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ABSTRACT In graph signal processing signals are defined over a graph, and filters are designed to
manipulate the variation of signals over the graph. On the other hand, time domain signal processing treats
signals as time series, and digital filters are designed to manipulate the variation of signals in time. This
study focuses on the notion of vertex-time filters, which manipulates the variation of a time-dependent graph
signal both in the time domain and graph domain simultaneously. The key aspects of the proposed filtering
operations are due to the random and asynchronous behavior of the nodes, in which they follow a collect-
compute-broadcast scheme. For the analysis of the randomized vertex-time filtering operations, this study
first considers the random asynchronous variant of linear discrete-time state-space models, in which each
state variable gets updated randomly and independently (and asynchronously) in every iteration. Unlike
previous studies that analyzed similar models under certain assumptions on the input signal, this study
considers the model in the most general setting with arbitrary time-dependent input signals, which lay the
foundations for the vertex-time graph filtering operations. This analysis shows that exponentials continue to
be eigenfunctions in a statistical sense in spite of the random asynchronous nature of the model. This study
also presents the necessary and sufficient condition for the mean-squared stability and shows that stability of
the underlying state transition matrix is neither necessary nor sufficient for the mean-squared stability of the
randomized asynchronous recursions. Then, the proposed filtering operations are proven to be mean-square
stable if and only if the filter, the graph operator and the update probabilities satisfy a certain condition.
The results show that some unstable vertex-time graph filters (in the synchronous case) can be implemented
in a stable manner in the presence of randomized asynchronicity, which is also demonstrated by numerical
examples.

INDEX TERMS Autonomous networks, asynchronous updates, randomized iterations, vertex-time filters.

I. INTRODUCTION

Linear time-invariant discrete-time systems are well studied
mathematical models that find applications in wide range of
different areas ranging from mathematical finance to imple-
mentation of digital filters [1], [2]. Although such models are
especially useful for analyzing (and controlling) dynamical
systems that evolve in time, the mathematical models are use-
ful in numerical linear algebra problems as well. An example
is the ““power method” that can extract the dominant eigen-
vector of the transition matrix, whose notable application is
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the PageRank algorithm used in search engines for ranking
web pages [3].

State-space models are studied also in the field of graph
signal processing [4], [5], in which the state transition matrix
is assumed to model the underlying graph structure and
state variables are interpreted as signals held by the nodes
of the graph. In this setting an iteration of the state-space
model is equivalent to the nodes communicating with their
neighbors. With this formalism, state recursions are utilized
for distributed implementation of polynomial (FIR) graph
filters [6]-[11] as well as rational (IIR) ones [12]-[15].

Despite their distributed implementation on graphs, the use
of standard state-space models requires the nodes to exchange
data simultaneously, or wait for each other, before starting
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the next round of communication. This type of implementa-
tion clearly requires a synchronization over the whole net-
work, which becomes an important limitation when the size
of the network is large, e.g. distributed large-scale graph
processing frameworks [16]-[18], or when the network has
autonomous behavior without a centralized control. In order
to eliminate the need for such a synchronization, the recent
studies [19]-[25] considered randomized asynchronous vari-
ants of the state recursions. These studies guaranteed the con-
vergence of the randomized updates on graphs under various
assumptions on the underlying state transition matrix (e.g.
graph operator), the input signal, and the update probabilities.

The paper has several new contributions, in addition to its
tutorial and review value. All derivations are presented in
detail. The main novelty, in the context of other recent work,
is described below.

o The recent work in [19]-[25] considered only input
signals that are constant in time although they depend
on the vertex of the graph. This paper extends this to
the case of time-dependent signals. Thus, we propose a
random asynchronous method that achieves filtering of
time-dependent graph signals both in time and over a
graph simultaneously.

« The paper shows that even in the presence of randomized
asynchronicity, exponentials remain eigenfunctions of
linear systems in a statistical sense. Therefore, the notion
of frequency response remains valid, and it can be uti-
lized to manipulate time-dependent input signals.

o Although joint graph (vertex)-time filters are well-
studied problems in graph signal processing [26]-[31],
the main advantage of the filtering method proposed in
this study is due to its flexibility to allow the nodes
of a graph to behave randomly and asynchronously in
a collect-compute-broadcast scheme without requiring
any centralized control.

o This study analyzes the mean behavior and the
mean-squared stability of the proposed filtering method
rigorously from the view-point of Markov-jump switch-
ing systems [32] and shows that randomized asyn-
chronicity can be utilized to induce stability into a
system.

Technical contributions of this study will be detailed in the
next section.

A. OUTLINE AND CONTRIBUTIONS OF THE PAPER

This study consists of two main parts. The first part
(Sections IT - IV) explores the behavior of random asyn-
chronous linear state-space models with time-dependent
inputs. In particular, Section II investigates the notion of
“frequency response’’ by showing that, in spite of the random
asynchronous nature of the iterations, exponentials continue
to be eigenfunctions of these systems in a statistical average
sense (Proposition 1). So, a random asynchronous system
can be treated as a time-invariant system in an average
sense. Section III focuses on the second order statistics of a
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randomized system and provides the necessary and sufficient
condition for the mean-squared stability of the randomized
recursions (Corollary 1 to Theorem 1). This result shows
also that an unstable system (in the synchronous world)
may get stable with randomized asynchronicity. Although
similar conclusions were observed in the special cases of
zero input [19] and time-independent input [23], Section III
of this study analyzes this phenomena in its full generality
and precisely characterizes the error in the state variables
due to randomization and time variation in the input signal.
Section I'V shows that stability conditions in the synchronous
and asynchronous settings do not imply each other in general
(Lemma 4). The main motivation of the first part is to provide
a mathematical framework for the analysis of the proposed
vertex-time filtering operations in later sections. A prelimi-
nary version of these results was presented in [33], and some
of these results appeared partially in the thesis [34].

The second part of this study (Sections V-VIII) focuses on
vertex-time filters with node-asynchronous updates. In par-
ticular, Section V introduces the node-asynchronous joint
vertex-time filtering operations and describes how they can
be modeled as random asynchronous state recursions. Based
on the analysis done in the first part, Section V-A presents the
necessary and sufficient condition for the mean-squared sta-
bility of the filtering operations. Section VI visits the notion
of discrete-time graph Fourier transform, which represents a
given time-varying graph signal in terms of eigenvectors of
the graph operator, and the complex exponential. Based on
this notion Section VII presents the graph-frequency response
of a filter in the presence of randomized node asynchronicity.
Section VIII presents the simulation results of the proposed
filtering operations and verifies the theoretical developments.

B. NOTATION
We will use P[-] and E[-] to denote the probability and
expectation, respectively. For a matrix X, we will use X*
and X" to denote its conjugate and conjugate transpose,
respectively, and p(X) to denote its spectral radius (the largest
eigenvalue in magnitude). For a matrix X € CV*M we will
use vec(X) € CYM to denote a vector obtained by cascading
the columns of X, and we will use vec™!(-) for the inverse
vectorization operation such that vec ! (vec(X )) = X holds
true for any matrix X. We will use < and < to denote posi-
tive definite and positive semi-definite ordering, respectively.
We will use ® to denote the Hadamard product, and ® to
denote the Kronecker product.

We will use 7 to denote a subset of {I,---,N}, and
P7 e RV*N to denote a diagonal matrix that has value 1 only
at the indices specified by the set 7. That is,

Pr = Zei e}'[ and tr(Py) =T/, €))
ieT

where ¢; € RY is the i standard vector that has 1 at the i
index and 0 elsewhere. We will use I, to denote the identity
matrix of size M.
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Il. RANDOMIZED LINEAR SYSTEMS WITH EXPONENTIAL
INPUTS

Consider a discrete time-invariant system with R inputs, P
outputs, and N state variables, whose state-space description
is given as follows:

x[k + 1] = Ax[k] + Bulk] + wlk], (@)
ylkl = Cx[k] + D ulk], 3

where x[0] € CV is the initial state vector (initial condition),
and w[k] € CV is the noise term with the following statistics:

E[wlk]] =0, E[wlk]lwl[k]] =T, €))

where T is allowed to be non-diagonal. We also assume that
noise is white, i.e., E[w[k] wH[s]] = O when k #£s.

