varying an important
model parameter. The points on the ROC Curve describe

model instances – each point has coordinates corresponding
to model sensitivity and model specificity. On the other hand,
AuCDC is a measure of coverage of reference topics calcu-
lated for a single instance of an unsupervised topicmodel, and
each point on the CD-curve has coordinates corresponding
to a distance threshold and the derived coverage. However,
both methods build a curve that provides information about
model behavior in different scenarios – the ROC curve illus-
trates the sensitivity/specificity trade-off while the CD-curve
illustrates the dependency between matching distance and
coverage. And each of the two measures is calculated as the
area under the corresponding curve, i.e., by integrating model
performance over a range of options.

AuCDC and the CD-curve are based on a measure of
distance between two topics that serves as a criterion of
topic match. This base distance measure should satisfy three
criteria. First, a base measure of distance should be bounded,
i.e., restricted to finite range of values. This property is
necessary because the CD-curve is constructed by varying
the distance threshold from minimum to maximum distance.
A bounded distance measure also enables a comparison
between two different models, since their corresponding
curves will be constructed over the same threshold range.
Second, the measured distance between topics should corre-
late well with human intuition of topic similarity. Concretely,
smaller distances between two topics should correspond to
higher probability of topic match, and vice versa. While this
requirement is a reasonable guideline, the final test of the
measure’s semantic is the comparison between the AuCDC
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TABLE 3. Spearman and Pearson correlations between the AuCDC measure and both the SupCov measure and its variant without cosine features. For
each correlation coefficient, a 95% bootstrap confidence interval is shown.

measure and the supervised coverage based on human anno-
tations. Finally, in order for the AuCDC measure and the
CD-curve to enable comparison between models of different
types, the semantic of the base measure should be insensi-
tive to the model type. This requirement is best exemplified
by considering the NMF model that produces topics with
unbounded positive values and the probabilistic models with
topics that are probability distributions. Topic-word vectors
of NMF topics can thus containmuch larger values, which can
affect coordinate distance measures such as the L1 distance.
The L1 distance between an NMF topic and an LDA topic is
therefore expected to be larger than a distance between two
LDA topics, regardless of the semantic similarity of topics.
Intuitively, a sensible base distance measure should be based
on relative proportions of topic-word weights, which is more
similar to human approach to topic matching.

We opt to use, based on the previous considerations, cosine
distance between topic-word vectors as the base measure of
distance between two topics. Namely, topic-word vector is
a standard representation of model topics commonly used
for calculating topic distance or similarity [10], [24], [54],
[55]. Likewise, cosine distance is a standard measure widely
used in text mining for comparing high-dimensional vec-
tors [56] and experiments with topic models show that it
correlates well with human intuition of topic similarity [10].
For two vectors v and w, the cosine distance is defined as:
cosd(v,w) = 1 − v·w

‖v‖‖w‖ . The cosine distance is an inverse
of cosine similarity of v and w, defined as v·w

‖v‖‖w‖ , and corre-
sponding to the cosine of the angle formed by vectors v and
w. By definition, the cosine distance is bounded and takes on
values between 0 and 2. In case of the large majority of topic
models that have non-negative topic vectors, such as prob-
abilistic topic models and non-negative matrix factorization
models, the cosine distance takes on values between 0 and
1. Cosine distance thus satisfies all of the previous criteria.
It is bounded by definition and expected to correlate well with
human intuition of semantic distance. Since it is based on an
angle between topic vectors it is also invariant to the sizes of
these vectors, i.e., the absolute values of topic-word weights
that can vary depending on model type.

The proposed AuCDC measure is envisioned as a good
approximation of the supervised coverage measure SupCov
that can be quickly deployed for selection of high-coverage
models. We thus evaluate the AuCDC measure, based
on cosine distance of topic-word vectors, by calculat-
ing its Spearman rank correlation coefficient with the

SupCov measure on the level of topic model. This correlation
shows how well the AuCDC-induced ordering of topic mod-
els approximates the ordering induced by SupCov coverage.
Standard Pearson coefficients of linear correlation are also
calculated in order to get a more complete picture of the mea-
sure’s properties. For each dataset, the correlations are cal-
culated on the set of 100 topic models of different types and
sizes described in section II-C. The 95% bootstrap confidence
intervals of the correlation coefficients are calculated using
the percentile method and 20.000 bootstrap samples. We note
that both the AuCDC and the SupCov measure use cosine
distance – supervised topic matcher uses features based on
cosine distance, specifically cosine distances of topic-word
and topic-document vectors. To check if this influences the
strength of correlation, we built a supervised matching model
that does not use features based on cosine distance and cal-
culated correlations between the AuCDC and the supervised
coverage based on this model, which we denote SupCov-
nocos. Except for the difference in features, the supervised
matching models are the same – based on logistic regression
with hyperparameters optimized by five-fold crossvalidation,
as described in Section III-A.

Table 3 shows correlations between supervised coverage
and the AuCDC coverage. All the correlations are very high,
with values above 0.9 on both datasets. The correlation scores
are comparable regardless whether the supervised coverage
uses features based on cosine distance. This shows that the
correlations are not artificially high because the cosine dis-
tance is used by both the SupCov and AuCDC measures.
Interestingly, Pearson correlations are also high, showing that
there exists a strong linear dependency between the AuCDC
and the supervised coverage. We take the above correlations
as evidence that the AuCDC measure based on cosine dis-
tance is indeed a very good unsupervised approximation of
supervised topic coverage. Specifically, high rank correla-
tions show that the AuCDCmeasure can be used to rank topic
models by coverage and select the best models. We therefore
proceed to use the AuCDCmeasure, alongside the supervised
measure, for evaluation of topic model coverage.

Finally, we give the precise description of the method used
to construct the CD-curve and to calculate the values of
AuCDC measure. Given a set of reference topics and a topic
model, first a CD-curve is constructed based on cosine dis-
tances of topic-word vectors. For a specific distance thresh-
old, a reference topic is considered covered if there exists a
model topic such that its cosine distance from the reference
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TABLE 4. Coverage of reference topics by topic models of various types and sizes, measured by the SupCov and AuCDC measures. For each measure and
dataset, the best score and the best scores for each number of topics are indicated. For each coverage score, a 95% bootstrap confidence interval is
shown.

topic is below the threshold. The corresponding coverage of
the reference set is simply calculated as a proportion of cov-
ered reference topics. The AuCDC curve is approximated by
segmenting the range of possible cosine distances, the [0, 1]
interval, into 50 equidistant subintervals. For distances corre-
sponding to subinterval limits the derived coverages are cal-
culated, which gives a set of (distanceThreshold, coverage)
points that serve to approximate the curve. The final AuCDC
value is calculated from this approximation by using the
trapezoidal rule – the area under a sub-curve corresponding
to a subinterval is approximated by the area of the trapezoid
defined by the interval boundaries and the corresponding cov-
erage values. The final AuCDC value for the entire curve is
then obtained as the sum of the areas of individual trapezoids.

The first step in the calculation of the AuCDC measure
is the construction of the matrix containing cosine distances
between the reference and the model topics. The time com-
plexity of this operation is O(RTV ), where R is the number
of reference topics, T is the number of model topics, and V is
the vocabulary size. Once the distance matrix is constructed,
the measure can be computed in O(RK ) time, where K is
the number of distance subintervals. Namely, if for each
reference topic the distance to the closest model topic is
stored, then for each distance threshold the coverage can be
computed inO(R) time. Therefore the asymptotic complexity
of computing the AuCDC measure is O(RTV + RK ), which
is equal to O(RTV ) because K is a small constant value.

IV. COVERAGE-BASED MODEL EVALUATION
In this section we apply the proposed measures of topic cov-
erage to analyze the performance of a set of topic models of
different sizes and types. The reference topics are constructed
by human inspection and selection of topics learned by topic
models, and represent topics both within the reach of topic
models and useful to a human analyst. Therefore the models
are evaluated from the perspective of a use case of topic
discovery on two sets of topics – topics occurring in news
articles and biological topics corresponding to phenotypes.

For each dataset four types of topic models are evaluated –
the widely used LDA, its variant aLDA, the popular NMF
based on matrix factorization, and the nonparametric PYP
designed to learn the number of topics. These models are
described in more detail in Section II-C. For each of the para-
metricmodels, three different configurations of the number of
topics are evaluated – 50, 100, and 200 topics. These numbers
correspond to, respectively, a number smaller than, roughly
equal, and larger than the number of topics in the reference
set. Ten instances with different random seeds are built per
combination of a model type and a number of topics, yielding
a total of 100 topic model instances per dataset.

Coverage is measured using the SupCov measure based on
supervised matching of topics. The result of the supervised
coverage is simply the proportion of reference topics covered,
i.e., matched by at least one model topic. The unsupervised
AuCDC measure is designed to approximate SupCov for the
purpose of ranking and selection of top models and is based
on the CD-curve which can serve as a standalone graphical
tool for analysis and comparison of model coverage. For each
of the measures and for each combination of a model type and
a number of topics, coverages of the 10 topic model instances
are calculated and averaged to achieve more robust approxi-
mations. The 95% bootstrap confidence intervals of the cov-
erage means are calculated using the percentile method and
20.000 bootstrap samples. Coverage results are shown in the
Table 4 and the CD-curves are shown in Figure 2 and Figure 3.
Coverage results for different topic models vary depending

on the dataset. On the news dataset, the nonparametric PYP
model has the best coverage, followed by the NMF model
with 200 topics. The NMF model has the best coverage
results among the parametric models, as shown by both mea-
sures and the CD-curves in Figure 2 which illustrate how
the NMF models outperform the LDA and aLDA models
with the corresponding number of topics. Comparison of
the best model PYP and the second best model NMF-200
shows that while PYP has higher SupCov score, the AuCDC
scores of the two models are the same. This can be explained
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FIGURE 2. Coverage-distance curves depicting coverage of news reference topics by the topic models.

