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ABSTRACT This paper presents ear recognition models constructed with Deep Residual Networks (ResNet)
of various depths. Due to relatively limited amounts of ear images we propose three different transfer learning
strategies to address the ear recognition problem. This is done either through utilizing the ResNet architec-
tures as feature extractors or through employing end-to-end system designs. First, we use pretrained models
trained on specific visual recognition tasks, inititalize the network weights and train the fully-connected
layer on the ear recognition task. Second, we fine-tune entire pretrained models on the training part of each
ear dataset. Third, we utilize the output of the penultimate layer of the fine-tuned ResNet models as feature
extractors to feed SVM classifiers. Finally, we build ensembles of networks with various depths to enhance
the overall system performance. Extensive experiments are conducted to evaluate the obtained models using
ear images acquired under constrained and unconstrained imaging conditions from the AMI, AMIC, WPUT
and AWE ear databases. The best performance is obtained by averaging ensembles of fine-tuned networks
achieving recognition accuracy of 99.64%, 98.57%, 81.89%, and 67.25% on the AMI, AMIC, WPUT, and
AWE databases, respectively. In order to facilitate the interpretation of the obtained results and explain the
performance differences on each ear dataset we apply the powerful Guided Grad-CAM technique, which
provides visual explanations to unravel the black-box nature of deep models. The provided visualizations
highlight the most relevant and discriminative ear regions exploited by the models to differentiate between
individuals. Based on our analysis of the localization maps and visualizations we argue that our models make
correct prediction when considering the geometrical structure of the ear shape as a discriminative region even
with a mild degree of head rotations and the presence of hair occlusion and accessories. However, severe
head movements and low contrast images have a negative impact of the recognition performance.

INDEX TERMS Ear recognition, biometrics, deep residual networks, transfer learning, deep ensembles,
visual explanations, explainable prediction.

I. INTRODUCTION
Personal identification based on biological characteristics,
including physiological (e.g., face, iris, retina, fingerprints,
etc.) or behavioral (e.g., voice, signature, gait, gesture, etc.)
modalities, has established itself as the most convenient
means of reliable and fast recognition of individuals. Nev-
ertheless, biometric systems based on the physiological char-
acteristics are found to have a high level of reliability due
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to their robustness against stress effects and being relatively
more stable throughout the life of individuals.

Recently, research has opened up new biometrics for per-
sonal identification, such as the ear shape. A number of stud-
ies has been conducted to explore the unique characteristics
of human ears as an appealing alternative for or addition
to common biometrics. Compared to conventional biometric
modalities such as faces and fingerprints, ears provide some
unique features and are considered a rich source of informa-
tion for human identification. The characteristics of human
ears include a rich structure of textural features, stability over
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a long period of time, robustness against external factors such
as aging and facial expressions and less intrusiveness and
sensitivity to be captured. The existing of bilateral symmetry
between the left and right ears of the same subjects makes the
ear discriminative enough to distinguish different individuals
robustly [1]–[4]. Given all these remarkable characteristics,
ear recognition has become an active area of research with
several potential applications in forensics, security, monitor-
ing and surveillance.

Many studies have been conducted to build recognition
systems that consider ear images for recognizing individu-
als. The early ear recognition techniques were constructed
by employing handcrafted feature extraction (i.e., descrip-
tor) methods to extract the discriminative information in
the form of feature vectors from ear images. Subsequently,
a traditional classifier was adopted for matching and clas-
sifying the resulting feature vectors to identify individuals.
Based on the feature extraction method, the existing tech-
niques are mainly classified into four categories including
geometric, holistic, local and hybrid methods [5]. The tech-
niques were designed to exploit specific image features and
to handle image variations to achieve acceptable recogni-
tion performance. However, their recognition accuracy drops
when testing on ear images with wide ranges of image
variations [6]–[8]. Changes in illumination, viewing angles,
noise, low contrast, and partial occlusions by hair, earrings,
or accessories are commonly encountered challenges in real-
life scenarios. Therefore, ear recognition experiments have to
be conducted under such unconstrained conditions to obtain
robust and reliable identification systems.

With recent advancements in computer vision, machine
learning techniques, and particularly deep convolutional neu-
ral networks (CNNs)many recognition tasks are now solvable
under unconstrained imaging conditions. Deep CNNs have
been developing at a fast pace and have become a popular
data driven learning strategy for various computer vision
problems. They combine feature extraction and classification
into one end-to-end model. Moreover, training deep neural
networks comes with the additional advantage of learning
the representation of the input data to suit the particular
problem. The benefit of also learning the features leads to the
high adaptiveness of deep learning strategies, but also comes
with a cost. Training deep CNNs requires large amounts of
data in order to alleviate a common phenomenon in machine
learning which is called over-fitting. The issue of over-fitting
arises if an identification system uses noise to memorize the
training images without actually processing the underlying
relationships in the data to differentiate individuals. Further-
more, public extensive datasets are still lacking in the field
of ear recognition and, as a consequence, deep CNNs have
not yet been utilized so extensively for the ear modality.
Key approaches to tackle these limitations are to perform
aggressive data augmentation, reduce the model size, apply
regularization techniques or perform transfer learning using
pretrained models from other large-scale datasets like Ima-
geNet [9]. In this work we integrate these cues and propose

three transfer learning strategies for domain adaptation to
improve performance of ear recognition systems.

While deep CNNs achieve superior recognition perfor-
mance in various vision tasks, they are often criticized for
being black-boxes. Their nested nonlinear structure and the
lacking decomposability into easily understandable com-
ponents make them hard to interpret. Consequently, these
CNN-based systems may fail without any warnings or expla-
nations why they did fail, which is a problem especially for
security related applications. In order to build confidence
in the decisions made by our recognition system, we pro-
vide visual explanations, interpret what deep learning models
actually learn and visualize how they make their predictions.
The visual explanations can answer the most common ques-
tions about CNNs including: What type of features do they
learn? Which ear regions are considered more discrimina-
tive? What causes a system to fail? Do deep CNNs extract
discriminative features that make sense to humans? We apply
Guided Gradient-weighted Class Activation Mapping (Grad-
CAM) [10] and conduct extensive experiments using deep
CNN models of varying depths to obtain useful insights and
to provide rationale answers to these questions. This tech-
nique can generate class-discriminative and high-resolution
visualizations, which are useful to justify the predictions
of deep models. This will assist in getting useful insights
on the internal representations of deep models and make
the constructed recognition systems more transparent and
easy to interpret. These are considered important factors for
a meaningful integration of deep models in the biometric
domains.

