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ABSTRACT In Vehicle-to-Vehicle (V2V) communications, channel load is key to ensuring the appropriate
operation of safety applications as well as driver-assistance systems. As the number of vehicles increases,
so do their communicationmessages. Therefore, channel congestionmay arise, negatively impacting channel
performance. Through suitable adjustment of the data rate, this problem would be mitigated. However, this
usually involves using different modulation schemes, which can jeopardize the robustness of the solution
due to unfavorable channel conditions. To date, little effort has been made to adjust the data rate, alone or
together with other parameters, and its effects on the aforementioned sensitive safety applications remain to
be investigated. In this paper, we employ an analytical model which balances the data rate and transmission
power in a non-cooperative scheme. In particular, we train a Deep Neural Network (DNN) to precisely
optimize both parameters for each vehicle without using additional information from neighbors, and without
requiring any additional infrastructure to be deployed on the road. The results obtained reveal that our
approach, called NNDP, not only alleviates congestion, leaving a certain fraction of the channel available
for emergency-related messages, but also provides enough transmission power to fulfill the application layer
requirements at a given coverage distance. Finally, NNDP is thoroughly tested and evaluated in three realistic
scenarios and under different channel conditions, demonstrating its robustness and excellent performance in
comparison with other solutions found in the scientific literature.

INDEX TERMS Vehicular ad-hoc networks, connected vehicles, Vehicle-to-Vehicle (V2V) communica-
tions, congestion control, power control, data rate control, deep reinforcement learning.

I. INTRODUCTION
Future Intelligent Transportation Systems (ITS) aim to reduce
both the number and severity of accidents using connected
vehicles. In ITS, Vehicle-to-Vehicle (V2V) communica-
tions [1], [2] periodically exchange broadcast single-hop
messages, called beacons, to announce information which
enables the tracking and prediction of neighboring vehicle
behavior [3]. The goal is to achieve context awareness by
means of cooperation among vehicles [3]. As the number
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of vehicles on the road increases, this context awareness
is crucial, laying the foundations for many safety applica-
tions that reduce the risks of collision [4]–[6]. An over-
loaded channel compromises this feature because high packet
losses may occur; affecting both periodical beaconing and
event-related messages triggered in emergency cases [7].
Context-awareness can help leave a certain fraction of the
channel capacity available to be used to deliver relevant mes-
sages, guaranteeing, a priori, the safety of drivers, passengers,
and pedestrians.

Channel congestion may be controlled by different trans-
mission parameters. The most common approach adjusts
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the beaconing rate [8]–[10]. Another approach fine-tunes
transmission power, thus regulating the number of messages
received by vehicles [11]–[13]. Finally, the data rate is also a
parameter used to relieve channel congestion. However, very
few proposals for data rate adaptation have been discussed in
the scientific literature [14].

Adjusting a single parameter often entails worse outcomes
in reducing channel load in highly congested scenarios. For
instance, if the transmission power is decreased too much,
messages would reach only a few neighboring vehicles; those
located very near, leading to poorer cooperation among vehi-
cles. In contrast, fine-tuning a combination of two or more
parameters may yield better performance results since no
drastic changes that would be detrimental to cooperative
awareness occur. With this line of action, the most com-
mon approaches jointly consider transmission power and
beaconing rate [15]–[17]. An optimal joint allocation of both
parameters would be the best solution; however, the asso-
ciated optimization problems are not always convex [18].
This issue may result in mixed-integer problems (MIPS),
escalating computing complexity. To deal with this problem,
some proposals in the literature suggested applying artifi-
cial intelligence (AI) techniques to reach an optimal joint
allocation of beaconing rate and transmission power [19].
Although this set of parameters works significantly well,
it is more consistent to combine data rate and transmission
power since they are intrinsically interrelated. That is, high
data rates reduce channel load but use more complex mod-
ulations, which are less robust against unfavorable channel
conditions, and their efficiency depends on the transmission
power radiated. Therefore, high transmission powers should
be employed to balance the weakness of fading and atten-
uation at longer distances. Joint data rate and transmission
power solutions are rarely found and simply treated in the
scientific literature, which means they have limited ranges of
data rates and transmission powers [20], [21].

In this paper, we apply the Deep Reinforcement Learn-
ing (DRL) framework to alleviate channel congestion through
optimizing data rate and transmission power simultaneously.
Given the nature of this problem, in which no a priori infor-
mation or data about the (road) environment is available,
we formulate it as a Markov Decision Process (MDP) and
solve it using Deep Reinforcmeent Learning (DRL) algo-
rithms. Previous proposals applying DRL to this problem
are focused on infrastructure networks and disregard data
rate control [22]–[24]. Our solution is addressed to an ITS
G5 infrastructure-less (ad hoc) network; that is, a distributed
environment where cooperation among vehicles naturally
leads to Multi-Agent Reinforcement Learning algorithms
(MARL) [25], [26]. However, the solution given in these
papers are difficult to train and are not yet mature enough,
especially regarding future real implementations. In our case,
we train a single agent, whose resulting policy could be
easily stored on-board any vehicle belonging to the network.
Moreover, this shared policy obtains suitable results without
the need to tackle the complexities associated with MARL

approaches. In fact, in our previous paper [19], we demon-
strated that this single agent, when appropriately trained,
controls beaconing rate and transmission power by using a
tabulated Q-learning method. Unlike [19], in this work we
employ DRL, which is appropriate when the state space is
large and continuous, as occurs in our case (road environ-
ment). The outcoming actions (data rate and transmission
power) of the trained Deep Neural Network (DNN) are then
applied by vehicles in a non-cooperative fashion, without
the need to request additional information from neighboring
vehicles.

This proposed mechanism, denoted Neural Network for
Data rate and transmission Power (NNDP), controls over-
all channel congestion while assuring a certain transmission
range with the most robust data rate possible. In short, we ver-
ify that training a single agent using our DRL approach is an
appropriate solution to jointly adapt data rate and transmis-
sion power and thus adjust congestion levels in an effective
way. The main contributions of this research work are sum-
marized as follows:

• The policy is implemented through a DNN solution,
which accepts continuous values as input. All the val-
ues stated in the standard are taken into consideration.
This endows the algorithm with greater flexibility and
accuracy than previous approaches [20], [21].

• The proposed method keeps the channel load below a
certain threshold to avoid congestion, which notably
reduces packet loss. At the same time, channel under-
utilization is avoided.

• Transmission power is adjusted to the necessary level
to guarantee a given packet delivery ratio at a certain
distance.

• Low data rates with more robust modulations schemes
are rewarded, whenever possible, if the channel load
allows their usage.