FIGURE 3. Coverage-distance curves depicting coverage of biological reference topics by the topic models.

by the comparison of the two models’ CD-curves show-
ing that the NMF-200 achieves better coverages for small
cosine thresholds, while the PYP achieves better coverages
for thresholds above 0.37. In other words, the NMF contains
more topics that match the reference topics closely, i.e., at

smaller cosine distances. This means that the NMF discovers
more reference topics at higher level of precision, but the
superior SupCov score of the PYP indicates that its topics
are still precise enough to be considered as semantically
matching.
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On the biological dataset the NMF model achieves much
better coverage results than the probabilistic models. The
NMF model with 200 topics has the best overall coverage
while for the other model sizes the NMF models yield better
coverages than the corresponding probabilistic models. The
nonparametric PYP model achieves best results among the
low-performing probabilistic models and it is comparable
with the NMF models with 100 topics. Regardless of the
model type, the coverage scores are lower than on the news
dataset, which shows that the biological dataset represents
a more challenging scenario of topic coverage. On both the
news and the biological datasets the coverage score correlates
positively with the number of topics – larger models are able
to uncover more topics.

The coverage results support the claim that the NMFmodel
is a good default choice for topic discovery. Namely, on the
news dataset the NMF models outperform the probabilistic
LDA and aLDA models for all the model sizes, while the
NMF model with 200 topics achieves scores competitive
with the best-performing nonparametric PYP model config-
ured with the total capacity of 300 topics. On the biolog-
ical dataset the NMF is clearly the best choice, while the
probabilistic models, with the exception of the PYP, have
weak coverage scores. These results suggest that the NMF
model is a more robust topic discovery tool, likely to perform
well on different datasets. The nonparametric PYP model
has the best coverage score on the media dataset, while
on the biological dataset is has the best results among the
probabilistic models. These results support the claim that
PYP is a better choice than the nonparametric LDA and
aLDA models, since it is expected to achieve better coverage
and be more robust to dataset change. Based on the results,
the NMF model with 200 topics is a good default choice for
performing topic discovery on corpora with between several
thousands and several tens of thousands of texts. The results
also show that the NMF is superior to LDA, regardless of
model size. However, in practice the LDAmodel is very often
a first choice, probably due to tradition and wide availabil-
ity of implementations. The experiments also demonstrate
that the unsupervised AuCDC measure performs well in
selection of high-performing topic models and demonstrate
the use of CD-curve for more in-depth analysis of model
coverage.

This section demonstrates the merits of coverage-based
topic model evaluation and demonstrated the application
of the proposed coverage methods for model analysis and
the selection of high-performing topic models. However,
we note that the proposed methods should be further evalu-
ated through their application on additional datasets and topic
modeling settings. We believe that qualitative evaluations
focused on human examination of topics would reveal useful
information about both the nature of the model coverage and
the measures’ performance. However, such topic evaluations
are time consuming and potentially require expert knowl-
edge. Appendix F supplements the experiments in this section
with an analysis of the relationship between topic models’

precision and recall, and with an analysis of the running time
of the coverage measures.

V. COVERAGE OF TOPICS DIVIDED INTO SIZE
CATEGORIES
The size of the reference topics varies in the sense that
some topics occur in a large percentage of text documents,
while other topics can be found only in a small fraction of
documents. In this section we apply the supervised SupCov
measure to investigate how topic models cover reference
topics of different sizes. This experiment is partly motivated
by several articles in which the authors claim that in order
to cover smaller topics, one needs models configured with
a large number of topics [35], models that explicitly per-
form topic diversification [57], or nonparametricmodels [57].
Additional motivation stems from the observation that in the
process of topic discovery both small and large topics can
be of interest to the analyst. Therefore, failure to cover small
topics can be a potential drawback of a topic model.

We define the size of a reference topic as the number
of documents in which the topic occurs, and that a topic
occurs in a document if at least 10% of the document’s text
is dedicated to the topic. This heuristical definition is based
both on common sense notion of occurrence of topics in
texts, as well as on the basic assumption of probabilistic topic
models clearly encoded in the structure of the LDAmodel [1].
This assumption states that each document is a probabilistic
mixture of a set of topics, and each word in the document
‘‘belongs to’’, or talks about, one of these topics.

We proceed to measure the size of reference topics, rep-
resented as a weighted lists of words and documents, in the
following way. For each dataset, we use an LDA model that
supports both fixed topics and learnable topics. We build
such a model with fixed topics configured to correspond to
the reference topics, and with additional 20 learnable topics
added for flexibility, i.e., for better approximation of the
overall topical structure. Total number of the model’s topics
T is therefore 20 plus the number of reference topics in a
dataset. Document-topic and word-topic distribution of the
fixed topics simply correspond to the document-topic and
word-topic weights of the reference topics normalized to a
probability distribution. Inference is performed by standard
Gibbs sampling [30], with the parameter β set to 0.01 and
parameter α set to 1/T . Probability formulas used in Gibbs
inference are modified in a straightforward way by insertion
of the known topic-word and topic-document weights of the
fixed topics. The learning process of 1000 Gibbs sampling
iterations results in learned probabilities of occurrence of
fixed reference topics in the corpus documents. Finally, for
each reference topic, the size is calculated as the number of
documents in which the topic occurs with the probability of
at least 10%.

Reference topics are then divided into quartiles according
to the calculated sizes. This is a principled, data-independent
method of division of topics into four categories of approx-
imately equal size. The first quartile contains the smallest
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TABLE 5. Division of reference topics into quartiles by size. Topic size is defined as the number of documents containing a topic. Each quartile is
described by the defining range of documents sizes and by the number of topics it contains.

topics (bottom 25%), while the fourth quartile contains the
largest topics (top 25%). Table 5 contains sizes and bound-
aries of the quartiles for each dataset. It can be seen that the
news dataset with the larger document corpus has larger refer-
ence topics, i.e., news topics tend to occur in more documents
than the biological topics.

The results showing how the topics in different size quar-
tiles are covered by the topic models are displayed in the
Table 6. The same topic models as in the coverage experi-
ments in Section IV are used. The coverages are calculated
in the same way as in Section IV – coverages of 10 differ-
ent topic model instances are averaged and the 95% boot-
strap confidence intervals are calculated using the percentile
method. The results show that the larger models with more
topics can cover both large and small reference topics, while
the smaller models can cover only larger topics. The results
for the biological dataset show how the low performance
of probabilistic models relates to topic size – these models
struggle with covering smaller topics. On the other hand,
the NMF achieves much better coverage of smaller topics.
The nonparametric PYP covers smaller topics better than the
nonparametric probabilistic models and has the best coverage
over all of the size categories on the news dataset, but it lags
behind the NMF on the biological dataset.

The relation of coverage and topic size can be inter-
preted by looking at the structure of topic models. Namely,
topic models approximate the corpus, represented as the
document-word matrix, as a product of the document-topic
and topic-word matrices. Furthermore, these models are
learned with the goal of optimizing the reconstruction of the
corpus data from the small set of topics. We note that while
the NMF model is explicitly based on matrix factorization,
the described factorization is also in effect performed by the
probabilistic topic models [55]. Therefore, the models with
a limited number of topics can achieve better approximation
of the text data by learning only larger topics that occur in
more documents and thus capture more of the data. On the
other hand, large models have additional capacity for fine-
grained approximation and thus can capture both large and
small topics.

The results demonstrate that the smaller topic models can
successfully cover only the large reference topics while the
larger models are able to cover both large and small topics.
These results support the previous conjectures that largemod-
els and nonparametric topic models are needed in order to

cover smaller topics [35], [57]. From a practical perspective,
these results support the use of larger topic models for topic
discovery since thesemodels can be used both for detection of
salient topics and for pinpointing small topics which can be of
interest to an analyst. Concretely, in case of the news dataset,
the examples of potentially interesting small topics from the
first size quartile are topics that can be labeled as ‘‘War in
Yemen’’ and ‘‘Transgender’’. In case of the biological dataset,
the reference topics of all sizes represent phenotypes discov-
ered from biological text [20]. On the other hand, the potential
problem with large models is, in our experience, a relatively
large number of low quality topics. Examples of low qual-
ity topics are noisy topics containing random words and
documents, and fused topics corresponding to two concepts.
A possible remedy for this problem is the augmentation and
speed-up of topic inspection process using measures of topic
quality. One way to achieve this is to order the model topics
by coherence and let the analyst inspect the coherent topics
first [58]. Finally, we note that in order to further support the
results in this section, new experiments on other datasets and
with other topic model types should be performed.

VI. COVERAGE OF SEMANTIC CATEGORIES
Topic models are useful tools for text exploration and topic
discovery since they are able to learn topics that humans
can interpret as concepts. When topic models are applied
in computational social sciences it is often desirable that
model topics correspond to concepts from a specific cat-
egory. Such topics of interest to the researcher have been
described as ‘‘theoretically interesting’’ [29] and ‘‘analyti-
cally useful’’ [31].

An example of a research topic which can benefit from
quantitative analysis of news text based on topic models is
agenda setting [15], [39], [59]. Agenda setting research [60]
is focused on salience of issues – topics of political or
social importance. The standard approach is to investigate
how media salience of issues relates to public perception
of their importance [60]. Naturally, when topic models are
applied for agenda setting research it is desirable that the
model topics correspond to issues. Computational agenda
setting studies typically rely on topic models to automatically
detect issues in a collection of news texts and to measure
their salience [15], [39], [59]. In this section we demonstrate
the application of coverage methods to the analysis of how
topic models cover the issues occurring in news texts. Such
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TABLE 6. Coverage of size categories of reference topics, for both datasets. Size categories are defined as topic size quartiles, and topic size is defined as
the number of documents containing the topic. For each coverage score, a 95% bootstrap confidence interval is shown.

analyses could guide the choice of topic modelling tools for
agenda setting studies.

There exist numerous other research directions, each with
its own class of ‘‘theoretically interesting’’ concepts. Exam-
ples of such studies include the analysis of news framing [31],
[61], analysis of historical news [62], and qualitative anal-
ysis of news focused on a specific topic [5]. For these and
numerous other use cases an experiment focused on the cov-
erage of topics of interest could be conducted. Motivated by
applications in social sciences where the topics of interest
are expectedly abstract concepts, we analyze how the topic
models cover abstract reference topics.