In this paper, our aims are to construct ear recognition
systems, which work end-to-end and achieve the best perfor-
mance, as well as to provide a sufficient level of transparency
and explainability. Overall, the contributions of this work can
be summarized as follows:
• We present deep residual learning-based personal iden-
tification models using ear images. We implement
and adopt five deep ResNet architectures of gradually
increasing depth to suit the ear recognition tasks. The
models are pretrained on the ImageNet dataset. They are
trained and tested on four benchmark datasets, which
contain ear images acquired under different imaging
conditions ranging from relatively unconstrained set-
tings to fully uncontrolled conditions.

• We propose three transfer learning strategies in order
to learn discriminative ear features and to achieve the
best recognition accuracy. First, we investigate their
performance when training the fully connected layer
to engage the ear recognition task. Subsequently, we
fine-tune entire models on ear datasets. Third, we uti-
lize the extracted features from the fine-tuned models
to train machine learning classifiers such as Support
vector machines (SVMs). Finally, we combine different
models to form one robust voting committee for better
generalization and improving the overall recognition
performance.
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• The ear images from the AMIC and AWE datasets
comprise different spatial resolutions and aspect ratios.
Resizing them to a fixed input dimension may introduce
unwanted geometric distortions.We investigate different
input sizes for the networks to deal with the varying
input size problem and preserve the aspect ratios of the
ear images. We also apply two different data augmen-
tation strategies to improve the generalization of models
on the different datasets. Extensive experiments are con-
ducted and the obtained results reveal the effectiveness
of our configurations and adaptation strategies.

• We achieve state-of-the-art recognition results on the
considered ear datasets through ensembles of heteroge-
neous ResNet models. Our deep ensembles achieve a
rank-1 accuracy of up to 99.64% and 98.57% on two
datasets with mild image variations, and up to 81.89%
and 67.25% on two datasets with extensive image vari-
ations. The reported recognition performance advances
the recently published results under both imaging con-
ditions from 2% to 5%.

• We provide class-discriminative and high-resolution
visual explanations from different ResNet-based mod-
els of various depths. The visualizations highlight the
most discriminative ear regions that are responsible for
making predictions. They also give useful insights on the
failure cases and provide reasonable explanations.

The remaining sections of the paper are organized as fol-
lows. Section II reviews the recent work on constrained and
unconstrained ear recognition. In Section III we describe deep
residual networks. The applied transfer learning methods are
explained in Section IV. The experimental setup, the ear
datasets, performance evaluation metrics and the procedure
of training the models are explained in Section V. The exper-
imental results are reported and discussed in Section VI.
Section VII provides visual explanations from different
ear recognition models. Finally, the paper is concluded in
Section VIII.

II. RELATED WORK
This section discusses the most relevant work on ear recogni-
tion techniques in the literature. We refer to approaches that
base on ear images acquired under constrained and uncon-
strained imaging conditions and highlight their achieved
recognition performances. For a comprehensive review
and analysis of existing work of ear recognition refer
to [5], [11], [12].

In [13] the authors experimented with different local tex-
ture descriptors for constructing robust human identification
systems. The ear image features were extracted by the tex-
ture descriptors and then used for training various classifiers
for identification. Experiments were conducted on the IIT
Delhi-1 [14], IIT Delhi-2 [14], and USTB [15] ear datasets,
which were collected under controlled imaging conditions
with slight variations. The experiments revealed competitive
results compared to other ear recognition strategies from the
literature.

The authors of [16] defined a set of seven ear features
and trained an efficient feed-forward artificial neural net-
work to recognize individuals using ear images. The features
were measured for a dataset with 51 right ears, which were
captured in gray scale under the same angle (pose). Experi-
ments were conducted with various training and test set sizes
and various network configurations like different number of
layers, number of neurons per layer and with and without
the addition of noise. The obtained results indicated that the
network can obtain a recognition accuracy of up to 95%.

In [17] local and global features of ear images were
extracted in the frequency domain and combined for an
improved recognition performance. The global features were
first extracted by applying the Gabor-Zernike operator [18]
to the entire image, whereas local features were extracted by
applying the local phase quantization (LPQ) [19] descriptor.
The global and local features were then combined using
a genetic algorithm to find the optimum combination of
features. Identification was performed using the nearest
neighbor classifier with the Canberra distance. The exper-
imental results on the IIT Delhi-1 [14], IIT Delhi-2 [14],
and USTB [15] ear datasets achieved better performance
compared with existing ear recognition methods.

A number of studies has been conducted for addressing
the unconstrained ear recognition problem. In [20] an ear
registration approach was proposed based on the scale invari-
ant feature transform (SIFT) technique [21]. It attempted
to create a homography transform between the gallery ears
and the probe. The algorithm starts with segmenting the ear
from the gallery as a preprocessing step and then analyzes
each image to extract its SIFT feature points. For each probe
image, the SIFT feature points are detected and for each point
the gallery is searched to find correspondences. If four points
are matched between the probe and the gallery then a per-
spective transform is calculated and the probe is registered.
The images are then aligned and the distance between them is
measured and the nearest galley image is used to identify the
person. The technique was evaluated on a relatively uncon-
strained ear dataset and showed a certain degree of robustness
with acceptable recognition accuracy of 96%.

