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ABSTRACT Optimizing the design of an airport baggage handling transport system (BHTS) with respect to
the minimization of the total costs and energy consumption is essential to reduce costs and Carbon dioxide
(chemical formula CO2) emissions in airport operations. This paper introduces a mathematical model that
comprehensively considers relevant costs regarding the operation of belt conveyors in a BHTS. Specifically,
the Capital Expenditure (CapEx) and Operational Expenditure (OpEx) are considered in the airport BHTS
cost function. Furthermore, to include the impact of CO2 emissions, the offsetting costs of CO2 emissions
are included in the airport BHTS cost function. This function forms the basis of an objective function that can
be used to optimize the airport BHTS’s design by metaheuristic algorithms. Three state-of-the-art particle
swarm optimization (PSO) algorithms are utilized to solve the airport BHTS optimization problem. The
results of experiments show that the three PSO variants can solve the optimization problem effectively and
efficiently. The self-regulation PSO algorithm performed the best in terms of CPU time and has been used
for the case studies. Extensive tests of the impact of key parameters, e.g., capacity and system length, on the
optimized solutions have been conducted. Experiments show that a system with several belt conveyors of
shorter lengths performs better than a system with one long conveyor. In reality however, more parameters
play a role like the varying baggage throughput per hour and therefore the BHTS problem needs to be
optimized case-by-case. Optimizing an airport BHTS design leads to a significant reduction in CO2 emission
and thus costs.

INDEX TERMS Baggage handling transport system, airport operations, belt conveyors, CO2 emission,
particle swarm optimization.

I. INTRODUCTION
The baggage handling transport system (BHTS) at airports
is crucial as it majorly impacts the passenger’s perception
of the quality of their journey. This quality is determined
by the minimum allowable time between baggage check-in
and the departure of the flight as well as the time it takes to
transport passengers’ baggage upon arrival. Both these times
are affected by the reliability and the capacity of the BHTS.
A combination of fully automated, mechanized systems and
human operators controls baggage handling at major airports.
Most automated and mechanized systems utilize a combi-
nation of continuous and discontinuous conveyor systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wai-Keung Fung .

The main difference between these two systems is the
momentarily transport capacity. Assuming that both systems
are up and running, a continuous conveyor system always
provides enough capacity, whereas the capacity of a discon-
tinuous system depends on the availability of equipment.
An example of equipment used in a continuous conveyor
system is a belt conveyor that is a mechanical conveyor using
a continuous belt supported by pulleys and, in most cases,
idler rolls. Belt conveyors are driven by electrical motors that,
in many cases, are speed controlled.

The energy required to power a belt conveyor is determined
by the friction in the conveyor. This friction mainly depends
on the so-called indentation rolling resistance that depends
on the structural composition of the belt, the weight of the
belt, and its load [1]. The energy consumption of a BHTS
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forms a significant percentage of the total energy consump-
tion of an airport, with the conveying equipment accounting
for 55% to 70% of that percentage [2]. The carbon emission
is directly proportional to the energy consumption of a con-
veying system. Therefore, the conveying system of a BHTS
emits a significant portion of the carbon emitted by an airport.
In literature, energy efficiency and reducing carbon emissions
in aviation is a theme that is growing [3]–[6]. To reduce
carbon emissions in the aviation industry, the International
Civil Aviation Organization initiated the Carbon Offsetting
and Reduction Scheme for International Aviation (CORSIA)
in 2016, which has taken effect in January 2021 [7]. To com-
ply with the CORSIA, it is vital to minimize the energy
consumption of belt conveyors in BHTS since belt conveyors
form the backbone of most BHTS at major airports.

Earlier research showed that reducing the delay time td
of a belt conveyor has a significant impact on the energy
consumption of a BHTS [8]. The delay time is the time
a belt conveyor runs empty or idle after the last piece of
baggage left the conveyor. It was shown that the maximum
energy savings depend on the capacity of the conveyor and the
conveyors’ length [8]. In general, it can be said that possible
energy savings for shorter conveyors are larger than that for
longer conveyors. Therefore, selecting the optimal length of
a belt conveyor allows for lower energy consumption of the
conveying system of the BHTS. In [8], a study was carried
out identifying the impact of the capacity, length, and delay
time of a belt conveyor on its energy consumption. This paper
will further explore methods to minimize energy consump-
tion, thus Carbon dioxide (chemical formula CO2) emissions,
by optimizing the airport BHTS from the perspective of the
total costs.

It should be realized that, by reducing the length of a belt
conveyor in the conveying system of a BHTS, the number
of belt conveyors increases since the conveying system still
has to span a certain distance. An increase in the number of
conveyors will lead to an increase in the Capital Expendi-
ture (CapEx) of the system, even though an overall reduc-
tion of the energy consumption of the system will lead to a
reduction of the Operational Expenditure (OpEx). The total
cost of running a conveyor system over a certain period is
made up by the CapEx and the OpEx as a function of time.
Therefore, instead of optimizing to a minimization of the
energy consumption of the conveyor system, in this paper,
an optimization to a minimization of the total cost is studied.
Furthermore, to include the impact of CO2 emissions, the
offsetting costs of CO2 emissions are included in the airport
BHTS cost function.