We proceed to measure the coverage of reference topics
divided according to two criteria – correspondence to a news
issue and topic abstractness. To this end, each reference topic
from the news dataset was annotated as being either abstract
or concrete, and as being either an issue or a non-issue2 topic.
A topic was considered abstract if it could be interpreted as
an abstract concept, and it was considered concrete if it could
be interpreted as either a person, a country, an organization,
or an event. A topic was defined as corresponding to an
issue if it was strongly related to an important social or

2We slightly abuse the language semantics and use the term ‘‘non-issue
topic’’ to denote the topic that does not correspond to a news issue, not a
topic of little or no importance.

political issue. Table 1 contains interpretable model topics
representative of the reference topics. The ‘‘Climate Change’’
topic is an example of a topic that is both abstract and an
issue, while the ‘‘China’’ and ‘‘Boston Bombing Trial’’ top-
ics are examples of concrete topics. Reference topics were
annotated by two annotators. First, a sample of 30 topics
was annotated by both annotators and Krippendorph’s α
coefficients of inter-annotator agreement were calculated. For
topics abstractness α was 0.67, and for issue vs. non-issue
labels α was 0.44. The levels of agreement reflect the fact
that the assessment weather topic corresponds to an issue is
more difficult and open to interpretation than the relatively
straightforward assessment of topic abstractness. In the next
step the topics for which annotators’ assessments differed
were discussed, which led to an improved understanding of
the definitions guiding the annotation process. Annotations
of the 30 sampled topics were synchronized, after which each
annotator proceeded to annotate half of the remaining topics –
approximately 50 topics per annotator. After the annotation
was completed, each of the 133 reference topics from the
news dataset was labeled both as being either abstract or
concrete, and as corresponding to a news issue or not.

The coverage of the resulting topic categories by topic
models was then measured. Topic models used in the exper-
iments are the same models used in coverage experiments in
Sections IV and V. The coverage was measured using the
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TABLE 7. Coverage, by models of varying types and sizes, of news topics divided into semantic categories according to two criteria: topic abstractness
and correspondence of a topic to an issue. For each coverage score, a 95% bootstrap confidence interval is shown.

supervised coverage measure SupCov based on the require-
ment of a precise match between the model and reference
topics. The coverages are calculated in the same way as in
Section IV – coverages of 10 different topic model instances
are averaged and the 95% bootstrap confidence intervals are
calculated using the percentile method. The coverage results,
displayed in Table 7, show that the NMF model has better
coverage of the issue topics than the LDA model, although
this advantage becomes smaller as the number of model top-
ics increases. As for the non-issue topics, the NMF model is
clearly better than the LDA model. The PYP model achieves
the best performance and covers almost 80% of all the issues.
Interestingly, issue topics are covered better than non-issue
topics across all model types and sizes.

The NMF model is slightly better than the LDA model in
coverage of the abstract topics, and clearly better in coverage
of the concrete concepts. The nonparametric PYP performs
best for both concrete and abstract concepts. We also observe
that the concrete topics are covered better than the abstract
topics across all model types and sizes. A possible explana-
tion is that the concrete topics focused on people, events, and
organizations, are more prevalent in the news text and thus
more easier to detect. Similarly, the higher coverage of the
issue topics might be explained by the fact that news articles
favor issue topics.

The coverage experiment described in this section is moti-
vated by applications of topic models in social sciences,
where models are expected to correspond to concepts of
interest to the researcher. In such studies LDA is often amodel
of choice, due to tradition and availability of LDA implemen-
tations. However, experiments in this section suggest that the
NMF and PYP models are a better choice, at least in the case
of news analysis, since both models achieve better coverage
of abstract topics and issue topics than LDA model. These
results are in line with previous experiments in Sections IV
and V showing that NMF and PYP models achieve higher
overall coverage and are better at pinpointing smaller topics
than the LDA model. While the nonparametric PYP model
achieves the best overall coverage of all the topic categories,
in our opinion the NMF model is a better choice. We base

this assessment on evidence in Section IV that shows greater
robustness of NMF performance across datasets. Addition-
ally, regardless of model type, models with more topics are
a better choice, probably due to their ability to detect small
topics, as suggested by the results in Section V.

The experiment in this section is a demonstration how
the coverage-oriented model evaluation can be applied to
analyze and select topic models best suited for the purpose
of topic discovery in social sciences. Such analyses rely on
measures of topic coverage and use-case oriented sets of
reference topics that represent concepts of interest. However,
to obtain reliable and generalizable results, similar experi-
ments should be performed for more use cases representing
different research designs. Ideally, such experiments would
generate enough evidence for reliable recommendations for
use of specific topic model types. The findings in this section
also show variations in coverage of different semantic topic
categories. We find a more in-depth investigation of this phe-
nomenon an interesting topic for future work with potential to
generate knowledge about the structure of conceptual topics
and models expected to approximate them.

VII. COVERAGE AND OTHER TOPIC MODEL EVALUATION
METHODS
In this section we examine how the proposed cover-
age approach relates to two other topic model evaluation
methods – topic coherence and topic model stability. The
experiments demonstrate that the topic coverage is a property
distinct from both coherence and stability. In the case of
model stability, we show how the coverage measures can be
adapted to approximate model stability.

A. COVERAGE AND TOPIC COHERENCE
Topic coherence [9] is an approach to evaluation of topic
models based on calculating a measure of coherence of indi-
vidual topics. A good coherence measure is correlated with
topic interpretability in the sense of the topic’s correspon-
dence to a single concept [9]. Topic coherence measures
typically use top-weighted topic words as input, compute
coherence by aggregating mutual similarity of top words,
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and are designed to maximize correlation with human coher-
ence scores. Calculation of topic coherence became a pop-
ular method of topic model evaluation and many coherence
measures have been proposed [11].

Coverage is related to coherence because both approaches
aim to approximate the matching between model topics and
concepts. However, coherence is more generally and loosely
defined as a measure of match between a topic and any con-
cept, while coverage is defined in terms of a predefined set of
specific concepts represented by reference topics. Coherence
measures rely only on topic-related words and a model of
word similarity and are thus easier to deploy than coverage
measures that require a set of pre-compiled reference top-
ics. Therefore, coherence measures are more approximative
but readily available measures of topic conceptuality, while
coverage provides more precise evaluation at the added cost
of effort needed to construct reference topics. In this section
we experimentally examine the relation between the two
approaches by calculating correlations between coherence
measures and measures of coverage proposed in Section III.

Coherence measures calculate coherence scores of model
topics and in order to enable comparison of coherence and
coverage measures, we adapt the coverage measures to com-
pute coverage-related scores of individual topics. The adap-
tation is performed by using the existing topic-matching
criterion of a coveragemeasure to compare amodel topicwith
reference topics. The adapted measures thus score individual
model topics in terms of their correspondence with the refer-
ence topics, which is a straightforward application of existing
coverage apparatus to topic-level scoring.

Concretely, in case of the supervised coverage, the score
of a model topic is set to 1 if the topic matches a reference
topic or to 0 if no matching reference topic exists. The
matches are computed using the supervised topic matcher
described in Section III-A. The unsupervised AuCDC mea-
sure, described in Section III-B, is based on approximation
of equality between a model topic and a reference topic using
a cosine distance threshold – the topics are considered equal
if their cosine distance is below the threshold. We adapt the
AuCDC for calculating the match between a single model
topic and the reference topic set by using cosine similarity,
the inverse of cosine distance. Specifically, we compute the
cosine similarity between a model topic and the set of refer-
ence topics, i.e., the similarity between the topic and its most
similar reference topic.

1) MEASURES OF TOPIC COHERENCE
Wecompare the coveragemeasureswith state of the art coher-
ence measures that achieved top correlations with human
coherence scores in an extensive evaluation experiment [11].
In [11], a generic structure of a coherence measure is formu-
lated and the derived space of possible measures is searched
for top performing candidates. The topic coherence scores are
calculated by dividing the set of top topic words into sub-
sets and aggregating the similarities between word subsets.
Within this framework, the averaging of similarities between

individual words is a special case. A coherence measure also
depends on a model of word similarity derived from word co-
occurrence counts calculated using either the local corpus or
the Wikipedia.

We evaluate three of top-performing measures – newly
discovered measures labeled CP and CV [11], and the pre-
viously proposed NPMI measure of [63]. The NPMI mea-
sure is calculated by averaging normalized pointwise mutual
information similarity of word pairs. The CP measure aver-
ages similarities, defined using conditional probability [64],
between pairs consisting of a word and its complement set.
The CV measure averages similarities between all pairs con-
sisting of a top topic word and the set of those top words
with higher topic-word weights. In case of CV, similarities
are calculated by representing words as vectors of similarity
scores with other top topic words.

For each of the described measures we experiment with
both approaches to defining word similarity – domain-
specific similarity derived from word co-occurrences in the
local corpus, and the generic mixed-domain similarity based
on co-occurrences in the English Wikipedia. All the coher-
ence measures in this experiment use as input top 10 topic
words [11].

2) CORRELATION BETWEEN COVERAGE AND COHERENCE
We proceed to experimentally evaluate the relationship
between the described coherence and coverage measures by
calculating the Spearman rank correlations. Correlations are
calculated on the set of topics of topic models described in
Section II-C. These models of different sizes and types yield
a total of 13.500 topics per dataset. The 95% bootstrap con-
fidence intervals of the Spearman correlation coefficients are
calculated using the percentile method and 20.000 bootstrap
samples. The results, presented in Table 8, show that neither
strong nor consistent correlation between coherence and cov-
erage exists. The correlation strength varies, depending on
the measure type and dataset, and in most cases it is weak
to non-existent.

The results in Table 8 show that in majority of cases cover-
age correlates better with corpus-based coherence measures
than with Wikipedia-based coherence measures. A possible
explanation is that reference topics are derived from the
topics of models built on corpus texts. Namely, probabilistic
topic models implicitly assume that words defining a topic
are the words that tend to co-occur in texts [31]. Therefore
topics with high local coherence, being by definition topics
whose top-words co-occur in corpus texts, should have better
likelihood of being among the reference topics.

We also observe that the AuCDCmeasure correlates better
with coherence than the SupCovmeasure based on supervised
topic matching. A reasonable explanation is that AuCDC
is by design less error-prone to correlation errors since it
calculates an approximative similarity score between a model
topic and reference topics. Namely, if a coherent topic is
missing from the reference set, its cosine similarity to the set
can still be high if other similar reference topics exist. And if
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TABLE 8. Spearman rank correlations between coherence and coverage measures, calculated on 13.500 topics for each of the datasets. For each
correlation coefficient, a 95% bootstrap confidence interval is shown.

the supervised matcher does not recognize a coherent topic
as matching with a corresponding reference topic, cosine
similarity of these two topics is still expected to be high.

Finally, we observe that the correlations between coher-
ence and coverage are higher in case of the News dataset,
while for the Biological dataset they are very weak at best.
A reasonable explanation is that the News reference topics
are more representative of the set of all the learnable topics.
Namely, both sets of reference topics are derived from model
topics but Biological topics are filtered to include only topics
describing phenotypes. Therefore, non-phenotype topics with
high coherence scores are likely to receive low coverage
scores that can negatively affect the correlation strength.