The matrices in the state-space model in (2) have the
following dimensions:

AeCVN BeCNV*R cecCP*N, DecCP*R (5

where A is referred to as the state-transition matrix, and the
columns of the matrices B and D will be denoted as follows:

B=[By --- Brl, D=I[Dy --- Dgl. (6)

We further assume that the input signal u[k] consists of R
exponential signals in the following form:

k) = [af - af]'. ™

where «;’s are assumed to be distinct without loss of general-
ity. Furthermore, we always assume that

loil =1, V1I<i=<R, ®)

so that u[k] stays bounded throughout the iterations. While
exponential inputs may seem restrictive, they form the basis
for more general practical signals, making this section useful.
Later in Section VI, we will discuss how we can represent an
arbitrary time-varying graph signal in terms of eigenvectors
of the graph operator and complex exponentials.

In the noise free case, i.e., I' = 0, it is well-known from
linear system theory that the output vector y[k] € C in (3)
can be written as follows:

Ikl = y*[k] 4 y"[k], €))

where y**[k] denotes the steady-state component, and y[k]
denotes the transient component that are given as follows:

R
YK=Y Hi(e) of ,  yU[k1=C A" (x[0]—x*[0]).  (10)

i=1

where H;(z) € CF denotes the transfer function that relates
the i input to the output, which is given as follows:

Hi(z)=D;+C(zI —A)"' B, (11)

We also note that the term x5[0] in (10) is given as follows:
R

2301 = 3 (i1 —A) "' B, (12)

i=1
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It is clear from (10) that when the state-transition matrix A
is a stable matrix, i.e., the following holds true:

p(A) < 1, (13)

then the transient component y'f[k] converges to zero as the
iterations progress leaving only the steady-state component
y¥[k] in the output signal. In fact, stability of A is also
necessary for the transient part to converge to zero, which is
a well-known result from linear system theory [2].

A. THE RANDOM ASYNCHRONOUS MODEL

Distributed processing of data over networks has been studied
extensively, and they find applications in different prob-
lem formulations ranging from distributed sensor localiza-
tion [35]-[38] and controlling network of agents [39], [40]
to opinion dynamics [41] and PageRank computations [42],
[43]. One particular purpose of distributed algorithms is
to obtain a consensus among the agents of the underly-
ing network, and the value of the consensus is designed
to be the optimal solution of the objective function of
interest [44]-[46]. These algorithms generally have robust
behavior against the changes in the network topology, com-
munication failures, delays, asynchronous behavior of the
agents, and so on [47]. The literature on distributed algo-
rithms is vast, and we refer to [48] for a comprehensive
introduction to the topic.

In this study, we will consider the state recursions in (2)
in the context of graph signal processing, where the matrix
A will represent a graph (connectivity structure) and state
variables are associated with the nodes of the graph. As a
result, recursions in the form (2) correspond to a synchronous
data exchange between the neighboring nodes, and they lay a
foundation for polynomial and rational graph filters [6]-[15].
As one goal of this study is to provide a mathematical frame-
work for the node-asynchronous graph filtering operations
(see Section V), this section will elaborate on the following
randomized asynchronous variant of the state-space model:

(Ax[k] + Bulk] + w[k])l., w.p. Pis

SEET= e, wp. 1—pi.
(14)
ylk] = C x[k] + D ulk], (15)

where p; denotes the update probability of the i state
variable. The model (14) is very similar to the standard
state-space model in (3) except the fact that a state variable
only a random subset of indices are updated in every iteration,
and the remaining indices stay the same. We will use P to
denote the diagonal matrix consisting of the index selection
probabilities. More precisely,

p=diag(lp1 p2

Itis assumed that P satisfies 0 < P < I, where the positive
definiteness follows from the fact that no index should be left
out permanently during the updates of (14). See Section IV

pN]) eRVN . (16)
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for further details. Additionally, we note that tr(P) denotes the
number of indices updated per iteration on average.

We note that the model (14) appears as a pull-like algorithm
when the state-transition matrix A is interpreted as a graph,
in which a node retrieves data from its incoming neighbors.
Since the model requires the node to collect data from all
of its neighbors, it can be argued that the model is not truly
asynchronous. However, in practical implementations we will
assume that nodes hold a buffer and they communicate with
each other asynchronously in a collect-compute-broadcast
scheme. These details will be discussed later in Section V.

B. FREQUENCY RESPONSE IN THE MEAN
Due to the random updates of the state variables it is clear
from (14) that the state vector x[k] is a random vector. So,
the state vector will not have an exponential behavior exactly
even when the input is a simple exponential (R = 1 in (7)).
Nevertheless, we will show that x[k] still behaves like a sum
of exponential signals in a statistical averaged sense:
Proposition 1: Assume that the randomized asynchronous
state recursions in (14) are initialized independently and
randomly. Then, the expectation of the state vector in (14)
is as follows:

E[x[k]] = x*[k] + x"[k], (17)
where
R
XSk] =Y (el —A) ' Bief, (18)
i=1
(k] = A (E[x[0]] — x*[0]), (19)
and
A=I+P@A—-1I), B;,=PB,. (20)
Proof: See Appendix B. [ |

Here, A will be referred to as the average state-transition
matrix, and B the average input matrix. We can also represent
x5[k] in (18) as follows:
R
xSkl =) xP[0]af  where x}°[0] = (o] — A)”"' B,
i=1

2y

which will be useful later in the paper.
As an immediate corollary to Proposition 1, the expectation
of the random output y[k] can be written as follows:

E[ylk]1] = y*[k] + y"[k], (22)

where
R _ —&

YWk =Y Hile)of, ykI=CA" (E[x[0]] —x*[0]),
=1

(23)

and

Hi)=Di+C (z1 -A) "' B, (24)
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Regarding the form in (22) we first note that the terms
y*$[k] and y"[k] are deterministic quantities, and the expec-
tation is with respect to the random selection of the indices,
the input noise, and the random selection of the initial condi-
tion. Furthermore, (22) shows that the random output vec-
tor y[k] behaves the same as its deterministic counterpart
(9) in expectation. That is, E[y[k]] can be decomposed into
steady-state and transient parts similar to (9). Therefore,
the quantity H;(z) given in (24) can be regarded as the ““trans-
fer function” from the i input to the output in the expectation
sense.

It is clear from (23) that as long as the average state
transition matrix A is stable, i.e., the following holds true:

p(A) < 1, (25)

the component y'[k] converges to zero irrespective of the
observation matrix C and the statistics of the initial condition.
Thus, the condition (25) is both necessary and sufficient for
E[y[k]] to behave like a sum of exponentials, that is,

Jim E[y[k] = y*[k]] = 0. (26)

This shows that when (25) is satisfied an exponential input
results in an exponential output in expectation even with the
randomized asynchronous state recursions.

C. A NUMERICAL EXAMPLE

In order to demonstrate the behavior of the random vector
y[k], we consider the following state-space model with N = 4
state variables, R = 1 input, and P = 1 output:

4-12 — H 17

14 —6-5 3 ’ I
A=s5ls T 7 5| B=l C=|| . D=0, @D

5 9 -3 1 5 1

where we point out that the matrix A is not stable since
p(A) =~ 1.0441. As we shall discuss later in Section III, sta-
bility of the randomized asynchronous state recursions does
not require stability of the state-transition matrix in general.

In the following numerical example we assume that
P =pl, ie., all nodes have the update probability p and
assume that I' = 0. Furthermore, we assume that the input
signal has the following complex exponential form:

o = 61'2:1/100 — M[k] — ejan/IOO. (28)

In Figure 1 we visualize a realization of the output signal
y[k] together with the steady-state component y*$[k] as well
as the input signal u[ k] for three different update probabilities,
namely, p € {0.1, 0.3, 0.6}. The figure shows only the real
part of the signals for convenience.

From Figure 1 it is clear that the random vector y[k] is not
a complex exponential in a strict sense, yet it ““behaves like”
one. We also note that y[k] has the same “frequency” (in an
average sense) as the input signal irrespective of the update
probabilities.
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FIGURE 1. A realization of the output signal with the state-space model
in (27), the frequency in (28), and the probabilities (a) p=0.1, (b) p=0.3,
(c) p=0.6.

Figure 1 shows also that the response of the random
asynchronous system depends on the update probabilities,
which is also apparent from the expression in (24). In fact,
the response of the random asynchronous updates running
on a system denoted with (A, B, C, D) can be represented in
an average sense as the response of a synchronous system
(Z, B, C, D). As aresult, different update probabilities result
in different ““frequency responses” while leaving the output
frequency unchanged.