It is worthwhile to review the existing studies on airport
baggage handling systems to better build our airport BHTS
model and select suitable solving methodologies. [9] consid-
ers the planning and scheduling of inbound baggage that is
picked up by passengers at the baggage reclaim hall. As the
inbound baggage handling problem turns out to be NP-hard,
they propose a hybrid heuristic approach combining a greedy
randomized adaptive search procedure with a guided fast

local search and path relinking. [10] considers the handling
of baggage from passengers changing aircraft at an airport.
The transfer baggage problem is to assign the bags from each
arriving aircraft to an infeed area, from where a network of
conveyor belts will bring them to the corresponding outbound
fight. Its main objective is to minimize the number of missed
bags. Firstly, a static mixed integer programming model is
presented for the transfer baggage problem. Furthermore,
to handle the uncertainty related to aircraft arrival time, trans-
portation time from aircraft to baggage handling facility, and
capacity use in the baggage handling system, a stochastic
model is developed. [11] reviews different baggage models
and their usage in the BHTS line shared by multiple airlines.
The suggested algorithm reduces the imbalances for the air-
lines sharing the BHTS collection conveyor, while maintain-
ing overall BHTS performance at an acceptable level. [12]
shows how a state-of-the-art model-based design framework
has been successfully used for model-based design of super-
visory controllers for an actual industrial baggage handling
system, and for a real-time emulation model of an actual
international airport. The high-level modeling elements of the
applied model-based design framework allow the modeler
to concentrate on implementing the BHTS design require-
ments. [13] does a part of large airport’s BHTS modeling
and simulation which deals with more than 20,000 bags
per day using a Colored Petri Net. [14] presents a detailed
discrete event model of inbound baggage handling at a large
regional Italian airport. [15] details the investigation into
the design and control of merging bottlenecks of conveyor
based BHTS, encompassing the merging control algorithm
and the impact of the merge’s physical layout. In [16] an
alternative transport and scheduling method, as well as the
application of a prototype of a partly automated baggage
loading and unloading vehicle have been investigated using
simulation. [17] presents a microscopic simulation model for
a BHTS that fully integrates all baggage-related subsystems.
These include passenger arrival to check-in queues, baggage
check-in, security screening, sorting, transport to the aircraft
and loading. To sum up, a literature review shows that there
are studies into BHTS in general but not with respect to an
optimization of the design of a belt conveyor system account-
ing for its environmental impact and total cost.

Swarm intelligence algorithms are useful in solving opti-
mization problems and have been used in many engineer-
ing applications. [18] introduces the origin and background
of particle swarm optimization (PSO) and carries out the
theoretical analysis of PSO. Then, it analyzes its present
situation of research and application in algorithm structure,
parameter selection, topology structure, discrete PSO algo-
rithm and parallel PSO algorithm, multi-objective optimiza-
tion PSO and its engineering applications. [19] presents an
evolutionary optimization approach named grey wolf opti-
mization (GWO), which is based on the behavior of grey
wolves, for the optimal operating strategy of economic load
dispatch. [20] proposes a GWO combined with PSO to
tackle the disadvantages of the existing GWO, such as slow
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convergence speed and low precision. In [21], a water cycle
algorithm (WCA) is inspired from nature and based on the
observation of water cycle process and how rivers and streams
flow to the sea in the real world. In [22], the multi-objective
WCA is presented for solving constrained multi-objective
problems. Whale Optimization Algorithm [23] mimics the
social behavior of humpback whales. Among the family of
swarm intelligence algorithms, PSO is a powerful one and
shows its superiority in solving many problems. PSO has
experienced a multitude of enhancements since it was pro-
posed. Researchers further proposed some improved PSO
versions aiming to different improvement demands. PSO has
been widely applied to many engineering problems due to its
strong global optimization ability and its easy implementa-
tion. Thus, we will utilize PSO to solve the airport BHTS
design problem, which will shed a light to study similar
problems in the future.

This paper is structured as follows. In Section 2, the
characteristic times used in the baggage handling con-
veyor cost model is defined. Section 3 introduces the cost
model used for the optimization process. This cost model is
extended with the cost for offsetting the carbon emissions in
Section 4. Section 5 defines the optimization objective func-
tion, whereas PSO algorithms are introduced in Section 6.
Section 7 illustrates the results of the application of PSO
in the airport BHTS optimization problem. In section 8,
the impact of reducing CO2 emissions by the optimized
solution is discussed. Conclusions are drawn in Section 9.

II. CHARACTERISTIC TIMES
In order to optimize costs, a reference case will be defined and
the variation in the total cost with variations in the number
of conveyors, conveyor speed and delay time will be stud-
ied. Let’s assume that the total baggage handling conveyor
system in the reference case consists of one belt conveyor
with a length Lref . Please note that the system’s capacity C is
independent of the length and the number of belt conveyors
in the system. Let Nf be the number of belt conveyors in the
system. If all Nf conveyors have the same length Lf , then the
length of each conveyor is:

Lf =
Lref
Nf

, ∀Nf ≥ 1, Nf εI (1)

Fig. 1 shows a real belt conveyor system in an airport BHTS
utilizing multiple short conveyors.

Fig. 2 shows a schematic diagram of a BHTS with one
belt conveyor with length Lref and with Nf (Nf > 1) belt
conveyors with lengths Lf . Note that the total span of the
system remains the same.