3) CONCLUSION
The experiments in this section show that the coverage and
coherence clearly differ, although both approaches measure a
correspondence between model topics and concepts. In par-
ticular the proposed coverage measures, designed to evaluate
topic models in terms of their match with reference top-
ics based on concrete topic discovery use cases, cannot be
approximated well with state-of-the-art coherence measures.

These findings open interesting questions about the rela-
tion between coherence and coverage measures. We believe
that an in-depth investigation of relationships between
coverage and coherence could improve both evaluation
approaches. Concretely, it would be interesting to investigate
the correlations between the two and observe which coher-
ence measures best correlate with coverage of which sets of
reference topics. This might better explain the nature of the
vaguely defined property of topic coherence by comparing
it with precisely defined coverage measures. Additionally,
the coherence measures able to approximate coverage well
could be used for selection of interpretable models.

Our findings are in line with the previous work on the
analysis of coherence measures. Experiments in [10] show
weak and inconsistent correlation between measures of topic
quality and a measure of correspondence between topics and
reference concepts, with the coherence measures exhibiting
mildly negative correlations. Evaluation of coherence mea-
sures via topic-level quality scores based on human interpre-
tation of topics was performed in [22]. The experiment found

neither consistent nor significant correlation between coher-
ence measures on one, and the interpretability scores based
on inspection of topic words and documents on the other side.
Both our experiment and the two previous experiments show
variations in performance of different types of coherence
measures. All the experiments also show weak correlation of
coherence with interpretable measures of quality grounded in
either reference topics or human labels. Both the correlations
in Table 8 and those in [22] tend to be weakly or moderately
positive. This indicates that coherence measures can roughly
approximate topic interpretability, but fail to calculate scores
that are reliable proxies for interpretability.

B. COVERAGE AND MODEL STABILITY
In this sectionwe examine the relationship between topic cov-
erage and model stability. In the first experiment we measure
correlation between the measures of stability and coverage.
Next, we show how the proposed coverage measures can be
adapted to calculate stability. This adaptation relies on the fact
that both approaches are based on approximation of a match
between two topics.

1) TOPIC MODEL STABILITY
A popular approach to the evaluation of topic models is based
on the notion ofmodel stability [8], [13], [23], [24], [43], [65].
The approach is motivated by the fact that the learned model
instances vary randomly due to model inference algorithms
that rely on random initialization and sampling. Instability
of topic models has been confirmed both numerically [8],
[13], [43] and by model inspection that reveals topic vari-
ation among model instances [23], [24]. This variation is
potentially detrimental for an analyst performing topic dis-
covery [13], especially in the case of social sciences where
omitted topics and topic variations can influence the results
of a study [23], [24]. Measures of stability are derived from
mutual similarity of inferred model instances – a stable topic
modeling setting should consistently produce similar models.
Similarity between models is calculated either by aligning
model topics using a similarity measure [8], [13], [23], [43]
or by comparing models represented in terms of words or
documents [13]. Alternatively, an interactive approach based
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TABLE 9. Spearman correlations between the coverage and stability measures, as well as between each of the measures and the number of model
topics. Correlations are calculated on 80 sets of 10 model instances. For each correlation coefficient, a 95% bootstrap confidence interval is shown.

on clustering and visualizing topics of many models has been
proposed [24].

In the following experiments, we opt for a common
approach to stability calculation based on aligning topics of
two model instances by using a measure of topic similar-
ity [8], [13], [43]. The first step of the approach is to find an
optimal bipartite matching of topics, i.e., an optimal one-to-
one pairing between first model’s and second model’s topics.
This optimal pairing that maximizes pairwise topic similarity
is computed using the Hungarian algorithm [66]. The similar-
ity of two models is then computed as the average similarity
of the paired topics. Finally, given a topic model and an
inference algorithm, the stability is calculated as the average
mutual similarity of the inferred model instances. We use the
cosine similarity of topic-word vectors as themeasure of topic
similarity and we label the described measure of stability as
InstanceStabil.

2) CORRELATION BETWEEN COVERAGE AND STABILITY
The correlation between stability and coverage measures is
computed at the level of a set of model instances. Since the set
of topic models described in Section II-C contains 10 instance
sets, we extend it in order to obtain more robust correlation
results. Additional models are built using the same procedure,
described in Section II-C. In the extendedmodel set themodel
size, defined by the number of topics parameter T , is varied
over a wider range of values. For parametric topic models
LDA, aLDA, and NMF, the parameter T is varied between
the values of 20 and 500 in steps of 20, yielding 25 size
variants per model type. For the nonparametric PYP model,
the maximum learnable number of topics T is varied between
the values of 100 and 500 in steps of 100, yielding five size
variants. The final extended model set contains, for each of
the two datasets, 80 sets of 10 model instances. Each instance
set represents a specific model type and size, and contains
instances built using different random seeds.

We proceed to empirically determine the nature of relation
between coverage and stability, by calculating Spearman rank
correlations between the described InstanceStabil stability
measure and the two proposedmeasures of coverage, SupCov
and AuCDC. The 95% bootstrap confidence intervals of the
correlation coefficients are calculated using the percentile
method and 20.000 bootstrap samples. Results, presented
in Table 9, show that there is no strong correlation between the
stability and coverage measures. The correlations are weak

to non-existent, ranging from slightly negative to slightly
positive. These results show that model coverage is a property
of topic models unrelated to model stability.

The lack of correlation can be explained, at least in part,
by the nature of correlation between the number of model
topics on one, and the stability and coverage on the other
side. As can be seen from Table 9, stability has a negative
while coverage has a positive correlation with the number
of topics. This indicates that the larger models tend to be
less stable, which is unsurprising since they contain more
learnable variables, resulting in more variation among the
learned model instances. On the other hand, larger models
with the capacity to learn more topics tend to have greater
coverage, which is in line with the results of the coverage
experiments in Section IV.

3) CALCULATING STABILITY USING COVERAGE MEASURES
We proceed to show how the coverage measures can be
adapted to measure model stability by way of direct compar-
ison of two model instances.

First, we adapt the supervised coverage measure SupCov
based on supervised matching of model and reference topics.
The stability measure derived from SupCov calculates the
similarity between two topic models in terms of the reference
topics covered by both models. Concretely, given a set of
reference topics and a topic matcher, let reftop(m) be the set
of reference topics that the topics of the model m cover. The
similarity of two models m1 and m2 with the same number of
topics T is defined as |reftop(m1) ∩ reftop(m2)|/T . In other
words, the similarity of two models is defined as the number
of reference topics discovered by both instances, relative to
the maximum number of discoverable topics.

This definition of similarity is related to the standardmodel
similarity based on bipartite matching, computed as the aver-
age similarity between the pairs of highly similar topics of
two models. Namely, in our case the pairs of similar topics
correspond to reference topics discovered by both models –
each such reference topic matches a topic from the first and
a topic from the second model. Therefore, the number of
mutually discovered reference topics can be interpreted as the
sum of binary similarities of aligned model topics.

The final stability measure based on SupCov is calculated,
for a set of model instances, as the average similarity between
instances.We dub the describedmeasure of stability reference
set stability and label it as RefsetStabil.
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TABLE 10. Spearman correlation between the coverage-based stability
measures and the InstanceStabil measure. For each correlation
coefficient, a 95% bootstrap confidence interval is shown.

The AuCDC measure of coverage can also be adapted for
measuring model stability by using it to compute the simi-
larity between two model instances. The AuCDC measure,
defined in Section III-B, is designed to approximate how
well a set of topics of a model m covers a set of reference
topics ref . We denote the corresponding coverage score as
AuCDC(ref ,m). The AuCDC-based similarity of two topic
models m1 and m2 is computed as (AuCDC(m1,m2) +
AuCDC(m2,m1))/2. In other words, this is an approximation
of how well the sets of topics of the two models cover each
other. The coverage is computed in both directions and aver-
aged in order to make the similarity measure symmetrical.
The final stabilitymeasure is calculated, as in the case of other
stability measures, by averaging pairwise similarity on a set
of model instances. We dub this measure of stability AuCDC
stability and label it as AuCDC-stabil.

In order to measure how the coverage-based measures of
stability relate to the InstanceStabil measure, we calculate
Spearman correlations on the extended dataset of models
of varying types and sizes divided into 80 sets of model
instances. The 95% bootstrap confidence intervals of the
correlation coefficients are calculated using the percentile
method and 20.000 bootstrap samples.

The results from Table 10 show that the RefsetStabil sta-
bility achieves substantial correlation with standard stability,
while in the case of AuCDC-stabil stability the correlation
is almost perfect. This difference is not surprising since the
RefsetStabil measure matches two models via reference top-
ics, while the AuCDC-stabil measure compares the models
directly, which leads to a better approximation of similarity.
Namely, in case of the RefsetStabil measure, if two models
contain an identical topic that is not in the reference set, the
similarity will be negatively affected. Such a model topic
not in the reference set could be either a missing conceptual
topic or a commonly occurring stopwords or noisy topic.
On the other hand, the AuCDC-stabil measure will suc-
cessfully match the same topic occurring in models being
compared.

Stability of topic models is, by definition, the property of
the modeling setup to consistently produce the same topics.
Since the topic models are expected to produce topics that
can be interpreted as concepts, this implies that stability can
be viewed as a property of models to consistently uncover the
same concepts. The substantial level of correlation between
the RefsetStabil measure and the standard InstanceStabil
measure can be interpreted as an experimental confirmation

of the previous intuitive claim. Namely, the RefsetStabil
measure approximates stability with the amount of reference
topics, corresponding to concepts, uncovered by each of the
two distinct model instances.

The correlation between stability based on AuCDC and
InstanceStabil is almost perfect. The very high level of cor-
relation is a useful experimental finding, which we take as
proof-of-concept for the application of the AuCDC measure
for calculation of model stability. This finding has practical
benefits, since the AuCDC-stabil stability measure is much
faster to compute than the InstanceStabil stability measure.

Namely, the InstanceStabil measure calculates model sim-
ilarity by optimally aligning the model topics using the Hun-
garian algorithm [66] with the computational complexity
of O(T 3), where T is the number of model topics. On the
other hand, the AuCDC-stabil measure calculates model
similarity using the AuCDC measure, described in detail
in Section III-B. The AuCDC measure integrates best-case
matching results over a range of distance thresholds and can
be computed with time complexity of O(T 2), which corre-
sponds to the time necessary to calculate distances between
all pairs of topics.