In 2017 the first unconstrained ear recognition challenge
(UERC) [22] was organized to assess the performance of
ear recognition technology on a large-scale ear dataset. The
assessment involves tightly cropped ear images that exhibit
a wide range of variations in head movements (poses),
illumination, image resolution, and occlusions. Eight ear
recognition techniques were submitted and evaluated for the
challenge. A comprehensive analysis was performed on the
ability of the submitted approaches to cope with the various
image variations in the data. The obtained results indicated
the sensitivity of all tested approaches to changes in head
poses. In 2019 another round of the UERC competition was
organized for evaluating advancement in the ear recognition
technology [23]. A comprehensive analysis was performed
to assess the sensitivity of ear recognition models towards
variations in image resolution, illumination, gender, ethnicity
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and obscuring parts of the ear by hair or earrings. Generally,
the submitted approaches showed an improved recognition
performance compared with the 2017 models. Nevertheless,
the obtained results revealed negative impacts of using small
image resolution and partial ear occlusions on the recognition
performance.

In [24] the authors proposed a two-stage domain adaptation
strategy to fine-tune deep CNN-based models for the uncon-
strained ear recognition problem. The authors performed
an in-depth analysis of some factors including the dataset
bias, illumination changes, aspect ratios and the impact of
using data augmentation and alignment on the recognition
performance. The experiments were conducted on the uncon-
strained UERC dataset [22] and revealed the efficacy of the
proposed fine-tuning strategy. Further performance improve-
ments were achieved by combining different deep CNNmod-
els along with data augmentation.

In [25] a framework that combines handcrafted and
CNN-based features was proposed. The authors experi-
mented with various feature combinations and reported
improved performance when both features were combined
together as they seem to be complementary to each other.
The gain in recognition performance was also attributed to
the normalization process they followed when conducting
the experiments. Important remarks were concluded from
the study with respect to the performance of both features
and their role in solving the unconstrained ear recognition
challenge.

Dodge et al. [26] investigated two different approaches to
address the unconstrained ear recognition challenge. The first
is a traditional feature-classifier pipeline approach and the
other is a complete end-to-end system. They compared the
performance of both approaches and noted that the features
extracted from pretrained models combined with shallow
classifiers achieve high performance in unconstrained ear
recognition. On the other hand, constructing an end-to-end
system by fine-tuning deep network architectures tends to
over-fit due to the limited training data. In order to alle-
viate the later problem, the authors proposed an averaging
ensemble of fine-tuned networks, which achieved the best
recognition performance on the ear datasets used.

An experimental evaluation of several descriptor- and deep
learning based ear recognition models was achieved in [27].
The authors studied the characteristics of the recognition
techniques and the impact of various covariates including
gender, ethnicity, accessories and head movements on the
recognition performance. Identification experiments were
carried out on the Annotated Web Ear (AWE) dataset [5].
The results indicated that the presence of accessories and
head movements significantly affect the identification perfor-
mance, whereas other covariates of gender and ethnicity only
affected the performance to a limited extent.

Alshazly et al. [28] presented the first experimental study
on the unconstrained EarVN1.0 dataset [29]. Different pre-
trained CNN models were fine-tuned using custom-sized
inputs tailored specifically for each deep network. The

fine-tuning strategy proved to achieve state-of-the-art recog-
nition results with an accuracy above 93% using a single
model. Moreover, an accuracy of 95.85% was achieved by
an ensemble of deep models. The authors also provided visu-
alizations of the learned features from different models and
showed the ability of the models to distinguish between the
different subjects.

In a recent study, a multi-modal biometric recognition
system was proposed [30]. The system utilized images of
the ear and face profiles to alleviate the shortcoming of
using only a single biometric. The images of each bio-
metric modality were first subjected to a feature extraction
process using two independent histogram-based descriptors
(LPQ [19] and local directional pattern (LDP) [31]). The
extracted feature vectors from both descriptors were concate-
nated into a single high-dimensional feature vector, thereby
combining complementary information from the spatial and
frequency domains. Principle component analysis (PCA) was
then applied on each combined feature vector for both modal-
ities to reduce the dimensionality. The reduced feature vec-
tors of both biometric modalities were concatenated through
feature-level fusion. A kernel-based discriminative common
vector (KDCV) approach was then applied on the combined
feature set in order to select the most discriminative fea-
tures. Personal identification was finally performed using the
K-nearest neighbor classifier. Experiments were conducted
on two benchmark datasets consisting of side face images,
which are publicly available at the University of Notre Dame
(UND), namely collection E (UND-E) [1] and collection J2
(UND-J2) [32]. The obtained results indicated an improved
recognition performance of the multi-modal system com-
pared to using any individual biometric modality.

We complement the body of existing work on ear recog-
nition by experimenting on four benchmark datasets, which
contain ear images acquired under constrained and uncon-
strained imaging conditions. We implement and adopt five
variants of the ResNet architecture with increased depth and
propose three different learning strategies. Also, we pro-
vide visual explanations for various models to uncover the
black-box nature of deep networks and to make them more
transparent.

III. DEEP RESIDUAL NETWORKS
Recent studies in deep learning have empirically evidenced
that increasing the depth of neural networks has a sig-
nificant influence on their success. The top performers
[33], [34] on the ImageNet dataset exploit deeper models.
Very deep networks can represent more complex functions
and can learn features at different levels of abstractions. Thus,
increasing the depth while taking care of over-fitting leads
to improved performance. However, increasing the network
depth by simply stacking more layers has two main draw-
backs. First, training very deep networks becomes more diffi-
cult due to the vanishing gradient problem.When the gradient
is back-propagated to earlier layers its value becomes small
due to repeated multiplication and hence convergence of the
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FIGURE 1. Two variants of the residual module building block. (a): The original residual module used in ResNet18 and ResNet34.
(b): The bottleneck residual module utilized in ResNet50, ResNet101 and ResNet152.

TABLE 1. Configurations of the five ResNet architectures utilized in this study. The residual modules are shown in brackets and the number n of stacked
modules is specified by the ×n next to the brackets.

earlier layers is affected negatively. The second drawback is
the performance degradation problem, as adding more layers
to a network increases the parameter space that needs to be
optimized and the training error can even increase [35], [36].

To address the above-mentioned problems, the authors
in [37] introduced a deep residual learning framework that
allows training very deep networks and the resulting new
architectures were codenamed Residual Networks (ResNet).
The layers are reformulated to learn a residual mapping
with respect to the layer inputs. Let the desired mapping
be denoted by H (x) and the stacked layers fit a residual
function F(x) where F(x) := H (x)− x, where x is the input.
Then, the desired mapping can be represented as the sum of
the input and the residual function H (x) = F(x) + x. The
operation F(x)+x is carried out as illustrated in Figure 1. The
shortcut connections simply perform identity mappings and
their outputs are added to the outputs of the stacked layers.