Assume that the belt speed, which is assumed to be the
same for each conveyor in the system, is v. The time it takes
a piece of baggage to travel over the conveyor with length Lf
is to, which is called the operation time:

to =
Lf
v

(2)

FIGURE 1. Belt conveyor system in an airport baggage handling transport
system with multiple short conveyors.

FIGURE 2. Schematic diagram of baggage handling conveyors with one
conveyor and Nf conveyors.

Each unique piece of baggage in a BHTS may have a
unique destination, also called a lateral. To allow the system
to handle each piece of baggage individually, they need to be
separated by a minimum gap with a length Lg. The time it
takes a piece of baggage to travel over this gap is called the
gap time tg:

tg =
Lg
v

(3)

The time it takes a piece of baggage to travel the conveyor
plus the gap is called the processing time tp:

tp = to + tg (4)

Assume that a belt conveyor switches on tb seconds before
a piece of baggage arrives at the conveyor. Time tb is also
called the before time. Furthermore, it is assumed that the
belt conveyor switches off td seconds after a piece of baggage
leaves the conveyor. Time td is called the delay time. The total
minimum running time tr of a belt conveyor then is:

tr = tp + tb + td (5)

III. COST MODEL
The cost of a belt conveyor with length Lf (denoted by Kf )
consists of CapEx (symbolized by KCf ) and OpEx (symbol-
ized by KOf ). It is assumed that, after the economic life Td of
the conveying system, its economic value is zero. The CapEx,
therefore, includes the depreciation costs of the conveyor
system per year.

During the design of a belt conveyor, a DIN standard is
used [24]. In this standard, a distinction is made between the
head and tail of the conveyor on the one hand, and the section
between the head and the tail on the other. The first section
includes the head and tail pulleys, the drive and/or brake,
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and the take-up of the system. The second section includes
the idlers. Both sections are mounted on a frame as shown
in Figure 1. Like the terminology used in the DIN standard,
a distinction is made between the CapEx of the head and tail
section (symbolized by KCf ,N ) and the CapEx of the section
in between (symbolized by KCf ,H ):

KCf =
1
Td

(KCf ,H + KCf ,N ) (6)

If it is assumed that an airport standardizes on one type of
belting, then KCf ,H is proportional to the length of conveyor:

KCf ,H = α1Lf (7)

where α1 is the cost for a section between head and tail
per meter. As stated earlier, the energy required to power a
belt conveyor is determined by the friction in the conveyor.
According to [8], the required drive power PD of a belt
conveyor is:

PD = kLf v (8)

where k is the factor that gives the motional resistance per
meter belt conveyor on the motor side. Using the data pro-
vided in [8], the equation for the regression of factor k
versus Lf is:

k = α2L
α3
f (9)

Combining the equations (8) and (9) yields the drive power
requirement as a function of the conveyor length and speed:

PD = α2L
1+α3
f v (10)

Assuming that an airport standardizes the pulleys and
frames, the CapEx of the head and tail section depends only
on the amount of drive power required, and therefore on the
motor to be installed. The CapEx of the head and tail section
KCf ,N then can be defined as:

KCf ,N = α4 + α5 + α6PD + α7P2D (11)

where α4 is the cost of the frame, and α5 to α7 determine the
cost of the drive system. A combination of the equations (6)
to (11) results in the total CapEx for a belt conveyor per year:

KCf

=
1
Td

(
α1Lf +α4+α5+α6

(
α2L

1+α3
f v

)
+α7

(
α2L

1+α3
f v

)2)
(12)

The CapEx of the reference system with one long belt
conveyor with length Lref isKCref that can be calculated using
equation (12) by replacing Lf with Lref . Then, the additional
CapEx for a system with Nf smaller conveyors is:

1KC = Nf KCf − KCref (13)

The OpEx of a conveyor system depends primarily on the
energy consumption of the system and its maintenance.

A belt conveyor can be deactivated when there temporarily
is no supply of baggage. This time is called the waiting time.

The time between arrival of pieces of baggage on the con-
veyor is the interarrival time (symbolized by ti). The waiting
time for an individual belt conveyor, i.e., twf , can be defined
by equation (14):

twf =

{
ti − trf , ∀ti ≥ trf
0, ∀ti < trf

(14)

where trf is running time of one belt conveyor. In [8], it was
found that the interarrival time of a piece of baggage can
be modeled as a negative exponential Poisson distribution.
Thus, the total waiting time of a belt conveyor per hour is as
follows [8]:

Ctwf = 3600e−
Ctrf
3600 (15)

where C is the capacity of the system. Normally, the required
capacity of a conveyor is defined per hour and the airport is
open X hours a day. This means that a day can be divided
into X blocks of one hour. Therefore, the total waiting time
per day for a belt conveyor is:

Twf =
∑X

i=1
3600e−

Citrf
3600 (16)

where Ci represents the capacity of the BHTS in the i-th hour
block. Stopping the belt conveyor when it is not needed cre-
ates waiting time, therefore, energy is saved. If the required
drive power for an empty conveyor is PD, then the possible
total OpEx savings per belt conveyor per day coming from
waiting time is:

KOf ,E = α8PDTwf (17)

where α8 is the cost of one kilowatt-hour energy (kWh).
Therefore, the total OpEx savings for the whole baggage
handling conveyor system is:

KO,E =
∑Nf

i=1
KOfi,E (18)

With an increase in belt conveyors in a BHTS and an
increase in the number of starts and stops, the maintenance
costs rise. It is assumed that the maintenance costs per year
are a percentage of the CapEx (i.e.,KCf ) of one belt conveyor:

KOf ,M = α9KCf (19)

where α9 is a percentage. For the whole BHTS, the mainte-
nance costs become:

KO,M =
∑Nf

i=1
KOfi,M (20)

IV. CO2 EMISSIONS
When changing the length (and thus number) of belt con-
veyors in the airport BHTS, generally, the capital costs go
up, while the operational costs go down due to an increase
in waiting time. Hence, this not only results in a reduc-
tion of energy costs but also greenhouse gasses (e.g., CO2)
emissions. To study the impact of different BHTS design
on the reduction of greenhouse gasses emissions, it can be
quantitatively represented by the carbon offsetting costs.
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The total drive energy ED, required to drive a belt conveyor
is delivered by an energy source (denoted by Es). This energy
source is electrical energy for an electrical motor. The effi-
ciency of the delivery of the energy source for the total drive
energy is the engine efficiency ηE . The relationship between
the drive energy and the source energy is as follows:

ED = FDLf = ηEEs (21)

where FD is the total drive force. Therefore,

ES =
FDLf
ηE

(22)

Please note that a typical engine efficiency ηE is 95%. The
power generated by the energy source (symbolized by Ps) is
the amount of energy used as a function of time.

PS =
Es
1t
=

FDL
ηE1t

=
FDv
ηE

(23)

The total amount of source power saved during the waiting
time isPSTwf . Themass of the emission output of greenhouse
gasses is linearly related to the amount of energy consump-
tion Es. The relation between the mass of emission output
and the energy consumption is given by the specific emission
factor (abbreviated as s.e.f .):

msubstance = s.e.f .substancePSTwf
= s.e.f .substance((FDv)/ηE )Twf (24)

where:

msubstance emitted mass of a substance [g]
s.e.f .substance specific emissions factor of a certain

substance [g/kWh]

For example, the emission output of carbon dioxide (CO2)
calculated with equation (24) is:

mCO2 = s.e.f .CO2
((FDv)/ηE )Twf (25)

The cost of offsetting this emission KCOf for a specific belt
conveyor is:

KCOf = α10mCO2f (26)

where α10 is the cost of the emission of CO2 in $ per ton.

V. OBJECTIVE FUNCTION
The objective of the airport BHTS optimization problem is to
maximize the difference in capital, operational, maintenance,
and carbon emission costs between the reference case, where
one belt conveyor with length Lref is used, and the case where
Nf belt conveyors are used with length Lf . These differences
are as follows:

1KC = Nf KCf − KCref (27a)

1KO,M = Nf KOf ,M − KOref ,M (27b)

1KO,E = Nf KOf ,E − KOref ,E (27c)

1KCO = Nf KCOf − KCOref (27d)

Equation (27a) defines the difference in CapEx, equa-
tion (27b) the difference in OpEx in terms of maintenance
costs, equation (27c) the difference in OpEx in terms of
energy costs, and equation (27d) the difference in car-
bon emission costs. With the components of equation (27),
the objective function Z can be defined as:

Z =
(
1KO,E +1KCO

)
−
(
1KC +1KO,M

)
(28)

Remember that the energy and emission costs decrease
with an increase in the number of conveyors, whereas the
CapEx and maintenance costs increase. Therefore, Z should
be maximized. To better utilize a heuristic algorithm to solve
the airport BHTS optimization problem, this problem will be
transferred from a maximization problem to be a minimiza-
tion problem. Thus, the objective is to minimize G = −Z .
The decision variables are Nf , v and td . The total objective
function can be written as:

G

= (1+α9)Nf
1
Td

(
α1
Lref
Nf
+α4+α5+α6

(
α2

(
Lref
Nf

)1+α3
v

)

+ α7

(
α2

(
Lref
Nf

)1+α3
v

)2


−
(1+ α9)
Td

(
α1Lref + α4 + α5 + α6

(
α2L

1+α3
ref v

)
+ α7

(
α2L

1+α3
ref v

)2)
−

(
Nf ∗ α8α2

(
Lref
Nf

)1+α3
v

∗ 365 ∗
∑X

i=1
e−

C
(
Lref
Nf v
+
lg
v +tb+td

)
3600 − α8α2L

1+α3
ref v ∗ 365

∗

∑X

i=1
e−

C
(
Lref
v +

lg
v +tb+td

)
3600

− (Nf ∗ s.e.f .CO2

∗ α2

(
Lref
Nf

)1+α3
v ∗ 365 ∗

∑X

i=1
e−

C
(
Lref
Nf v
+
lg
v +tb+td

)
3600 /ηE

− s.e.f .CO2
∗α2L

1+α3
ref v∗365∗

∑X

i=1
e−

C
(
Lref
v +

lg
v +tb+td

)
3600 /ηE


∗α10 ∗ 10−6 (29)

VI. PARTICLE SWARM OPTIMIZATION
A. STANDARD PSO ALGORITHM
Particle Swarm Optimization (PSO) is a popular heuristic
algorithm and is widely used to solve engineering problems
due to its good performance, easy implementation, and adapt-
ability to different problems. Thus, in this study, PSO is
selected to solve our airport BHTS optimization problem.

