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ABSTRACT This paper presents a dataset to support researchers in the validation process of solutions such
as Intrusion Detection Systems (IDS) based on artificial intelligence and machine learning techniques for
the detection and categorization of threats in Cyber Physical Systems (CPS). To this end, data were acquired
from a hardware-in-the-loopWater Distribution Testbed (WDT)which emulates water flowing between eight
tanks via solenoid-valves, pumps, pressure and flow sensors. The testbed is composed of a real subsystem
that is virtually connected to a simulated one. The proposed dataset encompasses both physical and network
data in order to highlight the consequences of attacks in the physical process as well as in network traffic
behaviour. Simulations data are organized in four different acquisitions for a total duration of 2 hours by
considering normal scenario and multiple anomalies due to cyber and physical attacks.

INDEX TERMS Artificial intelligence, cyber-physical systems, dataset, intrusion detection, machine
learning, water distribution, security, testbed, threat recognition.

I. INTRODUCTION
Industrial Control Systems (ICS) are composed of physical
and cyber components used to control industrial processes
such as in the case of manufacturing, production, and dis-
tribution scenarios [1]. These key elements are also known
as Cyber-Physical Systems (CPS), which enable the connec-
tion between the operations of the industrial physical plant
and the computing and communication infrastructure [2].
They have a crucial role in an ICS because they define both
the correct behaviour of the physical process and the cor-
rect communication with the Supervisory Control and Data
Acquisition (SCADA) systems. CPSs are widely employed
in different fields such as smart grids [3], [4], oil and natural
gas pipelines [5] and water treatment [6]. Because of their
critical role, physical faults, such as broken valves or pumps
and cyber attacks can lead to dangerous consequences which
can vary from simple changes in network traffic behaviour,
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such as scanning attacks, to catastrophic events such as loss
of service and kinetic effects with dangerous consequences
in terms of injury to people, environmental pollution, and
physical damage to equipment [4].

In particular, during the last few years, cyber-security has
become a critical concern in ICSs due to thewidespread usage
of wireless networks as well as the opening of industrial net-
works to the Internet. Despite the benefits of such strategies,
such as remote maintenance, simpler adjustment of machines
and a constant flow of information, the number of attacks
against ICS networks has significantly increased, as reported
by Kaspersky in its ICS-CERT annual report [7].

For these reasons, different types of testbeds are needed
to measure the effects of cyber and physical attacks on
industrial processes and to assess security countermeasures,
as witnessed by the results reported in recent scientific
literature [8]–[10].

Among the most widespread solutions to secure CPSs,
we can mention Intrusion Detection Systems (IDS) and
Intrusion Prevention Systems (IPS) [13], for network
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TABLE 1. Datasets comparison in terms of network data, physical data, attack types and testbed structure.

monitoring (NIDS) and host monitoring (HIDS). In partic-
ular, recent scientific literature is addressing areas such as
artificial intelligence and machine learning for IDSs and
IPSs [14], [15], which seem to be particularly effective in
recognizing unforeseen attacks [16]–[18]. A crucial point
is the evaluation of these systems in order to assess their
ability to detect attacks: to this aim, realistic and sufficiently
complex datasets are needed.

The Scientific Literature provides some datasets such as
KDD-99 [19] with its updated version NSL-KDD99 [20],
UNSW-NB15 [21] and CTU-13 dataset [22]; however, all
of them present Information Technology (IT) network traffic
without any reference to physical plants. Therefore, there is
a need for new datasets with traffic taken from Operational
Technology (OT) networks where hardware and software are
used to monitor and control physical processes, devices and
infrastructure [23]. Moreover, in addition to the network traf-
fic, data taken from Programmable Logic Controllers (PLC)
are necessary in order to inquire the effects of cyber and
physical attacks against the physical plant [24].

In [11], the authors provide a CPS dataset composed of two
tanks, two pumps, one ultrasound sensor, four liquid level
sensors and one PLC. Data consist of PLC register values
which are reported in 15 csv different files. Each of these
refers to normal traffic and different types of attacks both
physical, such as a person hitting a tank and cyber such
as Denial of Service (DoS). The excessive simplicity and
the lack of network traffic make this dataset insufficient to
guarantee a realistic evaluation of IDSs or IPSs.

On the other hand, the dataset described in [12] is more
complex and sophisticated: it is provided by iTrust, the Centre
for Research in Cyber Security at the Singapore University.
The dataset refers to a Secure Water Treatment (SWAT)
testbed consisting of six different stages each of which
characterized by a particular physical process controlled by
one PLC. Data are reported in csv files: one refers to the
physical variables read from PLCs while other 784 files
report MODBUS-only network traffic. Attacks are launched
against the physical elements such as pumps or valves or
against the communication network between sensors, actua-
tors and PLCs in order to corrupt the information exchanged.
Thus, there is no reference to different types of cyber
attack such as DoS and scanning attacks which are typi-
cally launched against ICS networks, as described in [25]
and in [26]. Moreover, the authors do not consider attacks

against the communication network between the SCADA,
which acquires the data, and the PLCs. Another possible
issue of this dataset is the size; specifically, authors provide
about 1 million samples for the physical dataset and a total
of about 400 million samples for the network one. This
characteristic leads researchers to adopt small and random
subsets of the dataset causing serious difficulties in compar-
ing results of different research works, as happened in [27]
and explained in [20].