• The model obtained can be applied in a fully distributed
fashion, without the need for a centralized network
infrastructure.

• Finally, no information from neighboring vehicles is
required to carry out actions, so any exchange with
the application layer is disregarded for an appropriate
resource allocation operation.

The remainder of the paper is organized as follows. First,
Section II discusses the related work and congestion control
from the viewpoint of the existing trade-off between trans-
mission power and data rate. Then, in Section III, we detail
the model proposed and the solving method used. Section IV
conducts the performance evaluation, discussing different
simulation scenarios and metrics, and compares the achieved
results with other proposals of interest. Finally, Section V
summarizes the main conclusions.

II. RELATED WORK
Vehicle communications are specified by the Euro-
pean Telecommunications Standards Institute (ETSI). In
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particular, ETSI defines the ITS-G5 radio channel comprising
a 10 MHz control channel at the 5.9 GHz band of the IEEE
802.11p standard [27]. Transmissions over these networks
are broadcast and employ Carrier-Sense Multiple Access
with Collision Avoidance (CSMA/CA) as a medium access
control (MAC) protocol. The ETSI Cooperative Awareness
Service (CAS) also features periodic beaconing over one-hop
communications as the basis of cooperative awareness. Such
periodic messages or beacons, formally called Cooperative
Awareness Messages (CAM) in Europe or Basic Safety
Messages (BSM) in the US, are responsible for disseminating
status and environmental information to vehicles on the
control channel (G5CC in Europe and Channel 172 in the
US, respectively). However, the aggregated load generated
by dispatching beacons may cause packet loss, thereby neg-
atively impacting safety applications. In addition, the Decen-
tralized Environmental Notification (DEN) service, which
is in charge of notifying about risk-related road events [7],
needs some channel availability to guarantee the appropri-
ate delivery of event-related messages in emergency cases,
called Decentralized Environmental Notification Messages
(DENM). To this end, the Cross-Layer Decentralized Con-
gestion Control (DCC) Management Entity [28] is aimed
at preventing ITS-G5 radio channel overload by adjusting
different transmission parameters.

Regarding single-parameter control, beaconing or message
rate is the most frequently employed congestion control
parameter, and different authors have implemented algo-
rithms which relate beaconing rate to the measured Channel
Busy Rate (CBR) [8], [9], vehicle dynamics [3], [29], [30],
or context information [10], [31]–[33], among others. How-
ever, in some cases, the only way to alleviate congestion is to
decrease the beaconing rate excessively, which may degrade
the necessary context awareness capabilities and hence vehi-
cle safety [34].

Another widely used parameter in congestion control is
transmission power. Reducing transmission power means
decreasing coverage distance and thus, the number of vehicles
that receive the broadcast messages, so overall congestion
is also alleviated. Several works propose controlling trans-
mission power as a function of different metrics. Authors
in [35] employed channel state information (CSI) to max-
imize energy efficiency in wireless cellular networks. The
work in [11] exploited vehicle speed as a parameter to allocate
transmission power. In particular, this approach extended
the transmission range in the case of high speeds to raise
awareness in neighboring vehicles with less time-to-collision.
Vehicle density is also employed in [12] to decide whether to
increase or decrease transmission power. Likewise, authors
in [39] included an SNIR estimation in their study. Con-
versely, some proposals directly allocate transmission power
as a function of the channel load [13], [40]. In [41], a parame-
ter denoted as vehicle position prediction error determined the
increase/decrease in transmission power. In general, if trans-
mission power takes inadequately low values while attempt-
ing to mitigate congestion, the number of receivers would

drop too much and overall awareness would be jeopardized.
On top of this, abrupt transmission power variations also
cause variations in the resource allocation mechanisms, as is
dealt with in [13].

More advanced proposals combine two ormore parameters
simultaneously to take advantage of the benefits of each
them as much as possible. In this case, an algorithm for
joint optimal allocation of several parameters could be a
good solution, but we find an important drawback in many
cases: the optimization problem is usually non-convex. Even
though there are solutions involving two or more param-
eters that clearly improve the usefulness and flexibility of
congestion control [15], [18], [37], [38], [42]–[44], there is
no silver bullet to resolve congestion control from a multi-
parameter perspective. Given the complexity of the optimiza-
tion problem, different advanced solutions have emerged.
Similarly to [14] but including beaconing rate and transmis-
sion power as control parameters in the mathematical prob-
lem, an algorithm based also on game theory was proposed
in [16]. Decision-making theory has also been an impor-
tant tool to achieve optimal congestion control and endow
a certain amount of intelligence to vehicles. In particular,
the Markov Decision Process (MDP) framework is one of
the decision-making techniques that provide the basis of
reinforcement learning (RL) [45] commonly employed to
solve complex problems. Congestion control is proposed by
varying transmission power using both Q-Learning, in the
particular case of LTE-V2V communications [22], and a
MARL approach for overall wireless communications [25],
[26], [36]. Regarding solutions where more than one param-
eter is optimized, authors in [23] derived the best selection
of the frequency sub-band together with transmission power
through a deep decision-making approach. In the case of
C-V2V networks, a reinforcement learning framework offers
a smart solution for balanced power control and rate adapta-
tion [24]. Finally, in the context of the IEEE 802.11p standard,
and consequently, in a distributed fashion, discrete Q-learning
has also been proposed in [19] to optimize both beaconing
rate and transmission power allocation.

Despite the fact that the IEEE 802.11p standard [27]
defines up to 9 different data rates from 3 to 27 Mbps,
a data rate of 6 Mbps is usually recommended. Moreover,
authors in [46] provided a method to identify the optimum
data rate according to different scenarios, assuming and fix-
ing the 6 Mbps data rate. Higher data rates entail shorter
packet durations, reducing the channel load, but these data
rates employ high-order modulation schemes and coding
rates. This means less robustness against adverse channel
conditions over distance. To mitigate this effect, higher trans-
mission power is required to guarantee an adequate Packet
Delivery Ratio (PDR) at a given target distance. On the other
hand, low data rates reduce the required transmission power
levels to provide reliable communications at a certain target
distance but increasing the transmission time and therefore,
decreasing the throughput. The trade-off between data rate
and transmission power in terms of transmission range and
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TABLE 1. Comparison of our congestion control proposal (NNDP) and other related works.