Originally proposed by James Kennedy and Russell Eber-
hart, PSO was inspired by the foraging behavior of bird
flocks [25]. A swarm is stochastically initialized in the search
space. Each particle is a candidate solution of the problem,
which is represented by the velocity v and the location x.
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A particle flies to a better position as it evolves. Particles have
memory and share their information with each other, which
imitates social behavior. In the original PSO, velocities and
locations of particles are iteratively updated as follows:

vt+1id = vtid+c1r1
(
pbest tid−x

t
id
)
+c2r2

(
gbest td−x

t
id
)

(30)

x t+1id = x tid + v
t+1
id (31)

where t denotes the current number of iterations. i represents
the particle index, and d represents the dimension index.
r1 and r2 are random numbers uniformly distributed in the
range of [0,1]. pbest denotes the best previous position of a
particle. gbest denotes the best position of the swarm so far.
c1 is a learning factor that refers to the impact of a particle’s
history information, and c2 is a learning factor reflecting the
social impact from the swarm.

In this paper, the original PSO is called the standard PSO.
Three parts, i.e., personal current velocity, pbest, and gbest
affect the velocity update. The standard PSO suffers from
premature convergence and is easy to trap into a local opti-
mum caused by the loss of population diversity. To tackle
the premature convergence issue, a PSO with inertia weight
(ωPSO) was proposed to balance the global search ability
and local search ability of PSO. Its velocity is updated using
Eq. (32) [26].

vt+1id = ωiv
t
id + c1r1

(
pbest tid − x

t
id
)
+ c2r2

(
gbest td − x

t
id
)

(32)

ωi = ωini − (ωini − ωend ) · t/MIter (33)

The inertia weight (denoted by ωi) linearly decreases over
time using Eq. (33), which is good for balancing the explo-
ration and exploitation ability.ωini is the initial inertia weight,
and ωend is the end inertia weight. MIter represents the total
number of iterations. A large value of ωi at the early stage
provides a strong global search ability by exploring a wider
space. As ω PSO evolves to the end, ωi tends to be a small
value and the algorithm focuses on local exploitation around
gbest and pbest.

B. COMPREHENSIVE LEARNING PSO
Comprehensive Learning PSO (CLPSO) algorithm [27] was
proposed to deal with the premature convergence problem,
which is a very successful improvement. Its velocity updates
by Eq. (34) where fi(d) represents the index of the particle that
the d-th dimension of the i-th particle select to learn. Every-
one chooses a pbest from the whole swarm, and different
dimensions of a particle can select different learning objects.
This learning strategy effectively maintains the population
diversity [27], [28] so that the global search ability of CLPSO
is greatly improved compared to the standard PSO.

vt+1id = ωiv
t
id + c1r

d
i

(
pbest tfi(d)d − x

t
id

)
(34)

C. UNIFIED PSO
The Unified Particle Swarm Optimization (UPSO) scheme
was proposed to combine the exploration and exploitation

properties of both the local and global PSO versions [29].
In the global version of PSO, the neighborhood of each
particle is the whole swarm. In the local version, the neigh-
borhoods are smaller, and they usually consist of several
particles.

Let Gt+1i and L t+1i denote the velocity update of the
i–th particle xi for the global and local PSO version,
respectively.

Gt+1i = 8
[
vti + c1r1

(
pbest ti − x

t
i
)
+ c2r2

(
gbest t − x ti

)]
(35)

L t+1i = 8
[
vti + c1ŕ1

(
pbest ti − x

t
i
)
+ c2ŕ2

(
nbest ti − x

t
i
)]
(36)

where i = 1, . . . ,N , 8 is the constriction factor. For the
t-th generation, pbest ti is the best history position of particle i,
gbest t is the best position of the whole swarm so far (global
version), and nbest ti is the best particle in the neighborhood of
xi (local version). The search directions defined by Eqs. (35)
and (36) are aggregated in a single equation, resulting in the
main UPSO scheme in Eqs. (37) and (38).

U t+1
i = (1− u)L t+1i + uGt+1i , u ∈ [0.1] (37)

x t+1i = x ti + U
t+1
i (38)

where u is named as unification factor to balance the influence
of the global and local search directions.

D. SELF-REGULATION PSO
A self-regulated theme provides better exploration and
exploitation, which motivates the development of self-
regulating and self-perception strategies in the standard PSO
algorithm. It is called Self-Regulation PSO (SRPSO) [30].
In SRPSO, self-regulating means that the best particle

will be given a higher acceleration of its exploration process
through an increased inertia weight. It performs the search
without any information from other particles and will return
to the normal search strategy once it is not the global best
position.
Self-perception is another important strategy in SRPSO.

The best particle uses his direction as the best direction and
is not influenced by its experience or other experiences. The
particles who are not the best use their perception based on
the global best position to find the appropriate direction in the
current iteration. SRPSO updates velocity via Eq. (39).

vt+1i = ωivti + c1r1p
se
id
(
pbest ti − x

t
i
)
+ c2r2psoid

(
gbest t − x ti

)
(39)

where ωi is the inertia weight of i-th particle. pseid is the
perception for the self-cognition and psoid is the perception for
the social-cognition. pseid and psoid are defined as follows:

pseid =

{
0, for the best particle
1, otherwise

(40)
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and

psoid =

{
0, for the best particle
γ, otherwise

(41)

where γ is binary (i.e., 0 or 1) depending on the threshold
value for defining the confidence.