1. SECOND ORDER STABILITY OF THE STATE
VARIABLES

Results in Section II-B together with Figure 1 show that
the random vector y[k] behaves like y*[k] in expectation.
However, in order to interpret the response of the randomized
asynchronous system meaningfully, the random variable y[k]
must be ensured to have a “finite amount of deviation™ from
y¥[k]. In this regard we consider the following quantities:

rlk] = ylk] — y™[k], qlk] = x[k] — x*[k1, (29)

where r[k] will be referred to as the error in the output, and
qlk] will be referred to as the error in the state variables. It is
readily verified that the error terms in (29) are related with
each other through the output matrix C as follows:

rlk] = C qlk]. (30)

In the rest of this section we will focus on the term g[k],
i.e., study the internal stability of the random asynchronous
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system. More precisely, we consider the error (auto) correla-
tion matrix of the state variables defined as follows:

OIK] = E[qlk] ¢"[k1] € €V, 31

At this point it is very important to emphasize that the error
correlation matrix Q[k] does not converge to zero in general
even when no noise present in the system. More interestingly,
Q[k] may not converge to a point at all; rather, it may show
an oscillatory behavior. This is an inherent side effect of the
randomized asynchronicity, which will be discussed in detail.
As aresult, we will consider the conditions under which Q[k]
stays bounded (or, equivalently g[k] stays bounded in the
mean-squared sense). In this paper “second order stability”
is synonymous to ‘‘boundedness of the matrix Q[k].”

We also note that stability of the matrix A merely ensures
the first order stability of the error term. That is,

pA) <1 — klim E[qlk]] = 0. (32)
— 00

On the other hand, stability of A is not sufficient to
ensure the second order stability of g[k]. (See Lemma 3 in
Section IV-A).

In what follows, we will first study how the error corre-
lation matrix Q[k] evolves throughout the iterations (Theo-
rem 1). Based on this result, we will consider the necessary
and sufficient condition for the boundedness of the error
correlation matrix (Corollary 1). Later, we will provide a suf-
ficiency condition for the second order stability (Corollary 2).

We would like to note that the mean and mean-squared
behavior of random graph processes have been of interest in
recent years. For example, the study [49] considers the case
of time varying graphs and considers the mean controllability
of graph processes while providing mean-squared error anal-
ysis. Similarly, the study [50] studies graph processes from
tracking viewpoint and provides mean and mean-squared
analysis of Kalman filtering over graphs. Although the ran-
domized model in (14) can be interpreted as a time-varying
graph, we would like to note that time-varying graph frame-
work is not directly applicable to the model here. Since the
analysis of vertex-time filtering operations (to be described
in Section V) will be based on the model in (14), this section
will provide a mean-squared analysis tailored for the model.

We would like to also note that convergence (and sta-
bility) of product of matrices are well-studied problems in
literature [S1]-[57], and stability of the randomized model
(14) can be analyzed from the viewpoint of these results.
However, these frameworks often times either impose addi-
tional constraints on the matrix A (such as [51] requiring A
to be nonnegative, or [56] requiring A to be positive definite),
or they are too restrictive (involving the joint spectral radius)
to explain the effect of randomization observed in Figure 1.
In this study, we focus on the second order statistics of
the randomized model, and the analysis will be based on
the Markov jump system viewpoint [32]. We will elaborate
further on this in Section III-C.
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A. EVOLUTION OF THE ERROR CORRELATION MATRIX
We start by consider the following matrix valued function:

o(X)=AXA 4 ((Z -DXA - I)H) o(P'-1), 33

where A is as in (20), and © denotes the Hadamard product.

Note that the function ¢(-) is defined through the average
state-transition matrix A as well as the update probabili-
ties P. Derivation of the function ¢(-) will be described in
Section III-C.

The importance of the function ¢(-) follows from the fact
that it governs the evolution of the error correlation matrix
through the iterations. This is presented precisely as follows:

Theorem 1: The error correlation matrix of the state vari-
ables evolves according to the following recursion:

Qlk+1]1 = (QIk) + PTP+T © (P — P)
+fﬁ{(6[k]+2(Z—1)xtf[k]) 6H[k]} o (P~'-1),
(34)

where N{-} denotes the real part of its argument, and the
deterministic vector 8[k] € CV is defined as follows:

R
8[k] = x¥[k + 1]—x%[k] = Z(ail —A) ' Bi ok (a;—1).
i=1
(35)
Proof: See Appendix C. [ |
In order to study the behavior of the recursion in (34),
we first represent the linear map ¢(-) as a matrix-vector
product by vectorizing (33). That is,

o(X) = vec™! (s vec(X)), (36)

. 2 2.
and the matrix § € CN"*N” is as follows:

s=Aei+(P ' -nel)s (@ -ned-n),
37)

where A* denotes the element-wise conjugate (not conjugate
transpose) of the matrix, and J is a diagonal matrix as follows:
N
J=Y" () @ (e;elh) e RV, (38)
i=1
Since the error correlation matrix evolves according to ¢(-)
and § is the matrix representation of the linear map, spectral
properties of the matrix S are very important in the behavior
of the error correlation matrix Q[k]. In this regard, we first
note that S has complex eigenvalues in general. Secondly,
the matrix S always has a real nonnegative eigenvalue that is
equal to its spectral radius, and the corresponding eigenvector
is the vectorized version of a positive semi-define matrix.

More precisely, it is always possible to find a nonzero X > 0
such that the following holds true:

PX) = p(S) X, (39)
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which follows from the extensions of the Perron-Frobenius
theorem to positive maps in more general settings. We refer to
[58, Theorem 5], or [59, Theorem 2.5] for the precise details.

B. THE NECESSARY AND SUFFICIENT CONDITION
As a corollary to Theorem 1, we present the following result
regarding the long term behavior of the error correlation
matrix:

Corollary 1: If the following holds true:

p(S) < 1, (40)

where the matrix S is as in (37), then the following holds true
regarding the error correlation matrix of the state variables:

lim (o1 - 0" - O'[K1) =0, (41)

where the matrices Q", Q'[k] € CN*N are given as the solu-
tion of the following linear matrix equations:

Q" = Q") +PTP+T O (P—F?). (42)
O'lk + 11 = ¢(Qk1) + (8k1 81Kk1) © (P —1). (43)

Conversely, if the condition (40) is violated, then Qlk]
increases unboundedly as k goes to infinity. The matrix T in
(42) refers to the noise correlation matrix as defined in (4).

Proof: See Appendix D. |

Regarding the limit in (41) it is important to note that the
error correlation matrix Q[k] does not converge to a point in
general. So, limg_, oo Q[k] may not exist. However, as long as
the stability condition (40) is met, Corollary 1 shows that Q[k]
approaches the sum Q" + Q'[k], where Q" is the error due to
the input noise and Q[k] is the error due to the randomized
asynchronicity. In what follows we will discuss these terms.

1) ERROR DUE TO THE NOISE

The input noise affects the error correlation matrix through
the term Q" defined by the equation (42). By vectorizing both
sides of (42), a numerical solution to Q" can be obtained as
follows:

vec(Q") = (I - §) " vec (Pr P+TO(P- Pz)). (44)

We point out that Q" satisfies Q" > 0 as long as T > 0
(see Corollary 2 in Section III-C), and it does not have any
dependency on the iteration index k. So, the effect of the input
noise remains the same throughout the iterations (which is not
the case for Q'[k]). Furthermore, it is clear from (44) that Q"
depends linearly on the noise covariance matrix I'. However,
the error due to the noise is always larger than the noise itself,
which is stated more precisely in the following lemma:

Lemma 1: For any given A and P satisfying the stability
condition (40), the following holds true:

(QMii =@ Y1I<i<N, (45)
where Q" is the solution of the linear matrix equation in (42).
Proof: See Appendix E. |
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In words, Lemma 1 states that the error variance due to the
noise in a state variable is always larger than the variance of
the noise at the input term of the state recursion. The relation
between Q" and the matrices A and P are quiet intricate.
In fact, one can search for a set of probabilities that minimize
tr(Q") for a given A and I'. However, the optimal choice for
P is not known at this time.

2) RANDOMIZATION ERROR

Due to the randomized nature of the updates in (14) there is
an inherent error in the state vector that is given precisely by
the term Q'[k] in (43). An important observation is that Q'[k]
does depend on the iteration index k in general (unlike the
error due to the noise). More precisely, the solution to (43)
can be written explicitly as follows:

R R
k
Okl =" 0ij (), (46)
i=1 j=1
where «;’s denote the base of the exponential input signals as
in (7), and the matrices Q; ;’s are as follows:

vec(Q; ) =(1 —a) (1 — o)
(e 1=9) vee(@10] (10D P! ~1),
(47

and x3°[0] is as in (21).