FIGURE 1. Reception probability variation over distance (left) and
channel busy ratio (right) for different data rates and transmission
powers using a Nakagami-m fading model.

reception probability is depicted in Figure 1. In [46], trans-
mission power was adjusted to obtain the same PDR as the
reference value obtained for 6 Mbps. However, this was
discussed in [47], whose authors claimed that it is not clear
whether the selected transmission power levels in [46] guar-
antee the communication range required by vehicular applica-
tions. Using both simulations and field experiments, authors
in [47] demonstrated that 6 Mbps is not always the optimum
data rate. As a consequence, there is limited research work
which tackles data rate variations. We can highlight the study
in [14], which is a non-cooperative approach based on game
theory to successfully maintain congestion below a certain
level.

As can be observed in Table 1, most of the aforemen-
tioned proposals integrate the beaconing rate and transmis-
sion power parameters to control channel congestion in their
formulations. In light of the existing trade-off between data
rate and transmission power, as explained above and in Fig-
ure 1, data rate variations could be compensated by simul-
taneously fine-tuning transmission power. Therefore, this
double-parameter perspective is much more physically con-
sistent due to the channel condition dependence of the data
rate: high data rates are more affected by fading and atten-
uation, and thus, the effective transmission range is reduced,
although it can be adjusted by increasing transmission power.
Moreover, data rate and transmission power parameters can
be directly controlled by the DCC Management Entity as
defined by the standard [3]. In contrast, other parameters
(e.g. receiver sensitivity) aremore dependent on the particular
hardware of each vehicle and may affect the MAC operation.
We consider this issue out of the scope of this work. To the
best of the authors’ knowledge, there are only two works
aimed at combining data rate and transmission power in
vehicular ad-hoc networks [20], [21]. The first work proposed

a look-up table to optimally select pairs of transmission power
and data rates in terms of the PDR and end-to-end delay.
However, available pairs of data rate and transmission power
parameters are very limited, which leads to undesired behav-
ior whenever the environment is slightly modified. Moreover,
the validation results of this work are scarce and therefore
weak. The second work, called CACC [20], analyzed the
Received Signal Strength (RSS) of the received packets to
determine whether their losses were due to weak signal or
collisions and, based on this, decided to decrease or increase
the transmission power or data rate. Despite obtaining fairly
good results in terms of the PDR, the channel is underused
or overused depending on the scenario, and only a few data
rates among all the available range are analyzed for simpler
scenarios. Keeping these weaknesses in mind, a more sophis-
ticated scheme would be necessary to consider the full range
of each parameter and select them according to different
goals. Consequently, to contribute to filling this research
gap, we propose a deep reinforcement learning approach,
called NNDP, to (i) prevent congestion, leaving some of the
channel capacity to deliver event-related messages available.
Also, (ii) transmission power is intended to preserve adequate
performance of safety applications at a certain distance, while
(iii) the most robust data rate is set whenever possible.

III. CONGESTION CONTROL USING DRL
Congestion control is developed to guarantee an appropriate
channel load, usually measured by the CBR metric, around
a certain target value denoted Maximum Beaconing Load
(MBL). According to several works [16], [48], [49], its opti-
mal value is around 0.6 and 0.7. Higher channel loads may
increase packet loss and hinder proper safety application
operations. In this paper, we propose to control conges-
tion by jointly adjusting both the data rate and transmission
power. However, this is not trivial, and a subtle trade-off
between both parameters is required to satisfy application
layer requirements. In the case of transmission power, values
that are too high increase congestion while values that are too
low endanger vehicles’ awareness.In terms of data rates, high
rates alleviate congestion due to shorter packet transmission
intervals. Nonetheless, high order modulations are required
and robustness against fading and attenuation is lessened as
distance increases. To this aim and as already mentioned in
Section I, we first model the problem through aMarkov Deci-
sion Process (MDP) framework. In general, MDP addresses
congestion control in ad-hoc vehicular communications as
an optimization procedure over discrete actions taken by
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the vehicles themselves in a distributed fashion. However,
when the state space is large or continuous, novel approaches
employ approximation methods, as in our proposal. Unlike
in our previous work, where we used beaconing rate and
transmission power [19] and the MDP was solved using
tabulated policies, in this work we apply Deep Reinforcement
Learning (DRL) to find the optimal transmission parame-
ters more accurately. Within the DRL framework, we train
DNN models using a simplified environment programmed in
Python. Once the training is completed, we check whether
the trained DNN (agent or model) successfully alleviates the
channel congestion through individual actions of the vehicles
in realistic scenarios using a discrete event simulator for
networks.

A. REINFORCEMENT LEARNING FRAMEWORK
MDPs provide a mathematical framework to derive optimal
sequences of actions, so they are commonly applied to formu-
late optimization problems. This is especially useful in those
challenging environments where outcomes may be partially
random or difficult to predict, as happens in vehicular set-
tings. Formally, MDPs consist of the following elements:

• The agent is the learner entity that continuously seeks
optimal behavior. In our case, the agent is every single
vehicle on the road, whose goal is to reduce overall chan-
nel congestion in a distributed manner, jointly employ-
ing transmission power and data rate parameters.

• The environmental situation, along with the properties
of the agent is called state. Usually, the state is defined
as a vector s ∈ S that embraces both the outer and inner
properties of the agent, with S being the set of possible
states.

• The agent is able to perform an action a ∈ A(s). This
action belongs to the available set of actions for each
state. In our case, actions are a tuple consisting of the
transmission power and data rate to be set in forthcoming
transmissions.

• Every time the agent takes an action, the environment
is modified, presenting a new situation to be explored.
In this change of state from s to s′, the agent obtains a
reward r , considered as the feedback from the environ-
ment. It can be modeled as a function of the state s and
the action taken a, i.e., r(s, a) = f (s, a) ∈ R.

MDP-solving algorithms employ what is called policy,
denoted as π , a mapping between states and actions; that is,
π : S → A. The main objective is to reach the optimal policy
π∗, which maximizes the accumulated sum of rewards over
the entire lifespan of the agent during training. This decision
policy can be determined by the state-action function, also
called the Q-function, Q(s, a), which can be approximated
using Deep Neural Networks (DNN). In general, Markovian
systems operate from discrete spaces so the agent and envi-
ronment interact with each other in a sequence of discrete-
time steps. However, as occurs in our particular case, more
complex problems comprising continuous variables could

require some approximations to be solved. This will be
detailed in the following subsection while particularizing the
constituent elements of the proposed MDP model.