In practice, the calculation of AuCDC-stabil is orders of
magnitude faster. For each of the two datasets, calculation
of the InstanceStabil measure on 80 sets of model instances
took approximately two weeks. On the other hand, calcula-
tions of the AuCDC-stabil measure were completed in under
two hours. Therefore the proposed AuCDC-stabil stability
measure has a potential to greatly speed up stability-based
model evaluation and to make such evaluations viable for
large model collections and models with a large number of
topics.

4) CONCLUSION
The experiments in this section show that model stability is
a property of topic models which is unrelated to the model’s
coverage of a set of reference topics. In other words, stable
models that consistently uncover the same topics do not
necessarily uncover all the useful topics or topics of particular
interest to an analyst. This implies that optimizing topic
models using the stability as the only criterion might not lead
to best quality models. On the other hand, it is reasonable
to expect that a topic model able to uncover the majority
of topics within its reach would be stable. We believe that
follow-up experiments, on new corpora and news sets of
reference topics, are needed to further investigate the rela-
tionship between the stability and coverage.

We also show how the proposed coverage measures can be
adapted to calculate stability. The adapted measures achieve
a good correlation with the standard stability measure, sup-
port the interpretation of stability in terms of consistent
uncovering of concepts, and provide a computationally effi-
cient alternative to stability calculation. We note that, while
the AuCDC-stabil and InstanceStabil measures use different
algorithms for model similarity, both rely on cosine-based
similarity of topic-word vectors for matching of individual
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topics. Therefore, in order to fully generalize the approach,
experiments with the AuCDC-stabil measure variants based
on other measures of topic similarity should be investigated.
Such investigations would also ideally include new datasets
and more topic model types.

VIII. RELATED WORK
A. TOPIC MODELS
Topic models [1] are unsupervised models of text capable
of learning topics from large text collections. Each topic
is a construct typically characterized by weighted lists of
words and documents and expected to correspond to a con-
cept occurring in texts. Topic models have numerous appli-
cations, including exploratory text analysis [2], information
retrieval [3], feature extraction [67], natural language pro-
cessing [4], [68], and applications in computational social
sciences [5], [15], [16], [61].

Two prominent families of topic models are probabilistic
models [26], such as Latent Dirichlet Allocation [1], and
matrix factorizationmodels, such as NonnegativeMatrix Fac-
torization [21]. Generative probabilistic models are a domi-
nant approach to topic modelling. These models are based on
a probabilistic process of text generation and their structure
is defined in terms of a set of random variables and relations
between them. There exist a variety of probabilistic model
types with structure defined by random variables correspond-
ing to various text metadata [26]. Unlike the models that
assume a fixed number of topics, models relying on Bayesian
nonparametric inference are able to infer the number of topics
from data [36], [37].

Models based on matrix factorization, such as latent
semantic analysis [69] and non-negative matrix factoriza-
tion [14] are a popular alternative to generative models. These
models learn a set of latent factors, corresponding to top-
ics, by approximating document-word matrix as a product
of document-factor and factor-word matrices. Especially the
NMF model has emerged as a popular alternative to prob-
abilistic topic models [20], [21], [40], [41], and evaluation
experiments suggest that its quality could be comparable to
or better than the quality of the LDA model [42]. As with the
generative LDA model, there exist structural variations and
extensions of the basic NMF model [70], [71].

In recent years neural topic models based on deep neural
networks emerged as a popular approach [28]. Neural topic
models have several appealing characteristics, including the
automatization of the inference process and the ease of archi-
tectural extension, the possibility of integration with other
neural architectures, and scalability [28]. This makes neural
topic models better suited than the conventional topic models
for tasks such as text generation, document summarization,
and machine translation [28].

B. TOPIC MODEL EVALUATION
Topic models are practical since they are unsupervised
and require no labeled data and minimal amount of text

preprocessing. However, usefulness of topic models depends
on the quality of the learned topics, which can vary and can be
influenced by a multitude of factors. Namely, deployment of
a topic modeling solution involves choosing the model type,
model hyperparameters, learning algorithm, and the prepro-
cessing method. In addition, once these choices are made,
the process ofmodel inference is stochastic, since the learning
algorithms are initialized with random data and in many cases
the learning process is based on random sampling. Automatic
evaluation of topic models can be used both to choose a better
topic modeling approach by narrowing down many available
options, and to select model instances with high quality.

A range of methods that evaluate various aspects of model
and topic quality have been developed. The earliest evaluation
approach relies on measures of probabilistic fit that compute
how well the learned model fits the data. The most prominent
measure of that type is perplexity of held-out data [1], [6].
Perplexity was used in seminal topic modeling paper [1]
and for many years remained a principal method for evalu-
ation of newly proposed topic models. Another probabilistic
method, proposed by [72], measures the divergence between
the learnedmodel’s latent variables and empirically estimated
properties of these variables.

An influential paper of [7] demonstrated that lower per-
plexity of held out data does not necessarily correlate with the
interpretability of model topics. These findings inspired an
approach focused on directly quantifying topic interpretabil-
ity by calculating topic coherence [9]. Measures of topic
coherence compute a score that aims to approximate how
interpretable a topic is in terms of its correspondence to a
concept [9], and are designed to achieve high correlation with
human coherence assessments [11]. Coherence measures are
commonly based on a score of mutual similarity between top
topic-related words, which can be defined using a variety of
word representations and similarity measures [9], [11], [42],
[63], [73]–[77]. Alternate approaches include clustering of
word embeddings [78] and querying search engines with top
topic words [9]. In addition to topic coherence measures,
alternate approaches to calculating topic quality have been
proposed, based on calculating distances between topics and
uninformative probability distributions [79], and on aligning
model topics with WordNet concepts [80], [81]. A recent
paper showed that the measures of topic coherence do not
correlate well with the ability of humans to interpret and
label topics [22], and that the coherence measures are not
a reliable guide for model selection [22]. This experiment
demonstrates the need for validation of automatic measures
of model quality, which is rarely performed.

The quality of topic models can also be assessed using
human judgments in a structured way. Reference [7] pro-
posed a method for scoring semantic quality of topics using
crowd-sourced answers to intrusion queries. Annotators were
asked to choose an irrelevant word from a set of words
describing a topic, or to choose a topic irrelevant to a doc-
ument [7]. [12] extend the method of [7] by proposing
new intrusion tasks for topical quality, as well as new tasks
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designed to measure correspondence between a topic and its
conceptual label.

An approach to evaluation focused on model stability is
motivated by inherent stochastic variability of learned model
instances and the intuition that the consistency of learned
topic is a desired property of a good model. A common
approach is to quantify stability as average mutual similarity
of a number of model instances [8], [13], [23], [43]. Model
similarity has been calculated using topic alignment based
on bipartite matching [8], [13], [23], [43] or directly com-
paring models using representations based on either words or
documents [13]. An approach to analyzing stability based on
visualization of topic clusters of many model instances has
been proposed in [24].

Finally, if the information derived from a topic model is
used as input for solving a downstream language processing
task, a natural evaluation method is to quantify howmuch this
information improves the performance on the task in ques-
tion. This approach is exemplified by applications of topic
models for tasks such as information retrieval [3], word sense
disambiguation [82], sentiment analysis [83], and document
classification [84].

C. TOPIC COVERAGE
The problem of topic coverage was first outlined in an article
describing a framework for visual analysis of correspon-
dence between expert-defined reference concepts and model
topics [10]. The reference concepts were compiled by infor-
mation visualization experts that relied on domain knowledge
and an indexed database of scientific articles. Matching of
concepts and model topics is performed using a model that
approximates the probability that a human will judge a con-
cept and a topic to be equivalent. Several types of relations
between concepts and model topics are defined. A concept is
defined as resolved if it corresponds to a single topic, as fused
if it is subsumed by a topic together with another concept, and
as repeated in case it corresponds to multiple topics. A con-
cept is considered covered if it corresponds to at least one
model topic, directly or as a part of a fused topic. In a series
of experiments, topic model types and hyperparameters are
varied. The resulting variations in relations between concepts
and topics are presented by using the proposed visualizations
tools. Finally, the alignment between concepts and topics is
used to assess several measures of topic quality, including
coherence measures. We note that while our work is focused
exclusively on topic coverage, the other types of relations
between reference and model topics defined in [10] are useful
tools for model analysis that merit further investigation.

Although there is no follow-up work to [10] that focuses
on topic coverage, there is work on related ideas. In [85],
the authors analyze applications of topic models in social
sciences, point to the problem of topic coverage, and argue
that human-in-the-loop topic modelling might lead to models
that best satisfy user needs.

A method of visual analysis of model stability proposed
in [24] is based on clustering similar topics of many models

and visualizing the relation between the models and the topic
clusters. Since the topic clusters can be viewed as reference
topics, the visualizations in effect depict the random varia-
tions in coverage of a number of model instances.

In [86] authors propose a topic model analysis based on
generating synthetic texts from a set of predefined synthetic
topics. From the perspective of topic coverage, such topics
can be seen as reference topics, and be used for synthetic
coverage experiments, possibly in conjunction with the read-
ily deployable AuCDC measure. The use of synthetic top-
ics could allow for large-scale analysis of numerous topic
modelling scenarios without the need for manually crafting
reference topics. In [86], the synthetic topics are not directly
matched to model topics. Instead, the alignment between the
two topic sets is computed indirectly, as the mutual informa-
tion calculated on the level of words assigned to individual
topics.

Experiments in [87] evaluate several topic models on the
tasks of topic identification and topic discovery. Topic identi-
fication is defined in terms of the ability of the model-induced
document-topic vectors to serve as features for classifica-
tion and regression. Topic discovery is tested by measuring
the alignment between the model-induced topics and gold-
standard topic labels of documents. This alignment is cal-
culated as the similarity of the two partitions of documents,
one induced by the model topics and the other induced by
the gold-standard labels. This approach is similar to the one
in [86], where the alignment between two topic sets is calcu-
lated indirectly, but at the word level. It would be interesting
to examine how these indirect measures relate to the coverage
measures that directly match model topics to the reference
topics represented in terms of word and document lists.