The solution in (46) shows that decaying components
of the input signal, i.e.,|o;| < 1, affect the error correlation
matrix initially only. Their effect fade away as the iterations
progress. On the other hand, the components with |o;| = 1
(i.e., complex sinusoids) have a sustaining effect on the error
correlation.

C. MARKOV JUMP LINEAR SYSTEM VIEWPOINT

We would like to point out that the random asynchronous
model in (14) can be viewed as a particular instance of a
Markov jump linear system, which has the following model:

x[k + 11 = A, x[k] + B;, ulk], (48)

where i, denotes the state of the underlying Markov chain
at the iteration k, and the Markov chain has finite number of
states. So, the state vector x[k] is updated with a different state
transition matrix in every iteration (as determined by the state
of the Markov chain). This is a well-studied model, and we
refer to [32] for a rigorous treatment of the topic.

It is possible to represent the random asynchronous model
(14) as a Markov jump system with the underlying Markov
chain having 2V states since there are 2V different ways of
selecting an update set in every iteration of the model. More

precisely, the j transition matrix can be written as follows:
Aj=1+P7;(A—-1I), Bj=PyB, (49)

where 7; is the j™ subset of {1,---,N} (assuming all 2V
possible update sets are enumerated). As the model (14)
assumes that each state variable is updated independently in

VOLUME 9, 2021

every iteration, we get P[iy = j] = y; for all k in the switching
network viewpoint of (48). Namely, the state variables are
updated with the pair (A;, Bj) with probability y; in every
iteration, and the probability is given as follows:

vi=[]p [TC0-po- (50)
i€T;  igT;
In fact, the function ¢(-) defined in (33) is closely related

to the set of transition matrices and their corresponding selec-
tion probabilities. More precisely (see [34, Section 4.8.6]):
oN 2N
eX) =Y yAXAN S=3"yAr@A. (51
j=1 j=1
Furthermore, a direct application of [32, Corollary 3.26]
to the random asynchronous model (14) gives the following
result:
Lemma 2 (See [34, Lemma 4.2]): The following state-
ments are equivalent:

o Random asynchronous model in (14) is stable in the
mean-squared sense,
e p(5) <1,
o There exists X > 0 such that X > ¢(X),
o For any given Y > 0, there exists a unique X > 0 such
that X = (X)) +7Y,
where ¢(-) is as in (33), and the matrix S is as in (37).
Although Lemma 2 endorses the importance of the matrix
S in the stability of the random asynchronous model, it is
important to note that the viewpoint of switching systems
provides a more general framework for randomized linear
techniques [34, Chapter V]. In the case of random asyn-
chronous updates, underlying state transition matrices (i.e.,
states of the Markov chain) are related to the matrix A in a
very specific way. So, the analysis presented in this study is
tailored for the model in (14), and its mean-squared stability
is shown to be determined precisely by the spectral radius of
the matrix S.

D. A SUFFICIENT CONDITION
In addition to the necessary and sufficient condition given by
Corollary 1, it is also possible to ensure the stability of the
recursions with a stronger condition based on a simple linear
matrix inequality. In this regard, we present the following
result as a corollary to Theorem 1:

Corollary 2: If the state-transition matrix A and the
update probabilities P satisfy the following:

Alpa <P, (52)

then, the trace of the error correlation matrix of the state
variables can be bounded as follows:

tr(PT)+ A% [P~ =1,

limsup tr (Q[k]) < . (83)
k— 00 ( ) Amin(P — AH PA)
where A is an arbitrary number satisfying the following:
|8tk1], = A V. (54)
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Proof: See [34, Section 4.8.7]. [ |

A number of remarks regarding Corollary 2 are in order:

1) Convergence of the error correlation: When the input
signal consists of multiple exponential signal, i.e., R > 1,
the error correlation matrix shows an oscillatory behavior as
described in (46). As a result, tr(Q[k]) does not converge in
general. Nevertheless, (53) provides an upper bound on the
error term as the iterations progress (k goes to infinity).

2) Difference in the state variables: As long as the state
variables have a finite steady-state component, it is always
possible to select a finite value for A. Generally speaking,
when the input signal u[k] varies slowly, the vector §[k] tends
to be smaller. So, the upper bound (as well as the error term
itself) gets smaller.

3) Equal probabilities: When all the indices are updated
with equal probabilities, i.e., P = p [ for some p, the condi-
tion (52) reducesto ||A||2 < 1. So, the error correlation matrix
stays bounded when the state variables are updated with equal
probabilities (no matter what the probability is) and A has a
bounded spectral norm. However, the probability does affect
the actual value of the error correlation matrix.

E. THE CONSTANT INPUT: FIXED-POINT ITERATIONS
When the input signal is time-invariant, i.e., u[k] = u for all
k, it suffices to consider the case of R = 1 with @ = 1 in the
model (7). In this case, we get

Skl=(1-A)""B=(-4)"B=x", (59

which shows that the steady-state component x*[k] depends
neither on the update probabilities nor on the iteration index
k. In fact, x**[k] = x* corresponds to the fixed-point of the
asynchronous iterations in (7), i.e., x* = Ax* + B.

Asynchronous (non-random) fixed-point iterations are
well studied problems in the literature. Theoretical analysis
of the linear case can be traced back to the studies in [60],
[61], which showed that the following condition is both nec-
essary and sufficient for the convergence of the asynchronous
updates:

p(Al) < 1, (56)

where |A] is the matrix obtained by replacing the elements of
A by their absolute values.

It was shown in [23, Lemma 1] that the sufficiency con-
dition in (52) is more relaxed than the condition in (56).
Although these results appear to be contradictory, the dif-
ference is the notion of convergence: the condition (56) is
necessary and sufficient for the convergence of any index
sequence (as in sure convergence), whereas the condition (40)
is necessary and sufficient for the mean-squared convergence.
In addition, the result in [32, Corollary 3.46] implies that the
condition (40) is sufficient for almost sure convergence as
well.

As aresult, we conclude that the asynchronous case is more
restrictive than the synchronous case when the worst case
behavior is considered. On the other hand, the asynchronous
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case may be less restrictive than the synchronous case when
the statistical behavior is considered.

IV. SYNCHRONOUS vs. ASYNCHRONOUS STABILITY:
CONNECTIONS AND COMPARISONS
In previous sections we studied stability of the random-
ized state recursions from two different perspectives, namely
expected behavior and the second order statistics of the error
term. In this section, we will discuss the relations between
stability of the state-transition matrix A and the matrices
A and S. In particular, we will show that stability in the
synchronous world and stability in the random asynchronous
world do not imply each other in general. This is contrary to
non-random asynchronicity, which is indeed more restrictive
than the synchronous case [60]. Furthermore, stability in the
random asynchronous world depends on the update probabil-
ities P as well as the eigenvector structure of the matrix A.
Recall from Section III that when a randomized asyn-
chronous system is said to be stable, it means that the error
correlation matrix Q[k] stays bounded as the randomized
iterations progress. In general, the error correlation matrix
does not converge to zero even when no noise is present in the
system. In fact, the amount of error depends on the amount of
variation in the input signal as well as the update probabilities.
Two remarks are in order:

1) THE SYNCHRONOUS CASE
Results given by Proposition 1 and Corollary 1 are consistent
with the synchronous case. That is,

P=1 = A=A S=A"®A, (57)

which shows that stability of A, A and S are equivalent to each
other in the case of synchronous updates. In this case we also
note that the randomization error (43) becomes Q'[k] = 0.
So, as long as A is a stable matrix, the error correlation
matrix converges to Q" whose value depends only on the
noise statistics I' and the matrix A.

2) STRICT POSITIVITY OF THE UPDATE PROBABILITIES
Stability of the matrix § implicitly requires the strict positiv-
ity of the update probabilities. More precisely,

pS) <1 = P>0, (58)

which can be verified by observing that when there exists an
index i such that p; = 0 the matrix S has a left eigenvector
e; ® e; with eigenvalue 1. So, the stability condition requires
no state variable to be left out permanently during the updates.