B. DATA RATE AND TRANSMISSION POWER
Roads are fairly complex environments which are influenced
by many factors, not only the physical parameters of the
road and vehicles (e.g., speed, position, acceleration, etc.)
themselves but also numerous human factors. In this way,
traffic conditions are quite unpredictable due to unforeseen
events. The associated number of neighboring vehicles and
their beaconing loads may increase both channel congestion
and packet collisions, therefore drastically reducing packet
reception probability. Furthermore, there is an additional
randomness due to the channel fading and attenuation pro-
duced by the surroundings of the road. For instance, rural
areas generally represent more favorable channel conditions,
while urban areas cause higher fading (e.g., multipath effects
caused by objects and buildings) and increase the number of
weak signals in the environment. We assume a well-accepted
Nakagami-m [50] fading and path loss propagation model
in order to realistically characterize a wide range of channel
conditions. From this model, we compute the average carrier
sense range, rCS (m) as a function of the transmission power.
Basically, carrier sense range is defined as the average dis-
tance from the transmitter where the power is sensed by the
receiver over its sensitivity (S), as suggested in [13]:

rCS =
0(m+ 1

β
)

0(m)(SAmp )
1
β

(1)

where 0(x) is the gamma function, p the transmission power,
β the path loss exponent, A is defined by the expression
( 4π
λ
)2 (λ is the wavelength of the carrier), and S is receiver

sensitivity. Finally, m is the so called shape parameter, which
indicates the severity of the fading conditions. For instance,
m = 1 means severe fading, while m = 5 denotes the most
favorable fading. As previously shown in Figure 1 in which
the reception probability was computed from a Nakagami-
m model, the carrier sense range depends on transmission
power. This can be observed in the carrier sense range expres-
sion (1) as well. Therefore, as transmission power increases,
a larger number of packets received from neighboring vehi-
cles that are located at greater distances could be success-
fully decoded. That is, there is information available from a
greater number of vehicles thus enriching context awareness.
However, this increase in power also implies increasing the
channel load. In contrast, if transmission power is exces-
sively reduced, vehicles would receive packets only from
closer neighbors. Therefore, there is a trade-off for achieving
a certain channel load level without jeopardizing context
aware vehicle information. To set appropriate transmission
power while controlling congestion, a second parameter is
usually considered. The most common approach consists
of varying the beaconing rate by fixing the data rate by
default to 6 Mbps. However, there is no reason not to propose
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TABLE 2. IEEE 802.11p Data rates.

controlling congestion by dynamically adjusting data rates
while fixing the beaconing rate to the maximum allowed (i.e.,
10 Hz). Indeed, the IEEE 802.11p standard [27] defines up to
9 different data rates, from 3 to 27 Mbps. Note that, as shown
in Table 2, higher data rates imply higher-order modulation
schemes.

On the one hand, high data rates are more beneficial
in terms of network throughput since packet transmissions
are shorter, but they are also more prone to packet error
due to interference and noise. Therefore, the higher the
data rate, the higher the Signal-to-Interference-plus-Noise
Ratio (SINR) threshold required for successful packet recep-
tion and the shorter the effective transmission range. Table 2
can be used to illustrate the trade-off (related to different
data rates) between generated channel load and transmission
power requirements over distance. Note that the receiver
sensitivities stated in the standard [47], [51], denoted by Sr ,
are the minimum required values to keep the Packet Error
Ratio (PER) below 10%; which means that, in the absence
of interference/noise, at least 90% of the packets with that
power level will be successfully received. Under these cir-
cumstances, the selection of the appropriate data rate should
be based on its capacity to reduce the channel load while
simultaneously guaranteeing the application requirements
using the most suitable transmission power [47]. In short,
we mainly combine both transmission power and data rate
to make sure that channel loads are kept below the required
MBL. Once congestion is alleviated, we determine the trans-
mission power to ensure that, at a certain target distance,
the received power is above the Sr required by a given data
rate. In the following section, the safety distance, transmis-
sion power, and data rate for the measured CBR are related
to each other.

1) AGENTS, ACTIONS, AND STATES
Agents, which are represented by every single vehicle on
the road, continuously sense their environment to adequately
adjust both transmission power and data rate. As previously
stated, they are mainly intended to reduce overall channel
congestion in a distributedmanner bymaking use of their own
metrics and without relying on any centralized infrastructure.
To this end, each vehicle first computes the channel capacity
(C , messages per second) that would be available according

to the selected data rate, as illustrated in Equation (2).

C =
(
Cd

⌈
bst +M
Cd

⌉
+ tps

)−1
(2)

The data field of the Medium Access Control (MAC)
frame/packet layer [27], also called MAC Protocol Data
Unit (MPDU), is comprised of the packet length M in bits
(536 B), plus 22 bits of service and tail (bst ), and addi-
tional padding destined to reach multiple coded bits (Cd )
per Orthogonal Frequency Division Multiplexing (OFDM)
symbol. This padding is represented in Equation (2) by the
ceiling function and, according to Table 2, each data rate
entails a different number of coded bits per OFDM symbol.
Before transmission, the Physical layer (PHY) also includes
a preamble and a signal field (tps, in seconds), which are
transmitted applying the most robust data rate (3 Mbps),
which translates into 40 µs. The whole packet structure is
summarized in Table 3. Once the data rate has been selected
and the channel capacity is calculated, each vehicle estimates
the CBR that would be measured if all vehicles employ the
same operating parameters. To this end, we use the average
carrier sense area (2×rCS ), the vehicle density detected in the
neighborhood (ρ), and the average beaconing rate (b), which
is set to 10 Hz for every vehicle.

CBR =
2rCSρb
C

(3)

The set of Equations (1), (2), and (3) allows vehicles
to carry out congestion control. We also consider actions
consisting of 2-tuples of transmission power (p) and data
rate (d), a = 〈ap, ad 〉. As stated in the standard [27], [28],
transmission power may take both discrete and continuous
values ranging from 1 to 30 dBm, whereas the data rate is
constrained to some discrete values, as shown in Table 2.
Notice that Equation (3) is only an estimation to express
channel load as a function of the transmission parameters
of every single vehicle. A more realistic calculation would
include information from neighboring vehicles, which would
turn the problem into a multi-agent approach. This type
of approach is very complex to address, train, and deploy.
Instead, we train a single agent to recognize and act against
different levels of congestion. Agents define states to model
their situation and their environment, so both data rate and
transmission power should be relevant parts of these states.
In addition, channel congestion has been included in the
state by using the estimated vehicle density (ρ) within the
neighborhood of each vehicle. The states are then defined as
a 3-tuple containing the currently used transmission power,
data rate, and estimated vehicle density, s = 〈p, d, ρ〉. When
a vehicle executes an action a = 〈ap, ad 〉, the environment
response leads the vehicle to a new state s′, as follows. The
transmission power and data rate are applied as the action
values to the state. For instance, if the current state transmits
at 15 dBm and 6Mbps and a = 〈−4.8, 12〉, the new state will
reduce the transmission power to 10.2 dBm and increase the
data rate to 18 Mbps. Since each vehicle applies the same
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TABLE 3. Packet structure for MAC and PHY layers.

trained policy, the channel load measured by the vehicles
will be also changed to the corresponding value, given by
Equation (3). Therefore, the transition to a new state s′ =
〈p + ap, d + ad , ρ〉 = 〈p′, d ′, ρ〉 is calculated depending
on action a = 〈ap, ad 〉. These state transitions describe the
behavior of the vehicles, which is governed according to the
rules imposed by the reward function.