The residual function F(x) can have two convolutional
layers as used in the shallower networks such as ResNet-
18 and ResNet-34 or three convolutional layers as utilized
in deeper ResNet variants, e.g. ResNet-50, ResNet-101 and
ResNet-152. These two variants form the cornerstone of the
ResNet architecture. Figure 1 depicts both variants and the

two resulting residual modules. The module in Figure 1 (a)
consists of two main branches. The first branch performs a
series of 3 × 3 convolutions, batch normalization (BN) [38]
and rectified linear unit (ReLU) as activation function [39].
The second branch is simply a shortcut, which connects the
input of the module with the output of the first branch through
element-wise addition. The sum is passed through another
ReLU activation for increasing the non-linearity of the fea-
tures. Figure 1 (b) depicts the other variant of the residual
module, called bottleneck. The bottleneck module contains a
simple extension, which adds an extra convolutional layer to
the first branch of the module. The first layer consists of 1×1
filters, the second of 3×3 filters, and the third of 1×1 filters.
The number of filters in the first two layers is 1/4 the number
of filters in the third layer. The bottleneck module performs
better, in particular when training deeper networks.

A deep ResNet model is constructed by stacking multiple
residual modules along with conventional convolution and
pooling layers. Table 1 presents five ResNet architectures
that are implemented and utilized in our study. The first layer
performs convolution with 64 large kernels of size 7× 7 and
a stride of 2, followed by a max-pooling operation. Then,
the architectures consist of four convolutional blocks, where
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FIGURE 2. Feature extraction with pretrained networks. Only the weights in the fully connected part
are adjusted during training.

each block has a specific number of stacked residual modules.
The individual ResNet architectures differ in the type and
number of modules in each block as can be seen in Table 1.
After the four blocks a global average pooling (GAP) opera-
tion is performed to drastically reduce the spacial resolution
of the feature maps to one element. During this process,
theGAP layer reduces a featuremap of dimensionsH×W×D
to a size of 1× 1×D. Finally, a fully connected layer with a
softmax classifier is attached to perform the classification.

IV. TRANSFER LEARNING METHODS
Transfer learning is a powerful machine learning approach
where models are developed for specific vision tasks and
reused to initialize models for solving other tasks [40], [41].
In this paper we present three different transfer learning
strategies applied to deep ResNet architectures to learn dis-
criminative features from ear images. We describe these
approaches in the following subsections in detail.

A. FEATURE EXTRACTION
Deep CNN-based systems learn different features at different
layers. The nature of a layered architecture allows using pre-
trained models, such as ResNets, as fixed feature extractors.
Feature extraction is accomplished by propagating the ear
images forward through the network. The activations at an
arbitrary layer are flattened and used as feature vectors for
training traditional machine learning classifiers [42]–[45].
Table 2 shows the length of the feature vectors extracted from

TABLE 2. Comparison of the distinguishing characteristics of various
ResNet models.

each of the ResNet variants. The table also describes other
important characteristics like the model size and the number
of trainable parameters.

Our approach to perform feature extraction from pretrained
ResNet architectures is to replace the fully connected layer
with a new one, to initialize the new weights randomly and
to fine-tune the weights of the new layer while freezing
all other weights. This feature extraction method has two
advantages. First, the network can be trained as an end-to-
end identification system. Second, this enables us to utilize
data augmentation, which can lead to better generalization.
As Figure 2 shows, the images from the train set are propa-
gated through the convolutional layers and multivariate fea-
ture vectors are obtained. They can be subsequently used to
train the fully connected part of the network. As can be seen
in the figure, the convolutional weights are not adjusted to
the ear recognition problem. This strategy is called feature
extraction.

Another modality of using feature extraction is shown
in Figure 3. It makes use of traditional machine learning
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FIGURE 3. Feature extraction with fine-tuned networks and SVMs for classification.

classifiers such as SVMs [46]. The goal is to construct
a hybrid model consisting of a CNN as a fine-tuned fea-
ture extractor and a set of SVMs to perform classifica-
tion. As described in the diagram, the CNN has already
been trained on ear images and therefore provides suit-
able representations of them. We train as many SVMs as
there are individuals in each dataset in order to solve the
multiclass-problem in a one-versus-all classification sce-
nario. The training strategy is called feature extraction +
SVM.

B. FINE-TUNING
Fine-tuning pretrained networks on the new task is another
effective transfer learning strategy [47]. Applying fine-tuning
allows to benefit from the robust and discriminative filters
learned by top-performing CNNs on large-scale datasets as
ImageNet and minimizes the domain divergence by adapt-
ing the filters for the target recognition task. However, this
method requires us to perform network surgery. Figure 4
illustrates the fine-tuning process applied to the five pre-
trained ResNet architectures. The process starts with initial-
izing the networks using the pretrained ImageNet weights.
Then, we remove the last layer and add a fully connected layer
with the suitable number of neurons matching the number
of subjects in each dataset. The new fully connected layer
is initialized with random weights. The process continues
with training the fully connected layer to learn patterns from
the highly discriminative convolutional layers, while freezing
all other layers. Training the network is performed using

a very small learning rate so that the new layer can start
learning useful patterns from the previously learned layers.
Once the fully connected layer is trained, we unfreeze the rest
of the network and continue training the entire network until
convergence. This strategy is called fine-tuning.

C. DEEP ENSEMBLES
Ensemble methods refer to the training of several models
for the same task and then combining their predictions via
averaging or voting in order to boost the performance. A com-
mon method to construct an ensemble of deep networks is
to train several individual networks using different random
initializations, and then averaging their predictions. Ensem-
bles constructed by several deep networks are called deep
ensembles [48], [49]. Deep ensembles have proven to sub-
stantially improve the classification performance of single
models and they are top-performing approaches on the Ima-
geNet competitions [50], [51]. It has also been found that a
single large network may perform worse than an ensemble of
several medium-size networks with the same total number of
parameters [52].