A. MEAN vs. MEAN-SQUARE ERROR
Since having a finite variance is more restrictive than having
a finite mean for a random variable, it is reasonable to expect
that stability of the matrix S is more restrictive than stability
of the matrix A. This is, indeed, the case:

Lemma 3: Stability of the matrix S implies stability of the

matrix A, that is,
pS) <1 = p@) <l. (59)
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S)>1, @®1(S)>1,pA)>1
. ZES; i i ZE : p(8) =1, p(A) <1
® r(S) <1, @ r(S) <1, p(A) <1

(b)

FIGURE 2. The set of probabilities that ensures the stability of the
randomized asynchronous updates for the matrices (a) Ay, (b) A, defined
in (61). The top-right corner indicates P = I, which corresponds to the
synchronous case.

o
~
o
o
o
®

Proof: From the definition of ¢(-) in (33), we have
9(X) = AXA" forany X > 0.
From Lemma 2, the condition p(S) < 1 implies that there
exist X > 0 such that the following holds true:

X > oX) = AXA" — X>=AXA', (60)

which implies that p(A) < 1 due to the stability properties of
the discrete Lyapunov equation. [ |

The importance of Lemma 3 follows from the fact that
there is no need to consider matrices A and S separately.
As long as S is stable, it is guaranteed that E[g[k]] converges
to zero and ]E[||q[k]||%] remains bounded as the iterations
progress. Since the converse of (59) does not hold true in
general (see Figure 2), we will focus on stability of § in the
rest of this section.

B. STABILITY IN SYNCHRONOUS vs. ASYNCHRONOUS
CASE

The most important observation regarding stability of the
randomized asynchronous state recursions is that a stable
synchronous system may get unstable with randomized asyn-
chronicity, and conversely an unstable system (in the syn-
chronous world) may be stabilized simply by the use of
randomized asynchronicity. This is a remarkable property
of the randomized asynchronous updates, which is observed
also in [19], [21] for the case of A being a normal matrix.
We state this observation formally with the following lemma:

Lemma 4: In general, stability of A is neither necessary
nor sufficient for stability of A and stability of S.
Proof: Consider the following examples of size N = 2:

—0.9 0.8 125 025
A= [ 0.8 —0.3] 42 = [—6.25 —1.25]’ D)

which can be verified to satisfy p(A1) > 1 and p(A3) = 0.
Then, we construct the matrices A and S as in (20) and (37),
respectively for both A; and A for all possible values of
P = diag([p; p2]). Figure 2 presents the regions of P for
which A is stable, or S is stable. This proves the claim. [ |

We would like to note that the sufficiency condition given
by Corollary 2 does require A to be a stable matrix. So,
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Corollary 2 fails to explain why unstable synchronous sys-
tems may get stable with the randomized asynchronicity. The
importance of Corollary 2 follows from the fact that condition
(52) is easy to check, or satisfy, in practical applications [23,
Theorem 3].

C. THE SET OF PROBABILITIES ENSURING STABILITY
Although Figure 2(a) shows that some unstable systems (in
the synchronous world) can get stable with the use of ran-
domized asynchronicity, it should be noted that not every
unstable synchronous system can get stable with randomized
asynchronicity. Therefore, it is important to check whether or
not there exists a set of update probabilities for which ran-
domized asynchronous recursions are stable. In this regard,
we consider the following definition:

Definition I (The stability set): For a given matrix A,
we will use S(A) to denote the set of probabilities such that
the matrix S is stable. More precisely,

S(A):{P|p(S)<1, 0=<P<I} (62)

where P is diagonal, and the matrix S is as in (37).

As a numerical example, consider the matrices A and Aj
in (61). The blue regions in Figures 2(a) and 2(b) denote the
stability sets S(A1) and S(A3), respectively.

Some remarks are in order regarding Definition 1:

1) If the set S(A) is empty for a given matrix A, then the
system cannot be stable whether the updates are synchronous,
or asynchronous.

2) When the matrix A itself is stable, i.e., p(A) < 1, the sta-
bility set S(A) is not empty since I € S(A).

3) The stability set S(A) is not convex in general. That is,
a random asynchronous system can be stable with probabili-
ties P or Py, but it may get unstable with t P; + (1 — 7) P>
where 0 < 7 < 1. See Figure 2(a) as an example, in which the
stability set (indicated with color blue) is visibly non-convex.

4) The sufficiency condition given by Corollary 2 describes
a convex subset of the stability set. More precisely,

AHPA<P — PecSWQ), (63)

and it is readily verified that the set of probabilities satisfying
the condition (52) is convex. However, it should be noted that
when A is not a stable matrix, the set of probabilities described
by the condition A" PA < P is empty, whereas the stability
set S(A) may or may not be empty.

V. JOINT GRAPH-TIME FILTERING ON GRAPHS

This section considers joint vertex-time filtering on graphs,
in which nodes are assumed to communicate with each other
randomly and asynchronously. We will show that the pro-
posed communication scheme executes the time domain fil-
tering of classical signal processing and the spatial filtering
of graph signal processing simultaneously. We would like to
note that joint graph (vertex) - time filtering is a well-studied
topic in the field of graph signal processing [26]-[31]. The
main advantage of the implementation presented in this study
is due to its ability to handle random asynchronous behavior
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of the nodes. We also note that this section does not consider
the design of such filters (for which we refer to [26]-[31] and
references therein); rather, we will study the behavior of the
proposed random asynchronous communication scheme for
a filter specified as follows:

h(x) = p(x) / q(x), (64)

where p(x) and g(x) are polynomials of degree (at most) L,
and they are assumed to be in the following form:

L
po) =) pux",
n=0

The coefficients are allowed to be complex in gen-
eral, i.e., p,, g, € C. In particular, polynomial filters, which
corresponds to the case of gy =---=¢qr =0, are not
excluded. In addition, let the quadruple (F, b, ¢, d) be an
L-dimensional state-space realization such that the rational
function (64) has the following infinite order polynomial
representation:

L
) =1+ gux". (65

n=1

o0
hx)y=d+Y cF"'bx", (66)
n=1

where (F, b, c, d) have the following dimensions:
FeClt pect, cTechk aec. (67

In the following we will use G € CV*V to denote a graph
operator for the graph with N nodes. Here G; ; denotes the
weight of the edge from node j to node i. In particular,
G;j = 0 when nodes i and j are not neighbors. Examples of
such local graph operators include the adjacency matrix,
the graph Laplacian, etc. We will use NVijy(i) and Noy (i) to
denote the incoming and outgoing neighbors of the node i.
More precisely we have:

Nin(@) = {j | Gij # 0}, Now(@ = {j | Gji # 0}. (68)

In the graph setting considered here nodes are assumed
to operate in discrete-time. In particular, let u;[k] denote the
input signal at the /" node at the k< time step, and let u[k] be
the input graph signal at time k:

T
ulk] = [kl wlk] - uylkl] ec. ©9)

Similarly, let y;[k] denote the output signal at the i’ node,

and let y[k] be the output graph signal at time k:

T
sk = [kl yalk] o gwlkl | e €V 0)

In short, subscripts are graph-node indices, and arguments
as in [k] are time indices.

We will consider the setting where the output graph sig-
nal is related to the input signal via the node-asynchronous
filtering operation described in [23]. Namely, the i node
is assumed to have a state vector x; € CL, and a buffer of
size L - | Nin(i)| so that the node stores the state vectors of its
incoming neighbors. At time &, the node i either stays inactive
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with probability 1 — p;, or it gets activated with probability p;
and executes the following filtering steps sequentially:

X< > Gijx, (71)
JENn (D)

yilk] < ¢ x; + d ui[k], (72)

xi < F x;+ b ulk], (73)

where (F', b, ¢, d)is a state-space representation of the filter
asin (66), and G is the corresponding graph operator. We will
also use P to denote the diagonal matrix with the i entry
being the update probability of the i node p;.

Once the filtering stage is completed, the node i broadcasts
its most recent state vector x; to its outgoing neighbors, who
can use its value to update themselves in future iterations,
in a similar manner. We refer to [23, Section III] for a
detailed explanation of the described asynchronous filtering
procedure.

The study [23] showed also that the filtering operation
described in (71)-(73) can be equivalently represented as a
random asynchronous variant of the following NL dimen-
sional augmented state-space model:

x[k + 1] = A x[k] + b ® ulk], (74)
ylk] = (¢ ® G) x[k] +d ® ulk], (75)

where the state-transition matrix of the augmented model, A,
is given as follows:

A=F ®G e CNEXNE, (76)

In the following, we will use the theoretical developments
presented in Sections II and III in order to study the behavior
of the node-asynchronous filtering operations.

A. MEAN-SQUARED STABILITY OF THE RANDOMIZED
FILTERING

Due to the randomized behavior of the nodes, it is clear that
the output graph signal y[k] is a stochastic quantity even when
the input signal u[k] is deterministic. So, it is necessary to
make sure that y[k] has a finite variance in order to interpret
the filtering operations meaningfully.