2) REWARD FUNCTION
Every time the agent (or the vehicle) performs an action
and changes from state s to state s′, a reward r(s, a) ∈
R is received. Maximizing accumulated rewards over time
allows agents to learn the most suitable actions and, as a
consequence, obtain an optimal policy. As mentioned above,
the desired behavior is to maintain the channel load around a
certain MBL, whose ratio over the channel capacity is typi-
cally between 0.6 and 0.7. Higher channel loads may increase
packet loss and jeopardize the delivery of event-driven mes-
sages if an emergency arises. Conversely, lower channel loads
decrease awareness of the surroundings and may cause chan-
nel to be underutilized. In order to achieve the desired behav-
ior, we include the following function in our characterization:

g(x) = −sgn(x − xT )x (4)

where sgn is the signum function shifted by some target value
xT (in our case x = CBR and xT = MBL). As can be
observed, a positive reward increase is obtained as long as
the CBR approaches the target value (MBL). However, if the
CBR exceeds that target value, an increasing negative reward
is achieved. These penalties (negative rewards) intensify
learning speed [45]. In this way, reaching the MBL = 0.6 not
only allows us to reduce congestion and leave a certain
fraction of the channel free to guarantee the delivery of
emergency-related messages but also prevents channel under-
utilization. To move the agent toward this optimal behavior,
we add +10 to the reward whenever the CBR reaches the
MBL within a ±0.025 error interval and −0.1 otherwise.

In addition to CBR control, some restrictions should be
included to prevent the model from reaching undesired com-
binations of transmission parameters. For instance, the agent
could learn to set the most robust data rate (longer transmis-
sion times) at the expense of reducing transmission power
and thereby reaching a fewer number of neighbors. Despite
achieving adequate channel load levels, overall awareness on
the road would be seriously impacted; that is, transmitted
messages would only reach the closest neighboring vehicles.
To overcome this problem, we include a second term in the
reward function aimed at satisfying reliability and awareness
at a given distance. As already discussed in [47], higher data
rates reduce congestion in an effective manner but entail less

robustness against fading. This reduces the effective trans-
mission range, requiring an increase in transmission power
to obtain the same PDR at a certain distance. The sensitivities
(Sr ) specified in Table 2, also called reliability sensitivities,
depend on the selected data rate and are used to improve
the performance of the application layer, guaranteeing that at
least 90% of the packets received are successfully decoded.
Using a one-slope path loss model and the aforementioned
sensitivities, l = Adβs , we can shape the reward function to
provide an acceptable PDR for safety applications, at least,
up to a certain distance, called the safety distance (ds). There-
fore, the higher the received power over sensitivity, the higher
the reward obtained, as indicated by the following equation:

r = −|(Sr + l)− p| (5)

Note that this expression is aligned with the fact that from a
logarithmic scale perspective, transmission power (p) minus
path loss (l) results in power received (p − l) at a certain
safety distance, which, in turn, should be greater or equal to
sensitivity. It is true that lower data rates entail lower sensitivi-
ties, and the effective transmission range can be much higher
than that for higher data rates (more vulnerable to channel
conditions). This aspect is already included in expression (5).
However, we also encourage low data rate usage whenever
possible by adding a third term, so, the higher the data rate,
themore negative the reward. In this way, excessive variations
among higher data rates are most likely avoided. The total
reward function is therefore aimed at controlling channel
loads (see Equation (4)) while guaranteeing the proper oper-
ation of safety applications (Equation (5)) by intelligently
exploiting the trade-off between transmission power and data
rate, as shown in Equation (6):

r = ωcg(CBR)− ωp|(Sr + l)− p| − ωd (d)ωe (6)

Each term of the reward function is normalized and
weighted using an iterative process to the following values:
ωc = 2, ωp = 0.25, ωd = 0.1, and ωe = 0.8. As can be
observed, channel load control assumes greater importance,
while those terms that control single parameters play a minor
role. For instance, excessive values of ωc with respect to ωp
and ωd result in satisfying the CBR limit, but some trans-
mission power and data rate combinations may be undesired
(e.g., too low transmission powers). In contrast, lower values
of ωc could violate the desired MBL objective, which means
that congestion is no longer being controlled. Concerning
the exponent of the data rate term, named ωe, it governs
how negative the rewards are as long as data rates increase.
A 0.8 value is set to obtain a similar range for the rest of
the terms. In essence, a balance among weights is required
to satisfy the different constraints appropriately within the
bounds of the parameters stated in the standard.

3) DERIVATION OF π∗

Once the proposedMDPmodel has been formulated, the next
step is to derive the optimal policy (π∗), which determines the
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TABLE 4. Environment and learning parameters and their values.

FIGURE 2. The average accumulated reward for PPO and SAC algorithms.

best action for every single state. Traditional MDP-solving
algorithms, such asQ-learning [19], [52], use tabularmethods
which map π : S → Amerely by employing a table. Despite
achieving a convergent solution, and, a priori, good results,
tabular methods are not appropriate to map every single state
onto a suitable action, in particular when the state space is too
large or continuous, as occurs in our case. Instead, we make
use of Deep Neural Networks (DNN) to model π . Therefore,
the policy is represented not as a table but as a parameterized
functional form with a vector of weights, that is π := f (θ ).
By adjusting these weights θ , a wide range of functions can
be implemented by the DNN. In our case, the DNN learns the
best transmission parameters based on the road environment
and vehicle situation.