PSO is a popular heuristic algorithm in solving engineering
problems and further modifications have been proposed to
improve the performance of PSO. Among the improved PSO
variants, SRPSO, UPSO and CLPSO are powerful variants
that have demonstrated good performance in many bench-
mark functions and applications. Thus, the three mentioned
PSO algorithms are selected to solve our airport BHTS
model. Since each algorithm may exhibit different perfor-
mance, it is worthwhile to leverage several algorithms to
check their capabilities in solving the airport BHTS model.

VII. APPLICATION OF PSO IN BHTS OPTIMIZATION
A. PARAMETER SETTINGS
The parameters and their values shown in Table 1 are the
inputs for the airport BHTS optimization problem. These
values are based on the practical experience of the authors
and data from component suppliers.

TABLE 1. Key parameter settings of the airport BHTS model.

CLPSO, UPSO and SRPSO are three state-of-the-art PSO
variants [27]–[30]. To learn their performance on the airport
BHTS optimization problem, all three PSO algorithms are
tested to obtain comparison results. Table 2 presents the main
parameter settings for the numerical experiments, including
the number of test times, population size, and the maxi-
mum number of iterations. Considering the random factors
in heuristic algorithms, all tests run 30 independent trials to
obtain their statistical results.

B. SYSTEM CAPACITY AND Lref
It is assumed that the required capacity of the airport
BHTS varies over the day but is a constant per hour [8].
Table 3 shows the capacity Ci of a total of X=15 hours. The
first row represents the start to the end time of the indicated
hour. The second row shows the number of bags processed in
that hour.

TABLE 2. Experiment settings.

TABLE 3. Capacity at each hour.

The impact of the variation of capacity is illustrated by
comparing the results of the optimization with those of a sys-
tem with a constant capacity of 110 bags per hour. This com-
parison is shown in Table 4 for different lengths of the system.
In this comparison, the length Lref starts from 15 meters and
ends at 75 meters with an increment of 15 meters.

The settings of the range of the variable v is [0.5, 1] and the
range of td is [5], [40] for all tests in this subsection. Through
using the three PSO algorithms, the optimized solution of v
is its minimum value 0.5 m/s, and the optimized solution of
td is its minimum value 5 second for all independent runs of
each case. However, the optimized solution of Nf is different
for different cases. Thus, we focus on the discussion of the
optimized solution of Nf .

For the results of the analyses in Table 4, the SRPSO
algorithm is used. The columns in Table 4 labelled ‘Objective
value’ represents the value of the object function.

As can be seen from the results of the constant capacity
C = 110 case (right column), the optimized solution of
Nf shows a constant ratio, between the length Lref and the
optimized solution Nf , i.e., 1.36. Hence, for a BHTS with the
parameters given in Table 1, the optimum conveyor length is
1.36 m when C is a constant capacity of 110 bags per hour.
However, this is not true for the case with transport capacity
varying over the day, as shown in Table 3. For a system with
a length of 15 m, the optimum conveyor length is 1.25 m.
If the system length increases to 75 m, the optimum conveyor
length increases to 1.29 m. Therefore, it demonstrates that
in reality, where system capacity does change over the day,
an optimization exercise is required to find the optimum
conveyor length rather than using a standard length like the
1.36 m found in this study.

It is necessary to check the performance of different PSO
algorithms for the airport BHTS optimization problem. All
the five inputs of Lref have been tested but, since their results
turn out to be the same, only the results of a 15 m system
length are discussed in detail.
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TABLE 4. Comparison of solutions between cases with Ci and constant C
per hour.

Statistical results of the value of the objective function,
including the minimum value, maximum value, median
value, mean value, and standard deviation value obtained by
CLPSO, SRPSO and UPSO algorithms are shown in Table 5.
This table demonstrates that all three PSO variants can find
the best solution by looking into their minimum values. Fur-
thermore, the results show that SRPSO and UPSO achieve
the global optimum solution every trial since all 5 metrics
are the same and the standard deviation value is very small.
The maximum value of CLPSO is larger than that of the other
two PSO algorithms, which means that some trials tested by
CLPSO do not achieve the global optimum solution.

TABLE 5. Statistical results of objective value for Lref = 15 with
Max_Gen =70.

To further investigate the efficiency of different PSO algo-
rithms, their CPU time is recorded, and the statistical results
are shown in Table 6. This table shows that SRPSO is the
fastest one from all 5 metrics.

TABLE 6. Statistical results of CPU time for Lref = 15 with Max_Gen =70.