One approach to measuring topic quality is to align model
topics to ontology concepts and define the quality score of
a topic in terms of topic-concept relations [80], [81]. From
the perspective of coverage, these techniques might prove
useful for the reverse task of measuring how the model
topics cover concepts in large ontologies. [88] explore the
similarities between model topics and the categories of the
Web of Science taxonomy, and point out the problem of com-
parison between human- and model-generated taxonomies.
We believe that one way to approach this problem is from the
perspective of coverage of taxonomy concepts. The problem
of coverage of abstract and broad concepts in both ontolo-
gies and taxonomies might prove interesting and challenging
because of the need to conceptualize the relation between
these concepts and model topics which tend to be more
specific.

A big advantage of the coverage approach is its applicabil-
ity for automatic analysis and validation of other measures of
model quality. Namely, the amount of work on methods for
topicmodel evaluation is modest in comparison to the amount
of research on topic model architectures and applications,
and the problem of semantic validation of topic models is far
from solved. The automatic evaluation methods, spearheaded
by popular coherence measures, are often used to compare a
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new topic model against a baseline model. While they may
be useful for providing a proof-of-concept for new model
architectures, coherence measures are not reliable tools for
guiding model selection in applications that rely on topic
models for text analysis [12], [22]. The methods based on
human inspection of topics [7], [12] may provide more reli-
able assessments but they are time-consuming and rely on the
availability of human annotators.

The coverage approach, unlike the measures of the abstract
qualities of coherence and stability, is grounded in a set of
interpretable reference topics representing a concrete appli-
cation scenario of topic discovery. Furthermore, the approach
has a potential to lead to creation of many evaluation datasets,
each consisting of a text corpus and a set of reference topics.
This would enable automatic testing of new topic models
in varying topic discovery scenarios, while the measures
of model quality could be tested for their ability to select
high-performing models. Our research provides measures of
coverage, datasets, and software tools that are a starting point
for such analyses.

Experiments based on our methods confirm the previously
detected unreliability of the coherence measures, and demon-
strate the unrelatedness of topic model stability and coverage.
These findings underline the need for future work on improv-
ing and understanding the measures of model quality.

IX. CONCLUSION AND FUTURE WORK
Topicmodels are a widely used tool for text exploration, often
used for topic discovery on large text collections. This paper
explores an approach to topic model evaluation focused on
measuring towhat extent topicmodels cover a set of reference
topics – representative set of topics of interest in a specific
topic discovery scenario.

Our work revisits and extends the approach first outlined
in [10], by introducing new, reliable, and practical measures
of coverage and performing a series of experiments on two
different text domains, news and biological. The measures we
propose are themost important contribution of the paper since
theymake future coverage experimentsmore reliable and eas-
ier to perform. Our experiments lead to findings about both
topic models and other methods of topic model evaluation.
The findings about topic models include recommendations
for the choice of models for topic discovery, the experiments
showing how the number of model topics influences cover-
age, and the demonstration that models’ coverage depends on
the semantic category of reference topics. Experiments com-
paring topic coverage with topic coherence and model sta-
bility show that standard measures of coherence and stability
fail to detect high-coverage models consistently and reliably.
These experiments underline the need for re-assessment and
improvement of currently popular approaches to topic model
evaluation. We also show how the coverage measures can
be successfully adapted to calculate model stability. There-
fore, we demonstrate that these measures are useful tools for
matching models and topics, with applications beyond the
coverage-based evaluation.

The most applicable contributions of our work are the
AuCDC measure of coverage and the recommendations for
use of topic models in topic discovery. The unsupervised
AuCDC measure is a new concept and a quickly deployable
tool for model selection that correlates very well with the
coverage measure based on supervised topic matching. The
AuCDC measure is based on the coverage-distance curve,
which is in itself a useful tool for graphical analysis and
comparison of topic models. For example, the CD-curve
can be used to assess and compare the levels of precision
with which different models uncover the reference topics.
In addition, the AuCDC measure has applications beyond
coverage, since it can be used to assess similarity of topic
model instances. Namely, the stability experiments show that
the stability based on the AuCDC measure correlates almost
perfectly with a standard stability measure.

As for the recommendations for the applications of topic
models for topic discovery, the results of the experiments
indicate that the NMF model is a very good choice, having
good performance on both text domains and outperforming
probabilistic models in many cases. The results of the exper-
iments also support the use of models with a large number
of topics. Such models have high coverage scores and are
able to cover reference topics of all sizes. On the other hand,
the smaller models have poor coverage of small reference
topics that can represent useful concepts.

The development of the coverage approach is still in
the early stages and there exist many directions for future
research. One set of directions for future research is related
to the improvement of the measures proposed in this paper.
The proposed supervised coverage measure relies on a
time-consuming process of topic pair labeling. We believe
that active learning approaches [89] have the potential to
greatly speed up this process. The unsupervised AuCDC
measure performs well for model ranking and selection, but it
could be further improved by making the computed coverage
scores interpretable.

An important future research direction is the development
of methods that facilitate the construction of reference topics.
Namely, reference topics are a key element of a coverage
experiment, but their construction is technically challenging
and time consuming. Therefore such methods would greatly
facilitate the application of coverage-based evaluation in new
topic modeling scenarios. In our view, a promising approach
would be to focus on graphical tools that would help the
analyst to either select and modify automatically generated
topics, or to create new topics based on expert knowledge.
Such graphical tools could include metrics and visualizations
for profiling of reference topics. Tools of this kind could
also facilitate the construction of incremental versions of a
reference topic set. Such evolving collections of reference
topics could be used in scenarios where texts and topics
change over time.

Each of the coverage experiments in this article outlines
a potential direction for follow-up future work. In general,
similar experiments in new topic modeling settings, based on
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other corpora and types of models, would lead to more robust
findings and recommendations. Specifically, we believe the
computational social science could benefit from coverage
experiments targeted at discovering topic models able to
cover reference topics that correspond to concepts of interest
in concrete scientific topic-discovery use cases. Construction
of reference topic sets should not represent a significant
overhead effort in these scenarios, since the interpretation and
analysis of a number of model topics is routinely performed
as part of model validation.

Experiments with coverage-based evaluation of various
types of topic models may identify model architectures with
consistently high performance for different corpora and ref-
erence topic sets. We hypothesize that high coverage could be
achieved by approaches that rely on pooling and combining of
manymodel instances [90], [91], models that explicitlymodel
topic diversity [57], and models that iteratively learn new
topics not uncovered by the previous runs [90]. Alternative
approaches to topic modeling, such as the one based on a
combination of dimensionality reduction and soft clustering
[92] , might also achieve good coverage results.

A promising future direction is the application of the
coverage methods to large scale automatic analyses of the
underresearched and rarely validated measures of model
quality. Such analyses could lead to better understanding and
improvement of these measures. For example, it would be
quite useful to find or develop coherence measures that can
well approximate the coverage of specific types of reference
topics. This could lead to coherence measures that are inter-
pretable, and which could be used to approximate coverage
without the need for pre-constructed reference topics.

Topic models can be applied for text classification, either
as extractors of topical features [92], or as stand-alone clas-
sifiers [93]. One interesting future work direction is the
investigation of the relationship between coverage and clas-
sification accuracy. In addition to revealing the nature of this
relationship, such experiments might lead to coverage-based
recommendations for the use of classifiers based on topic
models. A dataset for such an experiment should combine
a classification dataset with reference topics, and we view
the definition of classification-relevant reference topics as
the main challenge. Similar experiments could be performed
for applications of topic models to other language processing
tasks, such as information retrieval [3], word sense disam-
biguation [82], and sentiment analysis [83].

Topic models have also been applied to non-text data,
most notably for the analysis of natural images and genetic
data [26]. In these applications topics are uninterpretable and
correspond to distributions over genes or low-level visual
patterns. The uninterpretability of non-text topics entails two
important challenges – the definition of sensible reference
topics and the definition of topic matching. A wide-coverage
set of topics recognized by a number of different models
might be a good starting point, as might be the unsupervised
AuCDC measure that avoids the topic matching problem.
We believe that the adaptation of the coverage approach to

non-text domains represents an interesting direction for future
work with the potential to generalize the approach and make
it more robust.

In this paper we propose a definition of the coverage
problem motivated by the use case of topic discovery – a
reference topic is considered covered if a closely matching
model topic exist. We proposed measures in line with this
definition and experimented with two sets of reference topics
within the reach of the standard topic models. However,
the measures and the reference topics, two key aspects of
the coverage problem, can be viewed in a more general light.
For example, in order to obtain more approximate coverage
measures, the definition of topic matching could be loos-
ened to include approximate semantic similarity. Semantic
variation among the reference topics could also be factored
in the measures’ design. It could be quite useful to design
measures that favor the models that cover a diverse set of
reference topics’ subcategories and offer a better overview
of the semantic space.

There are many ways to define potentially useful reference
topics. For example, concepts of interest in social sciences,
such as the news issues and frames, could be used to define
useful sets of reference topics. Reference topics could also
correspond to concepts derived from a multitude of exist-
ing ontologies or taxonomies. Another possibility is to use
user-defined reference topics representing domain-relevant
concepts, as exemplified by [10]. We note that defining of
semantic reference topics is challenging, since it requires both
a sensible definition of a set of concepts and a method of
deciding whether an individual topic is in line with the defini-
tion.More broadly, reference topics need not even correspond
to human concepts but could be synthetic, such as the topics
in the experiment of [86].

Alternative approaches to the coverage problem represent
a promising direction for future work. This work will have
to deal with technical and conceptual challenges, such as the
definition and construction of sensible reference topics, the
semantics of matching between the model-generated topics
and the reference topics, and the efficient construction of
practical measures of coverage.

We believe that future work on topic coverage can lead to
a better understanding of the semantics of machine generated
topics and to improved evaluation methods with the potential
to reasses the quality of existing models and guide the design
of new ones.

APPENDIX A
CONSTRUCTION OF REFERENCE TOPICS
In this appendix to Section II-B we describe the details of the
process of construction of the reference topics. The reference
topics are based on models’ topics inspected, interpreted, and
filtered by human annotators. More precisely, the reference
topics corresponds to concepts discovered in two previous
topic discovery experiments. Each of the concepts is based on
human inspection of either individual model topics or topic
clusters. Therefore, the reference topics are constructed from
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the model topics used in the previous experiments, and the
methods of their construction reflect how the corresponding
concepts are related to the model topics.