For the mean-squared analysis of the filtering, we will
use random switching system viewpoint summarized in
Section III-C. As the graph has N independently behaving
nodes, random asynchronous variant of (74) can be consid-
ered to be switching between 2V different transition matrices,
where the j* transition matrix has the following form:

with the selection probability y; given in (50). By substituting
Aj from (77) into the expression (51), the function that con-
trols the evolution of the error correlation matrix in the graph
filtering operations can be written as follows:

o) =AXA" + (A - 1) X A= 1))
oM@ ' —1y). (8
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where 1 denotes the all-ones matrix of size L x L, and tkie
average state transition matrix of the augmented model, A,
is given as follows:

A=Iny +ULQP)(F®G—Inp). (79)

Spectral properties of the linear map ¢(-) in (78) is crucial
in determining the mean-squared stability of the filtering
operations. In this regard, we first obtain the following matrix
representation of ¢(-) by vectorizing both sides of (78):

S=A"®A
+ (@™ 1ol ) (@ I © @ - Iw)),
(80)

where J is a diagonal matrix as follows:
N 2 2
J=Y 1.®(e)®IL® (e ef) e RV>NVD"  (81)
i=1

In light of Lemma 2 and Corollary 1, stability of the
matrix S in (80) determines the mean-squared stability of the
filtering operations. More precisely, if the following holds
true

p(S) < 1, (82)

then the output graph signal y[k] can be decomposed as
follows (for sufficiently large k):

ylk] = y*[k] + r[k], (83)

where y*S[k] is a deterministic quantity representing the
expected steady-state behavior of the output vector, and r[k]
is the randomization error with the following statistics:

E[r[k]] =0, E[|rk1]3] <oo Vk. (84)

We note that (83) holds true for sufficiently large values
of k, as the transient-part of the output converges to zero
throughout the iterations. As a result, y*[k] can be considered
as the expected output of the filtering operations when the
input signal is u[k]. In the following subsections, we will
describe the input-output relation of these operations.

We also note that the following condition was shown to
be sufficient for the mean-squared stability of the filtering
operations in the case of time-invariant input signals [23,
Theorem 3]:

IFI5G" PG <P. (85)

As the mean-squared stability of random asynchronous
recursions does not depend on the input signal (see Corol-
laries 1 and 2), we can argue that the condition (85) is
also sufficient for the mean-squared stability of the filtering
operations in the case of time-varying input signals.
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B. RESPONSE TO A SINGLE EXPONENTIAL INPUT

In Section II we showed that complex exponentials remain
to be eigenfunctions of the randomized asynchronous state
recursions in an expected sense, despite the randomized sys-
tem having time-varying characteristics. We now show that
a similar result holds true for the graph filtering operations,
which is presented in the following lemma:

Lemma 5: When the input graph signal is as follows:

ulk] = u &% (86)

for an arbitrary vector u € CN, the steady-state component
of the output graph signal is given as follows:

YOIkT = h(GZ(e)) u e, (87)

where h(~)‘is the filter described in (64), and the diagonal
matrix Z(¢*) is as follows:

Z(e) =P (P+(” — )1y) | (88)
Proof: See Appendix F. |

We note that (87) describes the femporal response of
the randomized filtering operation over the network, which
depends on the filter A(-), the graph operator G, tem-
poral frequency of the input w as well as the update
probabilities P.

Notice also that when the input signal is time-invariant,
i.e., o = 0, the steady-state output becomes y*[k] = h(G) u,
which is the ordinary graph filtering studied extensively in
the field of graph signal processing [4], [5]. In this case,
the study [23] further showed that the stochastic output signal
ylk] indeed converges to A(G)u in the mean-squared sense
under the assumption that (85) is satisfied. The stability of
S in (80) is, in fact, both necessary and sufficient for the
convergence.

C. VERTEX-TIME EIGENFUNCTIONS
Lemma 5 shows that complex exponentials are tempo-
ral eigenfunctions of the filtering operations described in
(71)-(73). However, an arbitrary exponential input signal may
not remain invariant over the graph. In this section we will
discuss vertex-time eigenfunctions, which remain invariant
under the filtering operations both in time and over the graph..
Inspired by the expression in (87), we now consider an
eigenpair of the matrix G Z(e/®) as follows:

G Z () v(e®) = E(”) v(el®), (89)

where we explicitly indicate the dependency of both the
eigenvector 'v(ef“’) and the eigenvalue & (¢/“) on the temporal
frequency ¢“. When the input graph signal is as follows:

ulk] = v(e®) ek, (90)

the use of Lemma 5 with the input signal as in (90) gives the
following output graph signal.

YUK = h(§@?)) (@) &F = h(E(&”) ) ulkl.  (OD)

Thus, signals in the form (90) are eigenfunctions of the
randomized filtering operations both in time and over the

122811



IEEE Access

O. Teke, P. P. Vaidyanathan: Joint Vertex-Time Filtering on Graphs With Random Node-Asynchronous Updates

graph in an expected sense. Furthermore, the filter A(-) still
determines the response of the overall filtering operation.

Although vertex-time eigenfunctions of the filtering oper-
ations are given precisely in (90), they do not provide a
practical tool since the eigenvectors v(¢/) are coupled with
the temporal frequency ¢/ in general. This poses a limitation,
as the eigenvectors in (89) needs to be computed for each
temporal frequency. Interestingly, Eigen-elements in time and
over graph get decoupled in the case of all nodes having the
same update probability, as we shall elaborate next.

D. GRAPH-TIME EIGENFUNCTIONS FOR UNIFORM
PROBABILITIES

In this section we will assume that all the nodes have the
same update probability, thatis, P = p I forsome 0 < p < 1.
So, the matrix G Z(¢/®) appearing in Lemma 5 reduces to the
following form:

p

Z(?) = :
G Z(?) R —

92)

Thus, eigenvectors of the graph operator G serve as spatial
eigenvectors irrespective of the temporal frequency. More
precisely, assume that the input signal has the following form:

ulk] = v &k, (93)

where v is an eigenvector of the graph operator G with the
corresponding eigenvalue A, that is, Gv = Av. Then, we have

the following:
S A .
VO[] = h(”—) v ek (94)
p+ev—1

where p denotes the update probability of the nodes, and A is
the corresponding eigenvalue of the eigenvector v.

The main convenience of uniform node update probabil-
ities follows from the fact that only the eigenvectors of the
graph operator G are needed in order to construct vertex-time
elements of the filtering operations. This is also consistent
with the fact that graph Fourier basis is defined via eigenvec-
tors of the graph operator [5]. So, vertex-time element in (93)
is the product of graph and time elements. This observation
will lead to the notion of discrete-time graph Fourier trans-
form, as we shall elaborate in the next section.

VI. DISCRETE-TIME GRAPH FOURIER TRANSFORM

The previous section showed that signals in the form of v ¢/“k
(where v is an eigenvector of the graph G) are eigenfunctions
of the randomized filtering operations described in (71)-(73)
in the case of all nodes having the same update probability.
In this section, we will show than an arbitrary time-varying
graph signal x[k] can be decomposed in terms of these func-
tions. This decomposition will be referred to as discrete-time
graph Fourier transform (DTGFT).

We note that the notion of discrete-time graph Fourier
transform was introduced first in [26] under the name ““joint
time-vertex Fourier transform (JFT),” and then studied in
detail later in [27] within a vertex-time signal process-
ing framework. This section is intended to provide a brief

122812

overview of this concept, as it is crucial for us to quantify
the response of the randomized filtering operations in the
vertex-time domain when all nodes have the same update
probability (see Section VII).

In order to discuss DTGFT, we start by assuming that
the graph operator G is diagonalizable, which is a common
assumption in the field of graph signal processing, and it
is readily satisfied for graphs with undirected edges. Then,
we write its eigenvalue decomposition as follows [4], [5]:

G=VAV~L (95)

We note that for a vector x € CV, its graph Fourier trans-
form is defined as X = V! x so that the signal x can be
represented as follows:

N
x=) Tivi (96)
i=1

where v; is the i eigenvector of the graph operator G.
On the other hand, a discrete-time signal x[k] € CN canbe
represented via complex exponentials as follows:

1

xk] = o~

2
/ (?) € dw, 97)
0
where X(¢/*) is known as the discrete-time Fourier transform
of the signal x[k], and we assume that X(¢/*) exists.
Combining the representations in (96) (graph domain) and
in (97) (time domain), we consider the following vertex-time
representation of the signal x[k]:

N 2
1 -~ i jwk
x[k]—Z;:l: /O R €9) vy % do, (98)

where the coefficient X(%;, ¢®) is obtained as follows:

i, @)= el VYT k] eI, (99)

k=—00

The coefficient computed as in (99) will be referred to
as discrete-time graph Fourier transform of the signal x[k]
corresponding to the i graph Fourier element (in spatial
domain) and frequency w (in time domain). We note that
X(Ai, ¢“) can also be considered as the graph Fourier trans-
form of the discrete-time Fourier transform of x[k].