With Max_Gen =70, the convergence curves of CLPSO,
SRPSO and UPSO are presented in Fig. 3. The meaning of
y-axis is the log operation result of the difference between
f (x) and f ∗. Conducting the log operation is to easily see
the obvious converge differences among various algorithms.
If the difference is too small, it is not easy to figure out when

the log value is not used. Using (f (x)− f ∗) as the input of
log other than using the objective function f (x) is to check
the gap between the current objective value and the optimal
one. Thus, the evolve process is directly presented. To do
this, we have solved the problem first and obtained a best
solution as f ∗. Then the output of each iteration is subtracted
with f ∗. The x-axis is the number of function evaluations.
For each generation, its number of function evaluations is
Pop_Size. Thus, after t-th generation, the total number of
function evaluations consumed so far equals t ∗ Pop_Size.
From Fig. 3, it is evident that SRPSO and UPSO perform

similarly in terms of convergence rate. CLPSO converges
slower at the early stage, which is because of its strong
global search ability and its main mechanism of maintaining
diversity at its early stage. When the number of function
evaluations is around 900, all three algorithms find the best
solution for this airport BHTS optimization case.

FIGURE 3. Convergence curves for Lref = 15 with Max_Gen =70.

C. PERFORMANCE OF PSO WITH LIMITED Max_Gen
When themaximumnumber of iterations is limited, for exam-
ple, it is reduced to 10, some algorithms cannot obtain the best
solution. So, it is worthwhile to analyse the performance of
different PSO algorithms in the airport BHTS optimization
problem with limitedMax_Gen. Table 7 shows the statistical
results of the value of the objective function obtained by the
three PSO variants when Lref =15 with Max_Gen =10.
UPSO performs better than CLPSO and SRPSO from the
perspective of the mean value and standard deviation value.

TABLE 7. Statistical results of objective value for Lref = 15 with
Max_Gen =10.
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By looking into the CPU time, as shown in Table 8, SRPSO
is the fastest one, which is consistent with that of the situation
when Max_Gen is 70.

TABLE 8. Statistical results of CPU time for Lref = 15 with Max_Gen =10.

With Max_Gen =10, the convergence curves of CLPSO,
SRPSO and UPSO are presented in Fig. 4. As can be seen in
this figure, UPSO obtains the best solution among the three
PSO variants. CLPSO evolves with the slowest speed, which
is due to its updating strategy emphasizing on maintaining
swarm diversity and focusing on the global search at the early
stage. So, when the given number of iterations is limited,
CLPSO is still conducting a global search of its early stage
and has not start the later converge stage. Thus, CLPSO does
not converge to the best solution with limited iterations.

FIGURE 4. Convergence curve for Lref = 15 with Max_Gen =10.

D. OPTIMIZED SOLUTIONS WITH DIFFERENT td AND C
The delay time td affects the running time tr , as shown in
Eq. (5). Thus, the waiting time is also affected. Therefore,
different values of td will have a different output in terms
of the optimized solution of Nf and the parameter values.
As illustrated in Section VII.B, the capacity C also affects
the results of the optimization. It is important to understand
how td and C together affect the optimized results to better
understand the optimization of the airport BHTS. To analyze
this, the following values of C are used [90, 100, 110, 120,
130, 140, 150, 200, 250, 300]. The optimized solution of the
delay time is its minimum value of the range. Thus, different
inputs of the lower bound are set to learn the impact of delay

time on the airport BHTS model. The lower bound of delay
time td is set to be 5, 10 and 15 seconds, respectively. All
upper bound of delay time is 40. In this subsection, SRPSO
is used because it is the fastest one among the three PSO
algorithms tested for this application.

In this subsection, the focus is on determination the
changes to the value of the objective function by changing
the lower bound thus the optimized solution of td and C .
To intuitively learn the changes, the values of the objective
function are normalized by dividing these values with the
maximum value among all objective values of a set. Please
note that a set includes all results from an optimization using
all values of C at a specific lower bound value of td .

As seen in Fig. 5, the normalized values of the objective
function decrease with an increase in the capacity. Further-
more, as td increases, the slope gets greater, which means
that a large value of td has more impact on the value of
the objective function. This is caused by the fact that, with
a larger td , the difference between the performance of the
reference system and the optimized system is smaller due to
a larger td resulting in less waiting time decreasing the value
of the objective function.

FIGURE 5. Normalized objective values when td and C change.

It is interesting to determine the impact on the value of the
objective function when capacity and delay time change with
a constant Nf with an input of td . To check different scenarios
of delay time, three situations of td , i.e., td =5, 10 and 15,
are tested. For each scenario, Nf is set to be the same value
for different capacity C . The optimized solution from the
minimum input ofC (see Table 3) is picked for each td ,. Thus,
whenC is 90,Nf is 56, 49 and 42 for corresponding scenarios
when the optimized solution of td is 5, 10 and 15, respectively.
Since the optimized solution of td is its minimum valuewithin
its defined range, the scenario of a 5 second solution is with
a setting of the range of [5, 40], the 10 second scenario is
from the range of [10, 40] and the 15 case is from the range
of [15, 40]. For other capacity values, Nf is kept the same
instead of using its optimized solution for that case to create
Figure 6.
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FIGURE 6. Normalized objective value with a constan Nf t when td and C
change.

FIGURE 7. Optimized solutions of Nf when td and C change.

Figure 6 illustrates that the trend is similar to the results
shown in Fig. 5. However, the slope of the lines is steeper
than those in Fig. 5. This is caused by the fact that at different
C values, the optimized solutions in terms of the number of
conveyors, will be lower than the used number, e.g., 42 for
a td =15 case. A lower value of Nf means a longer length
of the conveyor, which will further decrease the value of the
objective function.