A. NEWS REFERENCE TOPICS
Reference topics of the news dataset were derived from the
topics of LDA models built and inspected in a study focused
on topical analysis of political news texts [25]. Three LDA
models with 50 topics and two LDA models with 100 topics
were used. Model topics were inspected by humans and inter-
preted as concepts, referred to as themes in [25]. Themes were
introduced as a conceptual tool for distributed annotation of
model topics by several annotators, and a single theme was
allowed to correspond tomore than onemodel topic. A shared
list of themes was constructed in the process, with each theme
described by a label, a short description, and a list of model
topics corresponding to the theme [25]. Model topics that do
not correspond to any theme are thus uninterpretable topics.

Each of the reference topics corresponds to one of the
133 themes from [25]. The topic’s word and document
vectors were derived, in two steps, from the model topics
corresponding to the theme. In the first step at most two
corresponding model topics were selected at random, and
in the second step the topics’ data was improved by human
effort. The goal of this improvement was to ensure that the
data of a reference topic describes the corresponding theme
well. Namely, in the original annotation process a model
topic containing a tolerable degree of noise was allowed to
be labeled as corresponding to a theme [25].

The improvement was performed by two annotators who
inspected model topics associated with each reference topic.
Upon inspection, they selected a subset of top topic words and
documents that describe the reference topic well. Addition-
ally, each reference topic was labeled with a preference label
denoting weather the topic is better described by the words,
documents, or equally well by both. This was motivated
by the observation that some reference topics were clearly
best described by associated words, and some by associated
documents.

Finally, topic-word and topic-document vectors of a refer-
ence topic were constructed from the annotators’ data using
the following procedure. The reference topic’s document
vector is simply a binary indicator vector describing the
documents associated with the topic. The reference topic’s
word vector is constructed from the associated words’ data
merged with the document-related data to reflect the prefer-
ence of either word or document descriptors. First the binary
bag-of-words vector vecwords describing the topic’s words is
constructed. The document-related data is represented by the
vector vectfidf , the average of the documents’ tf-idf vectors.
The final word vector of the reference topic is constructed as
a weighted sum ww · vecwords + dw · vectfidf . If the topic is
best described by words, weights were set as ww = 0.8 and
dw = 0.2. Otherwise, if topic is best described by documents,
the weights were ww = 0.2 and dw = 0.8, and if there is no
preference the weights were ww = 0.5 and dw = 0.5.

B. BIOLOGICAL REFERENCE TOPICS
Biological reference topics are based on the results of topic
discovery performed with the goal of finding topics corre-
sponding to phenotypes – characteristics of organisms [20].
The original topic discovery process was a part of a set
of machine learning methods developed with the purpose
of large scale annotation of organisms with corresponding
phenotypes [20].

The original topic discovery was performed by human
inspection of clusters of topics of NMF models built from
biological texts describing microorganisms. One NMFmodel
with 50 topics and one NMF model with 100 topics were
built for each of the five subcorpora corresponding to texts of
five text sources described in Section II-A. Then the topics of
the NMF models with same number of topics were clustered,
using as the measure of similarity the Pearson correlation
between sets of top topic words. The clusters were then fil-
tered by retaining only the clusters containing topics from at
least three out of five subcorpora, guided by the requirement
that a phenotype should be consistently uncoverable across
text sources. In order to increase the coverage of phenotypes,
additional clusters were generated using the described proce-
dure and new topic models were built with different random
seeds. In total, five models with 50 topics and four models
with 100 topics were built for each of the text sources.

The obtained clusters were represented by averaging the
topic-word vectors of the cluster’s topics and selecting the
20 top-weighted words from the resulting vector [20]. Inspec-
tion and interpretation of these clusters was performed by
a biologist who selected the high quality clusters, charac-
terized by consistent and relevant words and corresponding
to phenoptype concepts. This process resulted in a total of
112 topic clusters corresponding to phenotypes.

The reference topics of the biological dataset are derived
from the described topic clusters, and their topic-word and
topic-document vectors are constructed in the following way.
The topic-word vector of a reference topic is a binary bag-of-
words vector of the corresponding cluster’s words. The topic-
document vector of a reference topic is constructed by averag-
ing the topic-document vectors of the corresponding cluster’s
topics. These topic-document vectors are extracted from the
NMF models obtained by the original topic discovery study.

APPENDIX B
CONSTRUCTION OF TOPIC MODELS
Here we append Section II-C with details of topic models’
construction.

For the construction of the probabilistic models (LDA,
aLDA and PYP), we rely on the implementation of inference
algorithms provided as part of the HCA package [36]. This
software implements the optimized variant of Gibbs sampling
named table indicator sampling [94], combined with adaptive
rejection sampling [95] for hyperparameter learning. Follow-
ing the standard procedure of [30], the hyperparameters of
the LDAmodel defining the priors of the topic-document and
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topic-word distributions are set to α = 50/T and β = 0.01.
For the aLDA model, the β hyperparameter is also set to
0.01. Initial values of the Gamma distribution parameters
defining the aLDA’s prior document-topic distribution are set
to a = 0.5 and b = 10, for each of the topics. For the PYP
model, the initial values of the concentration and discount
parameters of the Pitman-Yor process are set to c = 10
and d = 0.5. A large number of Gibbs sampling cycles is
performed since in our case the goal of the learning process is
the quality of learned models, not the speed of learning. After
50 warmup cycles of Gibbs sampling, another 800 cycles are
run in case of the LDA and aLDAmodels, while in case of the
PYP model with more parameters, another 1500 cycles are
run.

To construct the NMF model instances, we use the method
described in [41]. Text documents are represented as a matrix
of tf-idf document-word weights, and the matrix factorization
is performed using the projected gradient method [96] ini-
tialized with the results of the non-negative SVD decomposi-
tion [97].We use the implementation of the described method
available as part of the scikit-learn framework [98].

APPENDIX C
BALANCING THE DATASET OF TOPIC PAIRS
Here we append Section III-A1 with details of the problem of
imbalance of topic pairs and its solution.

When a subset of topic pairs is randomly sampled from
a set of all possible pairs containing random model topics,
a large majority of pairs will contain non-matching topics.
Namely, in an ideal scenario with two models each having
T topics and where all the topics match one of T distinct
concepts, the probability of match of two randomly selected
topics equals 1/T . In a realistic scenario with a large number
of concepts and potentially noisy topics, it is reasonable to
expect that the probability of match of two topics will be
below 1/T , as was confirmed by an inspection of a sample
of pairs.

This means that the topic matching problem falls in the
domain of imbalanced learning [45], [46] – a setting in
which only a small fraction of positive learning examples is
expected in the learning data. This hinders learning of good
models since examples that define the structure of the positive
class are scarce. Many approaches to alleviate and solve this
problems were developed [45], including active learning and
resampling methods.

However, in case of the problem of topic matching there
exists a simple solution – using a measure of topic distance
to sample a more balanced dataset. The intuition behind the
approach is that the distance between two topics is inversely
correlated with the probability of their match. Therefore,
if pairs of mutually close topics are sampled with the same
probability as the pairs of distant topics, the final sample is
expected to contain more matching topics and thus provide a
better dataset for model learning.

We use the cosine distance of topic-word vectors to mea-
sure topic distance, since this measure is able to approximate

the human intuition of topic similarity reasonably well [10].
To create the balanced sample, the dataset of all topic
pairs is partitioned into subsets corresponding to distance
subintervals. Specifically, cosine distance between positive
topic-word vectors ranges between 0 and 1, and we partition
the [0, 1] interval into 10 subintervals of equal width. Each
subset contains the pairs of topics whose mutual distance
falls within the corresponding interval’s boundaries. The final
balanced sample of topic pairs is created by sampling the
same number of pairs from each of the subsets. Inspection
of a validation sample showed that it contains 36% of pairs
with matching topics, as opposed to less than 1% of matches
expected from a fully random sample.

APPENDIX D
DETAILS OF TOPIC PAIRS ANNOTATION
Here we append Section III-A2 by describing in detail the
process of annotation of topic pairs. For the ease of reference
we first repeat, in a compact form, the definition of a topic
match, and the definition of the labels used to annotate topic
pairs.

A topic match is defined as conceptual equality of topics –
two topics are considered equal if they are interpretable as
the same concepts, where the interpretation of a topic as a
concept is as specific as possible. On the semantic level,
we define topic equality as matching of concepts obtained
by interpreting topics as specifically as possible. Matching
of concepts is defined as equality or near equality of con-
cepts, allowing small variations and similar aspects of a
same concept. Stochastic differences are accounted for by
labeling topics as equal but with presence of noise. This
is the case when one or both topics contain a noticeable
amount of noise but the topics are still interpretable and
the equality of interpreted concepts exists as previously
defined.

A pair of topics is labeled with 1 in case of topic equality,
i.e., when concepts match without noise. A pair is labeled
with 0.5 in case of a match in the presence of noise or small
semantic variation, and with 0 when the concepts do not
match.

News topic pairs were annotated by the authors that per-
formed topic discovery and analysis [25] on the corpus from
which the news reference topics were derived, and by students
of English studies acquainted with the topics of US politics.
Pairs of biological topics were labeled by a biological scien-
tist and students of senior years of biology.

Precise labeling instructions were formed, containing the
previous definition of a topic match, examples of topic
pairs, and clarifications of the labeling process. Annotators
proceeded to annotate the previously described dataset of
topic pairs containing both model and reference topics. Each
topic was represented as a list of 15 top-ranked topic words
and 15 top-ranked topic documents. Documents were rep-
resented as informative summaries – titles of news articles
and initial fragments of original text in case of biological
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TABLE 11. Supervised models used for classification of topic pairs and models’ hyperparameters that are optimized in the process of model selection.

texts. The annotators also had access to full text of the
documents.

The process of annotation was performed according to the
instructions from [47]. For each dataset, in each round of
annotation all the topic pairs were annotated by three annota-
tors. Annotation quality was assessed using Krippendorff’s α
coefficient that measures mutual agreement of the annotators
corrected for the possibility of random agreement [47]. Two
versions of α coefficient were used – nominal α, which
measures strict equality of annotations, and ordinal α based
on the distance of annotations on the ordinal scale. The two
versions are labeled as αn ande αo, respectively.
At the beginning of the annotation process, a small pilot set

of 15 topic pairs was annotated by all the annotators in order
to clarify the instructions. In the next step a calibration set
of 50 topic pairs was annotated and the application of anno-
tation instructions was discussed for topic pairs with large
disagreement. The α coefficients of the calibration round
were calculated, yielding αn of 0.568 and αo of 0.831 for
news topics, and αn of 0.576 and αo of 0.712 for biological
topics. Next a test set of 50 topic pairs was annotated, yielding
αn of 0.663 and αo of 0.862 for news topics, and αn of 0.599
and αo of 0.782 for biological topics. Improvements of the
agreement coefficients were interpreted as a consequence
of clarification of both the annotation instructions and the
method of their application. Lower annotator agreement for
pairs of biological topics is likely a consequence of the fact
that biological topics, as opposed to news topics, correspond
to more complex and abstract concepts that are harder to
interpret.