In essence, constructing deep ensemble shares similarities
with the multi-view learning approach which considers learn-
ing from multiple views of a particular dataset to improve
the generalization performance [53]–[55]. The views can be
acquired by various sensors or represented with different
feature descriptors. For example, in case of images, tex-
ture information and color information represent two dif-
ferent features, which can be considered as two-view data.
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FIGURE 4. The process of fine-tuning pretrained networks on ear images. The weights of all layers
are adjusted during training.

FIGURE 5. Deep ensembles using fine-tuned ResNet models of various depths. The models are
combined to generate a synergistic effect, which improves the performance over the single models.

In multi-view learning the aim is to learn a specific function
to model each view and is to jointly optimize all functions
to boost the generalization performance. However, to benefit
from multi-view learning it is necessary to have data from
multiple and heterogeneous sources (views) that describe the
given task. Moreover, dealing with a large number of views is
a difficult task. In contrast, constructing deep ensemble could
be achieved by independently training different networks
of varying depths on the same data (single-view) and then

combining the individual models to achieve better general-
ization performance.

In this work, we focus on constructing deep ensembles
from various fine-tuned networks of varying depths. The var-
ious networks are combined to form one robust voting com-
mitteewith potentially better generalization abilities. Figure 5
depicts the process, where the test images are fed into each
network independently. The softmax function is applied to
get the posterior probabilities (scores) for each class from the
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single votes. The posterior probabilities are then averaged and
the mean scores are obtained. The maximal score belongs to
the individual that is predicted by the ensemble.

V. EXPERIMENTAL SETUP
This section describes the ear image datasets and the data
splitting procedure followed in our experiments. We also
explain our two strategies of data augmentation to improve
the generalization ability of our models. Finally, we depict the
model training settings along with the specific configurations
for each learning method.

A. EAR IMAGE DATASETS
To evaluate the performance of the different models under
each learning strategy we use four benchmark datasets with
ear images of increasing difficulty from constrained to uncon-
strained image settings.

The first dataset is the Mathematical Analysis of
Images (AMI) ear dataset [56]. It was collected from 100 sub-
jects and has 700 ear images in total. Each subject has six
images for the right ear and one image for the left one. Five
images were collected for the right ear with different head
poses such as looking forward, up, down, to the left, and to
the right. The sixth image is also from the right ear with the
subject facing forward but it is taken with a different focal
length. The last image is a left side profile of the left ear with
the subject facing forward. The subjects were photographed
in an indoor environment with a Nikon D100 camera under
consistent lighting conditions. The images have the same
spatial resolution of 492× 702 pixels. Example images from
the AMI dataset are shown in Figure 6 (a) for one individual.

The second dataset is the AMIC ear dataset introduced
in [57]. The dataset represents a tightly cropped version of
the AMI dataset with the identical number of ear images and
subjects. As a result of the cropping process, information such
as skin texture or hair style is lost, which makes the AMIC
dataset more challenging. Also, the resulting images have
variable sizes ranging from 363 × 224 pixels to 492 × 702
pixels. Figure 6 (b) shows cropped ear images in Figure 6 (a)
for the same individual.

The third ear image dataset comes from the West Pomera-
nian University of Technology (WPUT) [58], which contains
images collected from males and females for the right and
left ears. We use the cleaned version of the WPUT dataset
considered in [57] that has 1960 images for 474 subjects
and no duplicated images. Each subject has between 4 to
8 images. The images have a resolution of 380 × 500 pixels
and were acquired under different illumination and view-
ing angles. Ears of some subjects are occluded by hair and
accessories, which impose more challenges. Consequently,
the WPUT dataset reflects real world scenarios of ear images
taken under unconstrained conditions. Figure 6 (c) depicts
example images from the WPUT dataset.

The last ear dataset is the Annotated Web Ear (AWE)
database [5], which contains images collected from the inter-
net. It represents one of the most challenging ear databases.

FIGURE 6. Examples of ear images from each dataset. The image
variability starts from laboratory-like imaging conditions as in the AMI
dataset and gradually increases to the fully unconstrained imaging
conditions as in the AWE dataset.

It has 1000 ear images for 100 subjects and each subject
has 10 images. The images exhibit a wide range of image
variations such as variable spatial resolutions between 15×29
and 473 × 1022 pixels, various head poses, angles, varying
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illumination conditions, left and right ears, poor contrast,
and in some cases major occlusions by earrings, accessories
and hair. This dataset represents the in the wild scenario
for evaluating ear recognition models. Figure 6 (d) presents
sample images from the AWE ear dataset.

B. DATA SPLITTING AND EVALUATION METRICS
In order to conduct our recognition experiments we split each
of the datasets into two disjoint sets: training and test set. 60%
of ear images from each dataset is used for training, and the
remaining 40% of images is used for testing. The training set
is utilized for transfer learning, whereas the test set is utilized
for reporting our results.

To analyze the characteristics of each recognition model
we consider three standard quantitative metrics for perfor-
mance evaluation. We also plot the Cumulative Match Char-
acteristics (CMC) curves for each recognition experiment to
summarize the performance of each model at different ranks.

The Cumulative Match Characteristics (CMC) curves are
the most popular performance evaluation metrics for biomet-
ric identification methods. They are ranking-based metrics
that show at which rank R(R ≤ N ) a model returns the correct
identity, where N is the number of subjects.

The Rank-1 (R1) recognition rate refers to the percentage
of probe ear images for which the correct identity is returned
as the top match from a gallery.

The Rank-5 (R5) recognition rate refers to the percentage
of probe ear images for which the correct identity is returned
within the top five matches from a gallery.

The Area under the curve (AUC) is an objective measure
and an important evaluation metric to check the performance
of identification models. A high AUC score indicates a high
ability of the model to distinguish between the subjects.

C. DATA AUGMENTATION
Training deep CNNs with millions of parameters requires
relatively large amounts of annotated training samples in
order to overcome overfitting. Tackling these issues when
experimenting with only few hundreds or thousands of ear
images and few individuals is a challenging task. Data aug-
mentation techniques are used to mitigate this problem and
to introduce more variations to the training samples without
any additional labeling costs. Various transformation steps
are combined into a single preprocessing pipeline to generate
image variants.