There are many DRL algorithms based on DNNs [53]–[58]
but not all of them accept the same type of states and actions.
Recall that in our case, transmission power and vehicle den-
sity are continuous parameters. Concerning data rate, we con-
sider it to be continuous, to later take the closest discrete value
that satisfies the requirements stated in the standard. In this
way, we resort to algorithms that feed on continuous actions,
such as [53], [55]–[58], highlighting [57] and [58] for their
good performance. The first one to consider is the so-called
Proximal Policy Optimization (PPO) algorithm [57], which
inputs multiple epochs of stochastic gradient ascent to per-
form each policy update. PPO exhibits the stability and relia-
bility of trust-region methods (TRPO) but it is much simpler
to implement. The second algorithm that also presents good
results is the Soft Actor-Critic [58], whose main feature is
entropy regularization. With SAC, the policy maximizes a
trade-off between the expected return and entropy, a measure
of randomness in the policy, which ensures greater robustness

and stability. In our work, both algorithms were implemented
in Python through RL-dedicated libraries [59], [60]. Basi-
cally, they iteratively calculate the maximum expected future
rewards for each action at each state according to different
policies. In particular, we selected a policy that implements
the actor-critic method based on a multilayer perceptron
(2 layers of 64 nodes). A hyperbolic tangent activation func-
tion is employed for PPO by default, whereas a Rectified
Linear Unit (ReLU) is used for SAC. The initial weights
of the DNN models for both PPO and SAC agents were
randomly initialized. In practical terms, as shown in Figure 2,
PPO results in much faster training than SAC, but eventually,
the rewards decrease, which means that the algorithm forgets
the good behavior learned. To avoid this situation, we auto-
matically save the best model every few episodes. Conversely,
SAC offers more stable rewards.

It is also important to highlight that the training process is
performed by a single vehicle that monitors different levels of
congestion, represented by the density of the vehicles sensed
(ρ). Then, the trained model is loaded onto every single vehi-
cle in the network to be evaluated (this process will be further
explained in the following section). The rationale behind this
is that channel loads are similar among neighboring vehicles
so all of them will have the same requirements and thus,
similar transmission parameters. This is just an assumption
that enables channel loads to be estimated by taking the
information from the vehicles (Equation (3)) into account.
This estimation will be fairly close to the real load. Overall
congestion is properly controlled in a distributed fashion as
will also be shown in the next section. Note that as each
vehicle applies the same policy with a similar channel load
among neighbors, our proposal successfully converges to the
same congestion level per vehicle. Finally, the environment
and learning parameters used for the training of the PPO
and SAC agents have been summarized in Table 4. In the
next section, the trained DNN models are fed into realistic
computer simulation software [61] to evaluate the perfor-
mance of the algorithms in terms of channel congestion. The
channel load estimate stated in this section and given by the
expression (3) will also be thoroughly tested for different
scenarios to prove the validity and robustness of the proposed
algorithm.

IV. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed
congestion control mechanism (NNDP), using OMNeT++
5.3 [61] and including the INET 3.5 library [62]. This library
implements the IEEE 802.11p standard along with realistic
radio propagation and interference models. This simulation
software as well as the RL libraries must be the cornerstones
of the learning process. Once the learning process is finished
and theweights of theDNNmodel have been thoroughly opti-
mized, the vehicles will apply the resulting actions to alleviate
any channel congestion episodes. In a real implementation,
this would be achieved by installing the trained DNN model
in the vehicle controller. The entire DNN model could be
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FIGURE 3. Diagram of the training process of the DNN in a simplified environment developed in Python (left), and the subsequent
evaluation of the trained model to control congestion in realistic vehicular networks (right). Different road scenarios have been simulated
in OMNeT++, in which each vehicle individually sends its state over the socket and receives the optimal actions of transmission power and
data rate from the DNN model (previously trained in Python).

directly exported for this purpose but numerous compatibility
problems may arise between OMNeT++ and RL libraries
written in Python. To resolve this issue, one option is to use
tables to store both actions and states, which would evaluate
the DNNs, but at the expense of losing accuracy and reducing
the potential advantages of DNNs against tabular methods
like Q-learning. As a simple solution to evaluate the trained
DNN model, we create a TCP/IP socket connection between
Python, in which the model is contained, and OMNeT++,
in which realistic road scenarios are simulated. The training
process of the DNN model in Python using different DRL
algorithms (PPO and SAC) and the subsequent evaluation of
the resulting trained DNN models are illustrated in Figure 3.

After opening the aforementioned socket connection
between Python and OMNeT++, which saves us from
exporting the whole trained model to the OMNeT++ sim-
ulator, each vehicle initialize its transmission parameters
(23 dBm and 6 Mbps), and our proposed congestion allevi-
ation mechanism (NNDP) starts to run. As can be observed
in Algorithm 1, it first reads the current transmission power
and data rate and calculates the vehicle density of the envi-
ronment. To this end, each vehicle uses the average carrier
sense range along with the number of neighboring vehicles
detected. Note that the vehicle density is only an estimation
that represents the channel load measured in the environ-
ment at a given time. Once the vehicles are aware of their
state, they send these 3-tuples (p, d, and ρ) to the Python
server. Before giving actions back to OMNeT++, the server
evaluates the model as many times as there are available
actions (per state) to avoid overlooking possible inaccuracies
in the training process and to guarantee that proper trans-
mission parameters are reached for every state. From the
simulator’s viewpoint, the server immediately responds with
the action recommended for that state in a single execution
time of the algorithm, so our solution is also useful in highly
variable scenarios. Finally, each vehicle adjusts its transmis-
sion parameters according to the received action.

NNDP allocates data rate and transmission power in a
distributed and non-cooperative manner, without relying on
any base station or infrastructure. Therefore, we compare it
with a similar existing congestion control mechanism called

Algorithm 1 NNDP Evaluation (OMNeT++)
1: s← 〈p0, d0, ρ0〉
2: loop over time t
3: for all v ∈ V do
4: Calculate rCS according to Eq. (1)
5: ρ ← n

2rCS
6: s← 〈p, d, ρ〉
7: a← θ (s) = 〈ap, ad 〉
8: p← p+ ap
9: d ← d + ad
10: end for
11: end loop

Channel-Aware Congestion Control (CACC) [20]. Basically,
CACC adjusts transmission power and data rate according to
the cause of packet loss. This is discerned by the Packet Deliv-
ery Ratio (PDR) and Packet Collision Rate (PCR) metrics,
which, in turn, are based on a given RSS threshold (ξ ). There-
fore, CACC is able to achieve the optimal MBL = 0.6 but
only when the RSS threshold is properly set. For the sake of
clarification, we will show how setting different values for
the RSS threshold (ξ = −85.72 and 92.26 dBm) may result
in different CBR levels. In general, the comparison among the
different approaches is conducted for the following metrics:

• Channel Busy Ratio (CBR) is defined as the fraction
of time (typically 1 second) in which the channel is
busy either due to transmissions or receptions. The CBR
indicates the best channel utilization so higher CBR
values are closely related to a greater number of packet
losses. In these cases, situation awareness is damaged,
and the adequate operation of safety applications may
be hindered.

• Neighboring vehicles (N ). Together with the CBR,
the number of neighboring vehicles is essential to pro-
vide insight into how information is distributed on the
road.