VIl. GRAPH-FREQUENCY RESPONSE OF A FILTER

In Section V we introduced a random node-asynchronous
filtering operation, in which each node holds a state vector
and they broadcast their state vectors to their neighbors asyn-
chronously at random (discrete) time instances. The precise
details of the filtering is presented in (71)-(73).

In Sections V-C and V-D, we presented vertex-time eigen-
functions of the filtering operations, and in Section VI we
showed that a time-varying graph signal can be written
as a linear combinations of these vertex-time eigenfunc-
tions. By combining these two results, the following lemma
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presents the graph-frequency response of a filter over a
graph:

Lemma 6: Letu(;, &) andy(ri, €®) be the discrete-time
graph Fourier transform of the input and the expected
steady-state output graph signals of the filtering operations
in (71)-(73). When all the nodes have the same update prob-
ability p, the following relation holds true:

(100)

V(A ) <p-|—e/‘°—1

i — :
b ) Wi, &),
where A; is the i eigenvalue of the graph operator G.
Proof: We first write the input signal as follows:

N 2
1 N i ok
ulk] = P i:EI /(; u(ri, €9y v; % do.  (101)

Using linearity and the result in (94), we find that the
expected steady-state output signal has the following form:

Sk = i/znA(k- ey —L2 e d
y - 27{ l:1 0 u A, p+e]w —l Vi w,
(102)

which proves the desired result. [ |

Lemma VII shows that the response of random
node-asynchronous filtering operations is determined by A(-).
Unlike ordinary graph filters where the spatial response (over
the graph) is defined via the eigenvalue of the graph as h(A)
and classical digital filters where the frequency response is
defined via the frequency as h(e /), the graph-frequency
response depends on the graph eigenvalue and temporal fre-
quency jointly. Furthermore, the update probability p is also
crucial in determining the response of the filtering operations,
and the response changes when the nodes have a different
update probability.

As a final remark, we note that this study does not consider
the design of vertex-time filters, as they require a dedicated
attention. This follows from the fact that the expression
pr/(p + €® — 1) defines a circle on the complex plane
centered at A(1 — p)/(2 — p) with radius |A|/(2 — p). Since
the underlying graph has (at most) N eigenvalues, graph-
frequency response of a filter is determined by the value of
h(-) around such N circles. As a result, design of filters with
desired graph-frequency characteristics is not trivial, and we
leave the design problem as a future research direction.

VIil. NUMERICAL SIMULATIONS
In this section we will simulate the behavior of pro-
posed filtering operations in the presence of random
node-asynchronicity and illustrate its effect on the graph-
frequency response. For more practical applications of
vertex-time filtering on graphs, the interested reader can refer
to the studies in [26]—[31] (and references therein).

In what follows, we will study the graph visual-
ized in Figure 3. This is a random geometric graph on
N = 150 nodes, in which nodes are distributed over the
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FIGURE 3. Visualization of the signals on the graph. Colors black and pink
represent positive and negative values, respectively. Intensity of a color
represents the magnitude. The input signal u[k] at (a) k = 133,

(b) k = 134. A realization of the output signal y[k] at (c) kK = 133,

(d) k = 134.

region [0 1] x [0 1] uniformly at random. Two nodes are
connected to each other if the distance between them is less
than 0.15, and the graph is undirected. The graph operator,
the matrix G € RV*V | ig selected as the Laplacian matrix
whose eigenvalues can be sorted as follows:

O=i;<iy < <iy=p(G)=|G|l,=16.8891, (103)

where the spectral norm of G is computed numerically, and
the equality between the spectral radius and the spectral norm
follows from the fact that G is a real symmetric matrix.

In order to simulate the filtering operations, we will con-
sider a rational filter i(x) = p(x)/q(x) constructed with the
following polynomials of order L = 3, and the parameter
y = 0.065:

3
)= —yxP, qu)=1+) y"x". (104)
n=1
Regarding the implementation of (104) in the filtering
operations described in (71)-(73), we will use the direct form
realization and select the quadruple (F, b, ¢, d) as follows:

0 1 0 —2y
F=[0 0 1|, b=[, c'=|2y2|, d=1
A Y —4y
(105)

Regarding the filter matrix F in (105) and the graph opera-
tor G, we first note that the augmented state-transition matrix
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FIGURE 4. Spectral radius of the matrix § ¢ CW*L2)x(N?12) defined in
(80) for the filter matrix F in (105) and the graph operator of G.
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FIGURE 5. Graph-frequency magnitude response of the filter in (104),
which is given precisely as |h(p1/(p + &“ — 1)), for the fixed value of
p=0.4.

in (74) is unstable. More precisely, we have p(F ® G) > 1.
Thus, the filtering operations described in (71)-(73) are not
stable in the synchronous case. Nevertheless, the filtering
operations can be made stable (in the mean-squared sense)
with the randomized asynchronicity in this particular exam-
ple. In this regard, we consider the matrix S defined in (80)
whose stability determines the mean-squared stability of the
randomized updates for a particular set of node update prob-
abilities (see Section V-A). In the rest of this section, we will
assume that all the nodes have the same update probability,
i.e, P=pl. Figure 4 presents the spectral radius of S as
a function of the probability p, and the figure shows that
the filtering operations remain stable as long as the update
probability satisfies 0 < p < 0.4162. So, we use p = 0.4 in
the rest of the simulations.

The graph-frequency response of the filter in A(-) in (104)
is visualized in Figure 5 for the node update probability of
p = 0.4. Figure 5 shows that h(-) behaves like a low-pass
graph filter on the graph at low temporal frequencies, whereas
it behaves like a high-pass graph filter at higher temporal fre-
quencies. Thus, filtering characteristics on the graph change
with the temporal frequency.

In order to demonstrate the graph-frequency behavior
in Figure 5, we will consider the following input graph signal:

ulk] = uy + us[kl, (106)

where u| denotes a time-invariant component that is localized
on the graph, and u[k] is a rapidly time-varying signal.
Figures 3(a) and 3(b) visualize the input signal u[k] on the
graph at time indices k = 133 and k = 134, respectively.

122814

£ sof oe
E 0
S
Z -0.5
150 | | | L . L - -1
20 40 60 80 100 120 140
Time index (k)
1
% 0.5
[
<
A
© 0
]
> 100 05
150 : — -1

20 40 60 80 100 120 140
Time index (k)

(®)
FIGURE 6. (a) The input signal u[k] with a rapidly time-varying

component. (b) A realization of the random output signal y [k], where the
filter is as in (105), and the nodes get updated with probability p = 0.4.
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FIGURE 7. (a) The input signal u[k] with a slowly time-varying
component. (b) A realization of the random output signal y[k], where the
filter is as in (105), and nodes get updated with probability p = 0.4.

We note that u; is a 5-sparse signal localized on the
top-right portion of the graph, and us[k] “moves” around
the bottom-left portion of the graph. Figure 6(a) visualizes
ulk] for 1 < k < 150, in which the nodes of the graph are
enumerated according to their vertical positions in Figure 3.

Due to its randomized behavior, the output of the filtering
operations is a random quantity, and Figures 3(c) and 3(d)
visualize a realization of the output signal y[k] on the graph
at time indices k = 133 and k = 134, respectively. It is clear
from the figure that /(-) behaves like a low-pass graph filter
for the time-invariant component. Namely, the signal located
on the top-right portion of the graph gets smoothed out over
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the graph. On the contrary, h(-) behaves like a high-pass
graph filter for the component u[k]. The signal located on
the bottom-left portion of the graph has a higher amount of
variation over the graph. Figure 6(b) visualizes a realization
of y[k] for 1 < k < 150, which clearly shows the increased
variation over the graph for the time-varying component and
the decreased variation for the time-invariant component.

We repeat the same experiment with the input signal as in
(106), but we now select uz[k] to be a slowly time-varying
signal. This input signal is visualized in Figure 7(a) for
1 <k < 1000, and a realization of the corresponding random
output signal is presented in Figure 7(b). Due to the temporal
low-pass characteristics of the input signal, the filter A(-)
behaves a like a low-pass graph filter (see Figure 5 for the
graph-frequency response) on the graph. As a result, the out-
put graph signal has a lower variation over the graph.