In this paper we employ two types and strategies of data
augmentation. The first augmentation strategy uses strong
random affine transformations like rotation and shearing
and is found to give good results mainly on the AMI and
AMIC datasets. The second one is less harsh considering
affine transformations and is beneficial for the unconstrained
datasets used in this work.

Moreover, some datasets such as the AMIC dataset contain
images of different spatial resolutions. Therefore, dealing
with the variable input size problem by normalizing images
to a fixed image size is a must. In order to process images

of various sizes and aspect ratios, the images are not aggres-
sively deformed to fit a fixed size. Instead, they are scaled
to fit into a canvas image of constant size, which defines the
input size for the CNNs. The mean pixel value of the dataset
is chosen as background color for the canvas image.

We give a detailed description of each strategy in the
following subsections.

1) FIRST AUGMENTATION STRATEGY
The first data augmentation strategymakes strong use of rota-
tion and shearing. Also, brightness and contrast are changed
quite aggressively. The following ordered list shows image
transformations applied to each training image.

• Scale the image randomly and paste it into the canvas,
such that 70% to 100% of the canvas area is covered.

• Use the mean pixel value of ImageNet to fill the back-
ground of the canvas.

• Rotate the image randomly in the range of −45 and 45
degrees.

• Shear the image randomly up to 5% of the image width.
• Crop the image randomly to 90% to 100% of its original
size, keeping the aspect ratio.

• Resize the image to canvas size.
• Blur the image with a probability of 50%. If so, blur with
a Gaussian kernel of size 3.

• Mix the image with Gaussian noise of random amount.
• Modify image brightness randomly from−20% to 20%.
• Modify image contrast randomly from −40% to 40%.
• Modify image saturation randomly from−20% to 20%.
• Shift image hue from −5% to 5% of the entire color
range.

• Flip the image horizontally with a probability of 50%.

2) SECOND AUGMENTATION STRATEGY
In the second data augmentation strategy some transforma-
tions are changed to be less extreme. Lowering the strength
of random rotations and shearing empirically turned out to be
beneficial for the unconstrained WPUT and AWE datasets,
but seemed to have no influence on the AMI or AMIC
datasets. The steps involved are:

• Scale the image randomly and paste it into the canvas,
such that 80% to 100% of the canvas area is covered.

• Use the mean pixel value of ImageNet to fill the back-
ground of the canvas.

• Rotate the image randomly in the range of −20 and 20
degrees.

• Shear the image randomly up to 7.5% of the image
width.

• Crop the image randomly to 90% to 100% of its original
size, keeping the aspect ratio.

• Resize the image to canvas size.
• Blur the image with a probability of 20%. If so, blur
with a Gaussian kernel either of size 3 (50% chance) or 4
(50% chance).

• Mix the image with Gaussian noise of random amount.
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• Modify image brightness randomly from−20% to 20%.
• Modify image contrast randomly from −40% to 40%.
• Modify image saturation randomly from−20% to 20%.
• Shift image hue from −3% to 3% of the entire color
range.

• Flip the image horizontally with a probability of 50%.

D. MODEL TRAINING
Three different training strategies are applied to analyze the
recognition performance of the five ResNet architectures.
The first learning strategy is called feature extraction and
involves freezing all convolutional layers of the pretrained
model and training the fully connected layer only. This strat-
egy is explained in Section IV-A in detail. The second train-
ing strategy is called feature extraction + SVM and utilizes
SVMs as final classifiers to work with the activation maps
from the CNN. Multiple SVMs act together in an one-vs-
all fashion to solve a multi-class recognition problem. The
process is also described in Section IV-A. The third strategy
performs fine-tuning of all layers of the pretrained ResNet
model and is called fine-tuning. More information about this
transfer learning strategy can be found in Section IV-B.
After training the ResNet variants, combinations of the

deep models are integrated into ensembles. Section IV-C
provides more detail of how the ensembles are created and
how the networks vote together to make a final decision.
Using this technique, various combinations of the five ResNet
architectures are built and their performances are evaluated.

The learning rate is chosen to be a decremental step func-
tion. Training starts with an initial learning rate of 0.02 and
is adjusted in distinct time steps measured in epochs. In a
fixed scheduling interval the learning rate is multiplied with
the constant factor 0.5. The batch size is kept constant for all
models to promote comparability between the network archi-
tectures. For alleviating the issue of over-fitting, momentum
is applied as regularization method. For preserving the image
aspect ratios, the input size for the AMI and AMIC datasets
are kept at 150× 200 pixels. For the WPUT dataset the input
size is chosen to be 170× 220 pixels, because further reduc-
tion lead to a degradation of performance. The same argument
applies to the choice of the image size for the AWE dataset,
which is 130× 250 pixels. The first augmentation strategy is
applied on both, the AMI and the AMIC datasets. The second
variant of data augmentation is applied on the WPUT and
the AWE datasets, because too aggressive data augmentation
worsens performance. Data augmentation turns out to be
tremendously beneficial to the unconstrained datasets, since
it boosts the R1 recognition rate of the ResNet-50 model on
AWE for fine-tuning by about 20%.

Model training was carried out on a PC with Intel(R)
Core(TM) i7-3770 CPU, 16 GB RAM and an Nvidia GTX
1080. When fine-tuning all layers during the second and third
learning strategy, the models need 150 epochs and the learn-
ing rate is halved every 30 epochs. The first learning strategy
needs 300 epochs until full convergence and the learning rate
is halved every 60 epochs. A momentum of 0.9 is applied

during stochastic gradient descent on the cross-entropy loss
for all training strategies.

VI. RESULTS AND DISCUSSION
This section reports the experimental results of the
ResNet-based models for the three different learning method-
ologies on four benchmark ear datasets. Table 3 summarizes
the quantitative results in terms of R1, R5 and AUC. More-
over, the CMC curves under fine-tuning and feature-based
SVM strategies for all assessed ResNet variants are plotted to
show the performance differences in Figures 7, 8, 9 and 10.
We also compare our obtained results with previous work
from the literature when applicable.