• Packet Delivery Ratio (PDR) is usually defined as
the ratio of successfully received packets by all the
receivers with respect to the total number of packets
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TABLE 5. OMNeT++ simulation settings.

transmitted [21], [50], [63], [64]. The PDR is said to be
an estimate of situation awareness, intrinsically related
to radio channel propagation and medium access control
packet losses. Therefore, the highest possible PDR is
desirable. Instead, authors of CACC [20] established
their own interpretation of the PDR as the relation
between the number of decoded packets (Ns) and the
sum of decoded packets and packets lost due to weak
signal reception (Nw). From our point of view, this defi-
nition differs notably from the original definition of the
delivery ratio [21], [50], [63], [64] since the authors of
CACC did not consider collisions in the total number
of packets lost. Despite using the PDR proposed in [20]
to implement CACC reliably, we compute the PDR in
a traditional way. In our case, the PDR is a transmitter-
centric approach, defined as the ratio between the num-
ber of packets transmitted that are successfully received
at a certain distance and the total number of packets
transmitted. Note that this PDR is a function of the
distance from which packets are successfully received.
More concretely, the PDR is calculated at 50 m steps.
This provides more accurate information in terms of
transmission power changes and their effects on cov-
erage range, which is of major interest for the problem
addressed here.

• Total number of decoded packets (Ns). The total num-
ber of beacons successfully received in the entire net-
work under the same scenario also provides additional
information about the proper operation of the different
algorithms.

The simulations are conducted using a fixed beaconing
rate of 10 Hz and a beacon size of 536 bytes. The resulting
PHY packet duration and channel capacity will depend on the
data rate [27]. For instance, 6 Mbps means a packet duration
of 760 µs and a total channel capacity of C = 1315.78 bea-
cons per second. All the simulation parameters are specified
in Table 5. The different scenarios tested are described below.

A. UNIFORMLY SPACED VEHICLES
To validate our proposed congestion control mechanism,
we compare the trained agents (PPO and SAC) in our NNDP
solution versus CACC. To this end, we first deploy a simple
scenario consisting of a row of evenly spaced vehicles in

FIGURE 4. Comparison of NNDP and CACC in a congested scenario based
on a single row of evenly spaced vehicles.

FIGURE 5. The PDR versus distance for a single row of evenly spaced
vehicles.

OMNeT++. This scenario seeks a situation in which the
channel loads measured by the different neighboring vehicles
are similar. In particular, we employ a single row of 400 static
vehicles, uniformly distributed along 2000 m. The outcomes
of this scenario, after an exhaustive simulation during inter-
vals of 25 s, are shown in Figure 4. As can be observed,
the trained PPO and SAC agents lead the vehicles to the
desired behavior previously described; that is, the CBR is
properly limited to 0.6 by adjusting both transmission power
and data rate. Although all the algorithms provide a similar
response in terms of channel load, CACC leaves the channel
underused with a CBR = 0.4, clearly below the MBL. This
may be a consequence of its narrower range of available
parameters (transmission power is subject to discrete steps
of 0.5 dBm and only 3 and 6 Mbps data rates are available).
Moving back to NNDP, on top of CBR control, the data rate is
intended to be robust against channel fading so NNDP agents
attempt to always set the lowest rate while the channel load
is successfully limited. Such an effect is illustrated by NNDP
SAC at the end of the road, where there is less congestion,
and therefore, lower data rates are used. Instead, NNDP PPO
chooses not to vary the data rate and to increase transmission
power. Note that despite having been trained according to the
same rules, each algorithm learns in a different way, which
results in different behavior for the vehicles. Higher data
rates are allocated by NNDP with regards to CACC while
matching the PDR levels. This means that more information
has been shared among vehicles so better context awareness
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FIGURE 6. Evaluation of different algorithms jointly controlling transmission power and data rates in a realistic traffic jam scenario comprised of two
approaching clusters of vehicles. The ongoing progress is described for several simulation times (i.e. 1, 5, 15, and 20 s).

is achieved. Regarding transmission power, it is high enough
to satisfy application layer requirements at a certain safety
distance (ds = 100 m). More specifically, we seek such
received power 100 m away from the transmitter, where the
PDR metric is equal to or greater than 0.8, as shown in Fig-
ure 5. It should also be pointed out that, on average, NNDP
variants reach a similar PDR value to the CACC algorithm,
which does not employ any CBR target. This contributes to
supporting the idea that 0.6 is a suitable target fraction of
channel utilization.

B. TWO RANDOMLY DISTRIBUTED MOVING CLUSTERS
The robustness of NNDP is thoroughly tested in a realistic
scenario in which the assumption related to channel load
is not satisfied. In this situation, vehicles are not evenly
spaced so channel load similarity between close vehicles does
not hold. Unlike the first scenario, we employ two different
clusters of vehicles bounded within a 500 m and 1000 m long
road section, respectively, and located 450 m away from each
other. The vehicles are also randomly located in a row in a
Poisson distribution of average density ρ = 0.2 and 0.4 vehi-
cles per meter, respectively. This results in the first cluster
(A) being comprised of approximately 100 vehicles located
from 0 to 500 m, an empty road section from 500 to 950 m,
and the second cluster (B) composed of about 400 vehicles
distributed along the next 1000 m (950 to 1950 m). A realistic
traffic jam scenario is represented, in which all the vehicles
are heading in the same direction. The vehicles located in
the front of cluster A are approaching, supposing free flow,
the rear of cluster B. For this purpose, the speed of cluster A
is 40 mps, which is considerably higher than the maximum
permissible speed of 34 mps, whereas vehicles in cluster B
are moving very slowly (2 mps).

This dynamic scenario certainly requires an adaptation of
the transmission parameters throughout the entire simulation
time to alleviate congestion. For instance, cluster A is lightly
congested at the beginning, and this congestion increases as it
approaches the second cluster (B). We simulate this scenario
for 25 seconds until both clusters come together, increasing