IX. CONCLUDING REMARKS

In this paper, we proposed novel graph filtering operations
that can manipulate the variation of time-varying graph
signals both in time and over a graph. In order to ana-
lyze the behavior of such randomized operations we first
studied a randomized asynchronous variant of the discrete
time-invariant state-space models, in which a state variable
is updated with some probability independently and asyn-
chronously (with respect to the others) in each iteration.
We showed that the randomized model can be treated as a
linear time-invariant system (with a frequency response in the
expectation sense) despite its randomly time-varying behav-
ior. We presented the necessary and sufficient condition for
the mean-squared stability of the randomized state recursions
and showed that stability of the underlying state transition
matrix is neither necessary nor sufficient for the mean-
squared stability. Based on this analysis we provided the
necessary and sufficient condition for the mean-square sta-
bility of randomized vertex-time filtering operations. We pre-
sented eigenfunctions of these graph filtering operations
(in the expected sense), based on which we re-visited the
notion of discrete-time graph Fourier transform. Based on
discrete-time graph Fourier transform of input and out-
put graph signals, we also presented the graph-frequency
response of a graph filter in the presence of randomized node-
asynchronicity.

For future studies, it is also interesting to study the asyn-
chronous update probabilities that are optimal in terms of
minimizing the effect of the randomization error, the input
noise, or the rate of convergence. In addition, design of filters
with desired graph-frequency characteristics is also left as a
future problem.

APPENDIX A
A RESULT ON THE RANDOM INDEX SELECTIONS

Lemma 7: For an arbitrary matrix X € CN>*N  the follow-
ing identities hold true:

E[PTX] =PX, (107)
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E[Pr X P7]=PXP+X 0O (P—P?), (108

where the expectations are taken with respect to the random
subset T, to which the i node belongs with probability p;.
Proof: The identity in (107) follows directly from the
linearity of the expectation and the definition of P in (16).
For the identity (108), we first write the following:

X,'yj, i€ T, ] S T,

. (109)
0, otherwise.

(P X PT)i,j = {
Thus, we can write the following due to the binary nature
of the index selections:

]E[(PT X PT)Z.J.] =X, PlieT.jeTl. (110)

Regarding the probabilities in (110), we have the following
for the non-diagonal (i # j) entries:

PlieT,jeTl=PlieTIPjeTl=pipj, (111)

which follows from the fact that indices get updated inde-
pendently from each other. On the other hand, we have the
following for the diagonal (i = j) entries:

PlieT,jeTl=PlieTl=pi, (112)

which follows simply from the fact that i € T if and only if
Jj €T wheni=j.
Thus, we can write the following:

(B[P x Pr]) ={"P% )
ij pi Xii, =],
which is equivalent to the identity (108). |

APPENDIX B

PROOF OF PROPOSITION 1

Due to asynchronous updates described in (14), state vector
xj can be written as follows:

x[kl = (I — Pr)x[k — 1]
R
+ Py (Axlk — 11+ Biaf ™" + wik — 1])

i=1

= (I + P, (A= D)x[k — 1]

R
+ Py, (Z Bi o' 4wk — 1]) :

i=1

(114)

Taking expectation of (114) and using the facts that
updated indices are selected independently, the input noise
has zero mean, and the noise is uncorrelated with the index
selections, we have the following:

R
Elx[k]] = AE[x[k — 1]] + ) Bief™'

i=1

k—1 R
= AELO + Y A" Y Biof " (115)
n=0 i=1
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R
= Z(a,-l —A) 'B;of
i=1

R
+ A" (ELx(on - Y (@l —)~'B),
i=1

— xSk + A (]E[x[O]] - xss[0]> = xS[k] + x"[k]
(116)

where A and B are as in (20).

APPENDIX C

PROOF OF THEOREM 1

Using the definition of the error term in (29) and substituting
x[k] = glk] 4+ x**[k] into (114), we have the following:

glk + 11+ x%k + 11 = (I + Py, (A = D) (glk] +x*[k])

R
+ Py, wikl + Py, P! Zﬁiaf, (117)
i=1

which can be written as follows by rearranging the terms:

glk + 11 = (I + Py, (A= 1)) qlk] + P, wlk]

+(P7,, PT' = 1)8k1.  (118)

where the deterministic vector §[k] is defined as in (35).
Using (118), we can express the outer product
glk + 11 g™ [k + 1] recursively as follows:

qlk + 11 g%k + 1]
= Pri kI WKL Py
+ (I +Pr,, (A=D) qlk1¢"[k1(A" = DP, +1)
+ (P, P71 1) 8[k1 89 [K) (P Py, — 1)
+ (I + Py, (A—=D) qlk] $9[k1(P~" Py, — 1)
+ (P, Pt = 1) 81k1 ¢"k] (1 + AP =D Pr.,),
(119)
where the cross terms including w[k] are left-out intentionally
because these terms will disappear when we take the expec-
tation since w[k] has a zero mean and it is uncorrelated with
the index selections.
We now take the expectation of both sides of (119) and
use the identities given by Lemma 7, and the independence

assumption regarding the index selections, input noise and
the initial condition. Then, we obtain the following:

Olk + 1] = @(Q[k])
+PTP+T O (P-P?)

+ (81k] M k1) © (P! 1)
+ (@ =D 5k 8 1K)) © (P 1)
+ (B wDIA D)o (P~ -1), (120

where the function ¢(-) is defined in (33). We also note that
E[g[k]] = x"“[k] as given in (34).

122816

Although X + XH =£ 291{X} in general, we note that the
following equality holds true for any X € CV*N:

(x+xT)o (-1 =29{x}o (P -1, a2

where 9i{-} denotes the real part of its argument. So, using the
identity (121) in (120) gives the result in (34).

APPENDIX D
PROOF OF COROLLARY 1
We first define the following:

Z[k] = Q[k] — Q'[k] — Q"
where Q'[k] and Q" are given as the solutions of (43) and
(42), respectively. Substituting (122) into the recursion (34),
we get:

Zlk + 11+ Q'k + 11 + 0"
= @(Z[k]) + ¢(Q"Tk]) + ¢(Q")
+PTP+T O (P-P)+0{sk18"k1} o (P~ — 1)

(122)

+f2@ - Dtk s} o (P - ), (123)

which can be simplified as follows due to the defining equa-
tions in (43) and (42):

Zlk+1] = cp(Z[k])er[z(Z—l)x“[k] sH[k]}e(P*‘ 1)
(124)

Due to the stability assumption (40) and Lemma 3 we have
p(A) < 1, s0 limy_, o0 x"[k] = 0. As a result,

lim Z[k] =0, (125)
k—o00
which gives the desired result.
Necessity of the condition (40) follows from (39). That is,
when p(§) > 1 there exists a nonzero positive semi-definite
matrix X that cannot be reduced by the function ¢(-).

APPENDIX E

PROOF OF LEMMA 1

Assume that the stability condition (40) is met, and solution
to (42) exists. Let ¢; denote the i standard basis vector. It is
readily verified that the following identity holds true for any
X € CV*N and any index 1 <i < N:

M oX)ei = —p) el Xe+pielaxaAlle. (126)
Furthermore, we have the following:
e (Pr P+T O (P—Pz))e,- —piiTe (127

So, by left and right multiplying (42) with ef.'[ and e; respec-
tively, we get the following:
e (Q"—T)eipi=piefl AQ"A"e; 20,  (128)

where the inequality follows from Q" > 0, and the desired
result follows from the fact that p; > 0 for all i.
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APPENDIX F

PROOF OF LEMMA 5

Using Proposition 1, the expected steady-state value of the
output graph signal can be written as follows:

Y[kl = d u &%

+(c®G) (6% Iy —A) (1 ® P)b @ u) ™,

(129)

where A is the average augmented state-transition matrix as
in (79). Then, we present the following identity, which can be
verified via elementary manipulations:

(@ Iy, —A) ' U @ P)
(IL QZ 1) —F® G)_l

= (INL ~F ®Z<d'w)G)_1 (I ® Z(e))

S (Z(e’“") G)” Z(®), (130)
n=0

where Z (/) is as in (88). So, we can write following:

€®G) (I, —A) U @ PYb @ W

=(c® G)( Z F"® (Z(e/‘”) G)" Z(e"‘”)> (b @ u)
n=0

=Y (cF" b)(GZ(ei‘”))n+l u. (131)
n=0

When combined with the first term d u ¢/“% , we obtain the
following:

YOIk = (d + i(c F"=1 b) (G Z(efw))"> wd* (132)

n=1

h(GZ(efw)) u ok,

(133)

where the last identity follows from the representation in (66).
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