After the first two annotation rounds the agreement coeffi-
cients were deemed sufficiently high for both datasets. This
decision was additionally supported by the feedback from
the annotators who assessed both the definitions of topic
matching and the process of annotation as reasonable and
comprehensible. The annotation process was continued and
for each dataset another 250 topic pairs were annotated. These
pairs were merged with the 50 pairs form the test set to
produce the final set of 300 topic pairs, each pair annotated
by three annotators.

For the final sets containing all the annotated pairs, the cal-
culation of α agreement coefficients yielded αn of 0.689 and
αo of 0.865 for news topics, and αn of 0.648 and αo of 0.797
for biological topics.

APPENDIX E
CONSTRUCTION OF THE SUPERVISED TOPIC MATCHER
Here we append Section III-A3 with the details of the meth-
ods of feature construction and model construction. The goal
of these methods is the construction of a binary classifier that
predicts weather a pair of topics matches or not.

Four standard classifiers are considered: logistic regres-
sion [48], support vector machine [49] with radial
basis function kernel, random forest [50], and multilayer
perceptron [48]. We use the implementations of the models
available as part of the scikit-learn framework [98]. Classifi-
cation models and the corresponding hyperparameters that
we optimize are summarized in Table 11. Other hyperpa-
rameters are set to sensible default values defined by the
scikit-learn framework [98].

In order to perform supervised classification of topic pairs,
each pair is represented as a vector of features. These features
should contain information enabling a good approximation
of semantic matching. Preliminary experiments with features
constructed by concatenating topic-word and topic-document
vectors of the topics in a pair resulted in a relatively low
classification performance, yielding F1 scores between 0.4
and 0.6. A plausible explanation for this result is the so called
curse of dimensionality [56] – degradation of classification
accuracy caused by high dimensionality of feature vectors (in
our case, tens of thousands) and a small number of learning
examples (in our case, a few hundreds).

A possible solution for this problem is feature
extraction [56] – transformation of high-dimensional repre-
sentations into small feature vectors containing useful infor-
mation. Previous experiments with topic models show that
distance measures applied to topic-word vectors can be used
to approximate semantic similarity of topics [10], [24], [54],
[55]. Preliminary experiments with features based on various
distance measures applied to topic-word and topic-document
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vectors showed promising results, yieldingF1 scores between
0.7 and 0.8. Therefore, we opt for this approach to feature
extraction.

We base the features representing a pair of topics on the
following four distance measures: cosine distance, Hellinger
distance [51], L1 distance, and L2 distance. These four mea-
sures represent four distinct measure types: angular distance,
distance between probability distributions, and two standard
measures of coordinate distance L1 and L2.
Before the application of a distance measure, topic-word

and topic-document vectors are normalized to probability
distributions. This is necessary in order for the Hellinger dis-
tance to be applicable and, in the case of L1 and L2, to insure
the insensitivity of features to the type of topic models.
Namely, probabilistic topic models produce topic-word and
document-topic vectors that contain small values correspond-
ing to probabilities, while the NMF topic model produce
vectors of unbounded and potentially large positive values.
Therefore, unnormalized features would result in distance
variation that reflects the difference in topics’ types.

The final feature representation of a topic pair is con-
structed by applying the previous four distance measures
to both the pair of normalized topic-word vectors and to
the pair of normalized topic-document vectors. This way
each topic pair is represented with eight features, four
based on topic-related words and four based on topic-related
documents.

For each of the four classification models, we use the entire
dataset of 300 labeled topic pairs to assess the performance
of the model variant with optimized hyperparameters. The
assessment is done using the procedure of nested five fold
crossvalidation and the F1 measure is used to measure the
classification performance of the models.

When performing the standard non nested crossvalidation
with K folds, model performance obtained for each combina-
tion of hyperparameters is calculated by learning the model
on K − 1 folds (distinct subsets of the learning data), and
calculating the performance on the remaining fold. The final
quality score is obtained as the average over all K folds.
When performing nested crossvalidation, for each ‘‘outer’’
subset of K − 1 folds, full hyperparameter optimization is
performed using non nested crossvalidation which partitions
the subset into K ‘‘inner’’ folds. In other words, nested cross-
validation uses regular crossvalidation to assess the entire
process of hyperparameter optimization, not just to assess
one combination of hyperparameters. Although computa-
tionally more expensive, nested crossvalidation gives better
assessment of the quality of a model obtained by hyperpa-
rameter optimization [52]. We generate crossvalidation folds
using stratified sampling in order to preserve, for each fold,
the ratio of class labels that is representative for the entire
dataset.

The described methods leads to optimized models that
achieve an F1 score of approximately 0.8, with variations in
performance that depend on the model and the dataset. The
logistic regression model achieves best F1 scores, and the

classifiers’ performance is close to the mutual agreement of
human annotators.

APPENDIX F
SUPPLEMENTARY COVERAGE-RELATED EXPERIMENTS
Here we supplement the Section IV with an analysis of mod-
els’ precision and recall, and with an empirical analysis of the
running time of the coverage measures.

A. RELATIONSHIP BETWEEN MODEL PRECISION AND
RECALL
We define the precision and recall of a topic model in terms
of the relevant topics (topics matching the reference topics)
retrieved by the model. A topic model’s recall – fraction
of the reference topics retrieved by the model – is equal to
the model’s coverage. Model precision is the fraction of the
relevant model topics – model topics that match the reference
topics. If more than one model topic matches the same ref-
erence topic, only one model topic is counted as relevant.
However, such redundancy does not occur in our experi-
ments – for each topic model instance a retrieved reference
topic is always matched by a single model topic. This might
seem counterintuitive since it is, at least in our experience,
not unusual that a model contains mutually similar topics.
The explanation is that our supervised matcher, described in
Section III-A, is built to match only highly similar topics.
In this experiment we analyze the precision and recall

of topic models analyzed in the coverage experiments of
Section IV. The details of these models of various types
and sizes are described in Section II-C. Similarly as in the
coverage experiments, for each combination of a model type
and a number of topics precision and recall scores of the
10 distinct model instances are averaged.

The results are shown in Figure 4 and Figure 5. Relation
between precision and recall depends on both the dataset and
the model type. One might expect that as the recall (cover-
age) rises with the increase of the model size, the precision
(the proportion of the relevant model topics) will decline.
However, this tradeoff occurs only in some cases, and it does
not entail a large loss of precision. For most topic model
types, the increase in the number of topics is related to an
insignificant decrease or even to a small increase in precision.
On the biological dataset, in most cases the precision remains
stable as the recall increases. The tradeoff is most noticeable
in case of the NMFmodel on the news dataset. However, even
in this case there is no drastic loss of precision – the NMF
model with 200 topics more than doubles the recall of the
NMF model with 50 topics, while the corresponding loss in
precision is only 35%.

The results of this experiment support the use of models
with a larger number of topics, which is in line with the
experiments in Sections IV and V. Namely, larger models
offer a significant increase in coverage (recall), which rarely
comes at a price of a noticeable loss of precision. The NMF
model is better than the probabilistic models in terms of
precision as well as in terms of recall. In other words, the
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FIGURE 4. Models’ precision (the fraction of model topics in the reference set) and recall (the
fraction of reference topics covered), on the news dataset.

TABLE 12. Running time (in seconds) of the supervised SupCov measure and the unsupervised AuCDC measure—time required for the processing of the
entire set of 100 topic models, average time per model topic, and average time per model. The experiment was performed using a 2.4 GHz Intel
i7 processor.

NMF instances will expectedly contain more relevant topics,
which should lead to quicker topic discovery. This is in line
with the previous recommendations for the use of the NMF
model from Section IV.

While the larger models do not suffer a large loss of
precision, the absolute number of their topics outside the
reference set is higher than in the case of smaller models.
Therefore an analyst might perceive larger models as less
useful. This observation is in line with the recommendation
form Section V that tools that speed up the process of topic
inspection should be used in conjunction with large models.

B. RUNNING TIME OF THE COVERAGE MEASURES
Time complexity of the coverage measures influences the
scalability of the coverage experiments. Asymptotic com-
plexity of the proposed coverage measures is analyzed in
Section III. In this sectionwe perform an empirical analysis of

themeasures’ running time. For each of the datasets, we timed
the calculation of the coverage measures on the set of 100
topic models described in Section II-C.

In terms of the number of reference topics R, the number
of model topics T , the vocabulary size V , and the corpus
size D, the complexity of the supervised SupCov measure
is O(RT (V + D)), while the complexity of the unsupervised
AuCDC measure is O(RTV ). The asymptotic complexities
might wrongly suggest similar running times, especially since
for both datasets the vocabulary size is very close to the
corpus size. However, the results, displayed in Table 12,
show that in practice the unsupervised AuCDC measure is
two orders of magnitude faster than the supervised SupCov
measure. This is caused by the fact that the time required
to process a pair of topics differs greatly between the mea-
sures. For the SupCov measure, the processing of a topic pair
requires the calculation of eight distance-based features and
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FIGURE 5. Models’ precision (the fraction of model topics in the reference set) and recall (the
fraction of reference topics covered), on the biological dataset.

the computation of the supervisedmodel’s output. In contrast,
in case of the AuCDC measure the only operation required
is the calculation of cosine distance. Additionally, for the
AuCDC measure, the distances between all topic pairs are
pre-computed using matrix-level computation. This is more
efficient than calculating vector distances for each pair of
topics.

The results show that the AuCDCmeasure is time-efficient
and well suited for large experiments. However, the Sup-
Cov measure could be optimized by using less features
or a more efficient supervised model, assuming that this
would not cause a degradation in accuracy. Another possible
optimization is to pre-compute the distance-based features
using matrix-level operations. Additionally, the computation
of both measures could be parallelized by distributing the
topic models across the available processor cores.
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