vehicle density and provoking channel congestion. Under this
premise, all the compared algorithms attempt to reduce chan-
nel congestion, mainly by decreasing transmission power,
although they show slightly different behavior. As illustrated
in Figure 6, both NNDP PPO and NNDP SAC alleviate
channel congestion properly by maintaining the CBR around
0.6-0.7. Conversely, CACC exceeds this desired CBR range
during the entire simulation time, which would jeopardize the
delivery of event-related messages broadcast in emergency
cases. Meanwhile, the data rate is set at a constant 6 Mbps by
the CACC algorithm. In contrast, NNDP agents better exploit
data rate usage, which, acting together with the transmis-
sion power, notably reduces channel congestion. However,
the NNDP SAC approach attempts to lower the data rate to
provide transmissions with more robust modulations. Since
themain priority of NNDP is to reduce congestion, this is only
possible when the channel is not congested. In fact, when the
two clusters join and congestion drastically increases, NNDP
SAC increases the data rate to avoid reducing transmission
power too much and to maintain PDR levels. As shown in
the previous scenario, NNDP PPO is an algorithm that tries
to not vary the data rate in a similar way as CACC. The only
difference is that, in NNDP PPO theMBL is satisfied through
sharp decreases in transmission power, as shown at tsim =
15 and 20 s. As regards the PDR, the bar plot of Figure 7
reveals similar performance to the CACC algorithm. The
PDR has been averaged for the entire simulation time and for
all the vehicles. This is largely due to the fact that the scenario
is now moving, and a more global and robust perspective is
required. The standard deviation is included for 10 different
distances from 50 to 500 m. In essence, the results obtained
illustrate that our proposal attains a similar PDR to CACC.
However, NNDP clearly improves it at long distances both
for NNDP PPO and NNDP SAC. This means that transmitted
beacons reach the farthest neighbors with higher probability,
which makes the vehicles aware of risks earlier (e.g., jams).

C. ROBUSTNESS AGAINST ATTENUATION
Despite being trained for certain channel conditions, as stated
in Section III, the goal is to demonstrate that NNDP works
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well even when these conditions vary. To do this, different
path loss exponents are tested to verify the robustness of
NNDP beyond the training conditions. As described in Algo-
rithm 1, channel load is represented by vehicle density, which
is derived from the number of neighboring vehicles divided
by twice the average carrier sense range. The carrier sense
range depends greatly on channel conditions so it should be
updated over time to provide the most accurate estimation.
The shape parameter m and the path loss exponent β char-
acterize the severity of fading and attenuation, respectively,
whereas the sensitivity of the receiver and the frequency of the
carrier remain constant. The shape parameter barely varies
vehicle density since the gamma functions in both the numer-
ator and denominator are compensated and, in the remaining
terms, the influence of m is almost negligible with regards
to changes of the exponent 1/β, as shown in equation 1.
Indeed, this is why the path loss exponent β takes a more
important in vehicle density estimation than m. This can also
be inferred from the results obtained in the simulation of
the CACC algorithm [20]. Keeping this premise in mind,
we evaluate the previous moving scenario IV-B for different
path loss exponent values to demonstrate that the proposed
NNDP works properly.

The results achieved are illustrated in Figure 8, employing
bar plots and averaging throughout the entire simulation time.
Firstly, the carrier sense range is remarkably high when the
value of β is set to 2.25, which is considered close to free
space attenuation. In this scenario, vehicles receive messages
from more vehicles separated by large distances so the chan-
nel load increases rapidly. Under these circumstances, all
the compared approaches reduce transmission power. Partic-
ularly,as congestion increases, NNDP SAC raises the data
rate to transmit faster and thus reduces the beaconing load.
Conversely, NNDP PPO and CACC keep constant data rates
of 12 and 6Mbps, respectively. The CBR is properly adjusted
to the MBL by both NNDP algorithms and, as occured in
the previous scenarios, the CACC solution results in a much
more congested channel. This could threaten the delivery
of event-related messages triggered in emergency situations.
Concerning the PDR at 50 m, similar values are obtained by
each one of the algorithms analyzed. The rest of the distances,
which are not shown in Figure 8, are aligned with the results
previously provided for β = 2.5 in Figure 7. Moreover,
as β increases (β = 2.75), channel attenuation is higher,
which (i) reduces the average carrier sense range and, in turn,
(ii) senses a fewer number of neighboring vehicles. In this
context, the CACC algorithm remains indifferent in terms
of data rate, while NNDP and, in particular, the SAC agent,
decides to reduce the data rate, resulting in greater robustness
over attenuation. This is immediately reflected by reaching a
higher PDR. Given less congestion due to higher attenuation,
transmission power is slightly increased, which brings the
CBR to suitable values. In short, the DNN trained (using both
PPO and SAC algorithms) with β = 2.5 operates appropri-
ately, even when channel conditions vary (i.e. using β = 2.25,
2.75). NNDP behaves similarly to CACC, which does not

FIGURE 7. The PDR versus distance for two approaching clusters.

FIGURE 8. Comparison of NNDP and CACC for different path loss
exponents and for two approaching clusters.

depend on channel conditions (β). In fact, it is worth noting
that our proposed mechanism not only alleviates congestion
but also supports the transmission of information much faster
while reaching a similar PDR and greater throughput (total
number of decoded packets) than CACC. In other words,
NNDP obtains a similar PDR to CACC but with greater
throughput and employing higher data rates, which results
in improved channel availability for DENMmessages (lower
CBR).

V. CONCLUSION
Vehicular communications support the transmission of
real-time periodic messages (beacons), which allow vehicles
to be aware of their changing environment. Most of the safety
applications which are conceived to guarantee driver and
passenger protection are based on the information exchanged
by beacons. However, an increase in beaconing loads may
result in higher packet loss and compromise the appropriate
functioning of these applications. Therefore, the design of
effective congestion control mechanisms, while maintaining
a certain fraction of the channel free, is essential for the suc-
cessful delivery of messages, especially those triggered under
emergency incidences. In this paper, we propose an innova-
tive congestion control mechanism that simultaneously tunes
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transmission power and data rate parameters. Since the asso-
ciated optimization problem is not convex, ordinary optimiza-
tion methods are usually inapplicable. Instead, we employ
different Deep Reinforcement Learning algorithms.

The proposed mechanism, called NNDP, alleviates
congestion in a non-cooperative way, without requiring any
additional information from neighbors or centralized infras-
tructure. Simulation results reveal that NNDP (i) successfully
keeps channel loads at the desired levels, leaving channel
capacity free enough for successful DENM reception. Once
congestion is alleviated, NNDP is intended to (ii) prevent
transmission power from reducing too much, guaranteeing a
given packet delivery ratio at a certain distance, and (iii) set-
ting the most robust data rate against fading and attenuation
whenever possible. Despite being a non-cooperative scheme,
all vehicles are geared toward the same goal, which success-
fully alleviates congestion while reaching higher throughput
(number of decoded packets) and a similar PDR to other
related mechanisms. The proposed solution operates rea-
sonably well, even in conditions that differ notably from
those used in the training environment. Our future work
will focus on the study of its cost-effective implementation
and improved capabilities to allow the algorithms to learn
while driving. Other transmission parameters dependent on
the particular hardware of vehicles and their effect on the
MAC layer will be also studied.
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