A. FEATURE EXTRACTION
When only adjusting the fully connected layer of the ResNet
models, which were pretrained on ImageNet, the obtained
results are inferior, as can be seen in Table 3. Generally,
the obtained results under the feature extraction strategy is
far from being satisfactory on all datasets. One observes a
significant drop in recognition rates for all models under this
scenario on all datasets, proving the specific nature of the
learned features from the ImageNet dataset and a necessity
of domain adaptation of the learned features to suit the ear
recognition task. Interestingly, the ImageNet features are not
able to discriminate the AWE subjects at all, as the highest
R1 is only 20% using ResNet-50. In addition, there does not
seem to be a consistent relationship between model depth and
performance for this learning strategy.

B. FINE-TUNING
During fine-tuning an improvement of around 30% in recog-
nition performance is observed in comparison to feature
extraction on all datasets. For the AMI dataset, ResNet-
152 is a top performer with respect to all metrics achieving
R1 accuracy of nearly 99%. It recognizes all ear images
correctly within the top five matches with R5 of 100%. As a
result, ResNet-152 improves on the previous state-of-the-
art results of 97.84% on the AMI dataset presented in [57].
While the top R1 accuracy is 65% for the feature extraction
strategy, the fine-tuning strategy offers almost no room for
improvement on the AMI dataset. ResNet-152 is also the
best performer on the AWE dataset targeting R1 of 62%
and on the WPUT dataset with R1 of 78.83%. The previous
top-performer on the WPUT dataset was presented in the
paper [57] and achieved an accuracy of 79.08%. The previous
single-model top-performer on the AWE dataset for ResNet
variants was a ResNet-18 with an accuracy of 56.35% [26],
which is about 6% below the present results. Moreover, our
fine-tuned ResNet-152 achieves a similar R1 rate of 62% as
the top-performer on the AWE dataset from [65], which was
achieved by a fine-tuned SqueezeNet model and extensive
data augmentation equivalent to 100-times of the original
image (i.e., augmentation factor of 100).

The experiments substantiate the finding that ear recogni-
tion on the AMIC dataset is more difficult than on the AMI
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TABLE 3. Comparison of quantitative performance metrics R1, R5, and AUC for different ResNet models under various learning strategies on each
benchmark ear dataset. Results are given in percentages where the best value for each performance metric is highlighted in bold. We also compare our
obtained results with the published work from the literature when applicable.

FIGURE 7. CMC curves generated on the test set from the AMI dataset for two different learning strategies and various ResNet models.

dataset. For the ResNet architectures we observe a perfor-
mance drop of up to 4% because of the removal of auxiliary
parts of skin and hair. Another observation from the results

in Table 3 is the consistent phenomenon that recognition
performance increases with network depth for the fine-tuning
strategy. This gives a strong hint that the ability to represent
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FIGURE 8. CMC curves generated on the test set from the AMIC dataset for two different learning strategies and various ResNet models.

FIGURE 9. CMC curves generated on the test set from the WPUT dataset for two different learning strategies and various ResNet models.

FIGURE 10. CMC curves generated on the test set from the AWE dataset for two different learning strategies and various ResNet models.
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more discriminative features is higher when the network is
deeper. However, this observation only holds if all layers are
adjusted to the ear recognition problem.

C. FEATURE EXTRACTION + SVM
Hybrid models consisting of a fine-tuned feature extractor
and an SVM classifier are employed to improve the overall
performance. The dependence of model depth and increased
performance is also found for this learning strategy. Using
ResNet-152 as a backbone and training SVMs on its features
improves performance by about 1% on the AMIC dataset.
In these two cases the SVMs are able to generalize better
on the rather small datasets because of their maximizing
margin principle. Nevertheless, using SVMs does not lead
to any significant improvement on the AMI, WPUT, and
the AWE datasets. In order to attain these slightly improved
results, no data augmentation was applied during the training
of the SVMs at all. However, the same improvements can be
obtained by switching data augmentation on during training
the SVMs. Therefore, it seems that the CNNs were able to
effectively learn the augmentation steps and that the extracted
features might be somewhat invariant to the augmentation
transformations.

D. DEEP ENSEMBLES
In order to build robust recognition systems and to improve
performance even further, multiple models of varying depth
are combined to form an ensemble. The top ensembles
in Table 3 enhance the R1 recognition rate by 1% on the
AMI dataset, about 3% on the AMIC dataset, about 3%
on the WPUT dataset, and above 5% on the AWE dataset.
Generally, including all five networks into an ensemble is
not the best decision as the worse performing models do
not add efficacious contributions. Thus, smaller ensembles
made out of the deeper models turn out to perform better.
When considering pair-wise ensembles only, the combination
of ResNet-101 and ResNet-152 delivers the best R1 results
for all datasets. The fact that the pair of the very deepest
models perform best supports the hypothesis that deeper
models perform better using the fine-tuning strategy. Across
the datasets, the combination of the deepest models ResNet-
50, ResNet-101 and ResNet-152 consistently shows very
good results which makes this ensemble the new top state-
of-the-art classifier for the AMI, AMIC and WPUT datasets.

VII. VISUAL EXPLANATIONS
The visualization technique applied in this work aims at
providing class-discriminative (i.e. localizing discriminative
regions in ear images) and high-resolution (i.e. capturing
fine-grained details) visualizations to assist in understanding
the predictions made by our ResNet models. The technique
represents a combination of two powerful approaches called
the Gradient-weighted Class Activation Mapping (Grad-
CAM) [10] and Guided Backpropagation [75], which is
named Guided Grad-CAM. The algorithm uses the for-
mer technique for providing class-discriminative explana-

tions and the latter for creating high resolution visualizations.
The Grad-CAM approach utilizes the class-specific gradient
information to localize the important image regions and the
localizations are then combined with the pixel-space visual-
izations to generate high-resolution and class-discriminative
visualizations.