The relationships of the optimized solution in terms of the
number of conveyors Nf with varying td and C are shown
in Fig. 7. The number of conveyors in the optimized solution
decreases when C increases. This is caused by the fact that
a higher capacity leads to less opportunity for waiting time
and thus energy savings. Therefore, the impact of the increase
in CapEx with an increase in the number of conveyors plays
a dominant role. As td increases, the slope gets greater for
the same reason as explained earlier, but not as significant as
Figs. 5 and 6.

VIII. CO2 OFFSET COST REDUCTION
In the introduction section, it is stated that reducing the
delay time td of a belt conveyor has a significant impact

TABLE 9. Carbon emission reduction analysis.

on the energy consumption of an airport BHTS. In practice,
belt conveyors in BHTS at some major airports run contin-
uously since the systems lack the sensors to monitor bag-
gage flow. Thus, introducing a delay time will automatically
impact energy consumption and, consequently, the emission
of greenhouse gasses like CO2. Assume an airport is required
to financially offset the carbon dioxide emission of its opera-
tion. Hence, a reduction in the emission of CO2 immediately
leads to a cost reduction.

Table 9 shows the possible CO2 offset cost reduction per
year for an airport BHTSwith different lengths after introduc-
ing a delay time of 5 seconds instead of letting the conveyors
run continuously. Remember that the delay time only affects
the time a belt conveyor runs empty. The parameters that play
a role are the system length and the number of conveyors. The
first column of Table 9 shows the reference length of the con-
veyor system. In the reference case only one conveyor is used,
hence, the Nf of 1 in the second column. Column 3 shows the
cost reduction per year when a delay time of 5 seconds is used.
As can be seen, the cost reduction varies from $1,081 for a
system with a length of 15 m to $1,943 for a system with a
length of 75m. Fig. 8 shows that the CO2 offset cost reduction
decreases from $72 per meter to $26 per meter of a conveyor.
This is caused by the fact that, with an increase in conveyor
length and a given interarrival time of pieces of baggage,
the conveyor’s running time increases and the chances that
the interarrival time exceeds the running time decrease.

The last 4th and 5th columns in Table 9 show the possible
CO2 offset cost reduction per year for an optimized BHTS.
The optimum number of conveyors, determined using the
SRPSO algorithm, is given in column 4. Column 5 shows
the cost reduction per year when a delay time of 5 seconds
is used. As shown in the reference case, this cost reduction is
relative to a system that is up and running all the time. The
cost reduction ranges from $2,357 for a system with a length
of 15m to $11,681 for a systemwith a length of 75m. Column
6 finally shows the difference in cost reduction between the
reference case and the optimized case. Fig. 8 shows that the
CO2 offset cost reduction in the optimum case is almost a
constant at $156 permeter. This was to be expected as SRPSO
optimizes the object function to maximizing the impact of the
delay time, and irrespective of the system’s length.
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FIGURE 8. CO2 offset cost reduction per meter for the reference system
and optimized system.

A possible cost reduction of $11,681 per year for a con-
veyor system with 75 m long may seem trivial. However,
consider that large airports have BHTSs with lengths cov-
ering kilometres instead of meters. In that case, the yearly
reduction of CO2 offset costs becomes $156,000 per kilome-
tre of system.At $48 per tonne, the reduction of CO2 emission
is 3,250 tonne per year per kilometre of system, which is
significant.

IX. CONCLUSION
This paper investigates optimizing the design of the airport
baggage handling transport system by minimizing the total
costs, including CapEx, OpEx and the costs for offsetting
CO2 emissions. Based on this study, the following conclu-
sions can be drawn:

1) In the international aviation industry, a minimization or
elimination of CO2 emissions is crucial, as highlighted by
the CORSIA scheme. Unfortunately, there are hardly any sci-
entific papers that can assist in the environmentally friendly
design of airport systems, i.e., baggage handling transport
systems.

2) It is possible to develop a detailed total cost model based
on the characteristics and specifics of belt conveyors used in
an airport BHTS. This cost model needs to include the CapEx
and OpEx of the transport system accounting for the costs for
offsetting CO2 emissions.

3) Converting the cost model into an objective function
aids the optimization process. The primary parameters in the
optimization process are the total length of the belt conveyor
system, interarrival time of baggage, capacity of BHTS, drive
power of a belt conveyor, etc. The decision variables are the
number of conveyors, the delay time, and the belt conveyor
speed.

4) The particle swarm optimization algorithm can be used
for the airport BHTS optimization problem. All three PSO
variants tested in this study can determine the optimum
design. From a computational efficiency point of view,
SRPSO is the best one and therefore utilized.

5) For different lengths of the system, where system
capacity does change over the day, an optimization exer-
cise is required to find the optimum conveyor length
rather than using a standard length when the capacity is a
constant.

6) Optimization of the design of an airport baggage han-
dling transport system, especially in terms of the number of
conveyors, leads to a significant CO2 emission reduction and
consequently an offset cost reduction.

APPENDIX A
LIST OF ABBREVIATIONS
BHTS Baggage Handling Transport System
CapEx Capital Expenditure
OpEx Operational Expenditure
PSO Particle Swarm Optimization
UPSO Unified PSO
CLPSO Comprehensive Learning PSO
SRPSO Self-Regulation PSO

APPENDIX B
LIST OF SYMBOLS
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