To explain the prediction of each model, we first select
various ear images from the test set of each dataset where
the models correctly identified the subjects. We also provide
some cases of misclassified ear images in order to get use-
ful insights and a better understanding of the false predic-
tions. Then, we apply the Grad-CAM approach to produce
low-resolution localization maps. Following the Grad-CAM
algorithm, the localization maps are obtained by a weighted
sum of the feature maps in the last convolutional layer. Then,
the Guided Grad-CAM algorithm is applied to enhance the
visualization with fine-grained details. Tables 4, 5 and 6
illustrate several examples of correct and misclassified ear
images from each dataset along with the localization maps
and the Guided Grad-CAM visualizations.

Table 4 presents localization maps for the AMI and AMIC
datasets. We can observe that for correct decisions the model
consistently focuses on the geometrical structure of the ear as
themost discriminative region formaking correct predictions.
In the case of correct decisions the Guided Grad-CAM visu-
alizations unveil that the model focuses on the geometrical
shape of the entire ear, strips of the ear and that it ignores
all background and hair information. In one of the correctly
classified images a person wears glasses, which are ignored
by the network. Usually, the contour of the ear helix is cap-
tured. Distinctive ear parts, that are frequently highlighted
by the Guided Grad-CAM visualization, are the intertragal
notch and the triangular fossa. Often, the lower part of the
lobule is highlighted, too. These findings justify the superior
performance of the ear recognition models and that they
work as intended by considering the ear structure as a robust
and distinguishable region for recognizing different subjects.
In contrary, Table 4 also shows misclassified ear images from
both datasets on the right hand side. The provided visualiza-
tions show that when the model focuses on textures at the
ear boundary, it tends to overstate auxiliary information such
as haircut or skin texture. There are some cases where the
network ignores the shape of the entire ear and rather bases
its decision on local ear regions or single edges that originate
from the contrast where dark hair occludes the skin. There is
also one examplewhere a small skin is irregularity recognized
by the network, which leads to a misclassification.

Table 5 shows example ear images that were correctly
classified and misclassified from the WPUT dataset. Some
of the images do not show the entire ear such that the
geometrical structure of some ear parts stay unknown. As can
be seen from the localization maps the model is able to
correctly identify subjects even when substantial parts of the
ear are occluded by hair or accessories. Indeed, in some cases
where substantial parts of the ear are invisible, the models
utilize auxiliary information from hair style and accessories
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TABLE 4. Guided Grad-CAM visualizations from the AMI and AMIC ear datasets.
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TABLE 5. Guided Grad-CAM visualizations from the WPUT ear dataset.
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TABLE 6. Guided Grad-CAM visualizations from the AWE ear dataset.
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to make their predictions. We attribute the reason for this to
the consistent occlusions throughout ear images for a spe-
cific subject. In the Grad-CAM localization and the Guided
Grad-CAM visualizations one can observe how accessories
like ear rings largely influence the decision of our networks.
They can add some distinctive shapes and textures to identify
the subjects, even when the ear structure is partly occluded.
The impact of occlusions on performance is little for images
showing mild degrees of head rotations or viewing angles.
Contrarily, severe head rotations and hair occlusions have
a detrimental effect on recognition performance as well as
on localizing discriminative ear regions as can be seen from
the misclassified images in Table 5. For example, the first
two example images on the right hand side exhibit extreme
viewing angles. Here, distinctive ear features like the shape
of the helix, the intertragal notch and the triangular fossa are
not visible or strongly deformed by an extreme perspective.
This is in contrast to the mild degrees of head rotation on
the left side of the table with correctly classified images,
where information about the shape of the ear is limited, but
still present. This issue could be mitigated through extra
alignment steps in the recognition pipeline to recompense for
the severe head rotations.

Table 6 illustrates examples of correctly classified and
misclassified ear images from the AWE dataset. The correct
model predictions tend to consider the geometrical shape of
the ears even in the presence of accessories and ear plugs
as can be seen in Table 6. Nevertheless, one can see that
sometimes the networks focus on details in the geometrical
structure of the ear or accessories like ear rings. In addition,
some images suffer from distortions due to extreme viewing
angles, bad lighting conditions or poor resolution. We think
that the difficulty to access the entire ear structure in some
training images creates an incentive to identify the subjects
based on local details or hair texture. Nevertheless, low con-
trast images and severe head rotations can impact the recogni-
tion performance negatively. On the right hand side of Table 6
one can study some of the misclassified ear images. The wide
range of ear image variations in the AWE dataset makes it
difficult for themodels to learn consistent and robust features,
which can be justified from the provided visualizations. There
is not much consistency in the image regions that are used
for the wrong predictions. Here, we show cases where the
misleading image region is the upper tip of the ear, the lower
end of the scapha, some part of the helix, a strong contrast
between the ear and the dark background or a single patch of
hair.

VIII. CONCLUSION
This paper introduces ear recognition models based on five
different variants of deep ResNet architectures. We proposed
three methods of transfer learning, which can be used with
other deep CNN architectures to learn discriminative ear
features and to improve the overall recognition performance.
Extensive experiments were conducted on four challenging
publicly available ear image datasets, which consist of images

collected under constrained and unconstrained conditions.
In order to address the wide variability in ear images such as
geometric transformations, occlusions, different image sizes
and varying aspect ratios for each of the considered datasets,
we proposed to embed each image into a fixed-size canvas to
preserve the aspect ratios. Moreover, when training the mod-
els we introduced two different data augmentation pipelines
to suit the type of variations in both, the constrained and
unconstrained ear datasets. Our experimental results show
considerable improvements in the recognition rates on all
datasets and our proposed models achieve state-of-the-art
recognition performance.

In order to make our models more transparent and to
uncover the black-box nature of the deep models we applied a
visualization technique that highlighted the important image
regions responsible for the model predictions. The provided
visualizations indicate that consistently focusing on the geo-
metrical structure of the ear shape is the most discriminative
region for getting correct predictions, whereas relying on
auxiliary information such as the haircut or skin texture can
result in wrong decisions. The visualizations also show the
limited impact of partial ear occlusions and mild degrees of
head rotations on performance, whereas, severe occlusion by
hair and severe head rotations have a detrimental impact on
recognition performance.
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