This paper aims to overcome these limitations by providing
a hardware-in-the-loop cyber-physical dataset obtained from
a Water Distribution Testbed (WDT) [28]. The testbed is
partially simulated thanks to the minicps tool in order to
represent a more complex scenario by increasing the num-
ber of tanks and PLCs connected to the ICS network [29].
Data are both physical measurements taken from PLCs and
network traffic presenting normal and malicious packets
under different types of attacks. Moreover, the limited num-
ber of samples makes it convenient to test different IDS
solutions on the complete set without the need to select a
small random partition. In fact, even if the complexity of
a dataset is important in order to faithfully emulate a real
industrial plant, a too large dataset is not properly man-
aged by machine learning algorithms reducing its usabil-
ity [30]. Thus, evaluation results of different papers could
be effectively compared in order to identify the best algo-
rithms without any influence from the selected random data
partitions.

Therefore, the main contributions are as follows:
• An ICS dataset providing both physical and network
data in order to highlight the relations between cyber and
physical aspects of the system.

• A balanced complex dataset that can provide more types
of cyber and physical attacks and more realistic scenar-
ios while keeping, at the same time, a small number of
samples. In this way, we provide a reduced sized dataset
that ensures a good trade-off between complexity and
usability.

Table 1 summarizes the key features of our dataset in
relation to those described in [11] and [12].

The remainder of the paper is organised as follows.
Section 2 describes the water distribution testbed and net-
work topology. Section 3 describes the data acquisition and
the attacks launched against the testbed. Section 4 describes
the organization of the dataset. Section 5 provides some
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FIGURE 1. Real subsystem of the WDT.

preliminary results by applying four machine learning algo-
rithms; while Section 6 concludes the paper.

II. WATER DISTRIBUTION TESTBED
A. PHYSICAL CHARACTERISTICS
The WDT is composed of two main subsystems: a real one
and a simulated one. As illustrated in Figure 1, the real
subsystem consists of 5 tanks (T r1 . . . T r5 ), 20 solenoid valves
(V r

1 . . . V r
20), 4 pumps (Pr1 . . . Pr4) and 5 pressure sensors

(Sr1 . . . Sr5 ) under each tank. In addition, 8 manual valves
are provided in order to simulate water leaks from tanks or
pipes. Specifically, tanks are made of polyurethane and are
characterized by the following dimensions:

• Sr3 and Sr4 : height = 36 cm, circumference = 70 cm
• Sr1 and Sr2 : height = 45 cm, circumference = 90 cm
• Sr5 : height = 40 cm, circumference = 100 cm

Solenoid valves are Evian c©Series 263-Model D263DVP
powered at 24V. Each tank has a multiple number of outlet
valves in order to modulate the output flow. Specifically,
as shown in Figure 2, T r1 is equipped with outlet valves V r

1 ,
V r
2 , V

r
3 and V r

4 ; T
r
2 with V r

5 , V
r
6 , V

r
7 and V r

8 ; T
r
3 with V r

10, V
r
11

and V r
12; T

r
4 with V r

13, V
r
14 and V

r
15 and T

r
5 with V r

19 and V
r
20.

Pressure sensors are WIKA c©S-11, with a measurement
range of 0 . . . 0.1 bar.

Pumps Pr1, Pr2 and Pr3 are Mini-Type Pipe Pump
151410 with a maximum flow of 20 l/min while Pr4 is a
EK-DCP 2.2 with a maximum flow of 6 l/min.
Tanks are connected by pipes in cross-linked multi-layer

polyurethane (PE-Xb) with an external diameter of 7/8′′.
The simulated subsystem was implemented by using the

minicps tool, a lightweight simulator for accurate network
traffic in industrial control systems, with basic support for
physical layer interaction. It was installed on an Ubuntu
machine with the following characteristics: Intelr Xeonr

CPU E5-2620 v2 @ 2.10 GHz with a RAM of 16 GB.
As illustrated in Figure 2, the simulated environment adds

complexity to the real testbed with the addition of 3 tanks
(T s6 . . . T s8 ), 2 pumps (Ps5, P

s
6), 4 flow sensors (F s1 . . . F s4),

2 solenoid valves (V s
21, V s

22) and 3 pressure sensors
(Ss6 . . . Ss8) for each tank. Specifically, tanks aremodelled with
a circumference of 100 cm and a height of 40 cm. Pipes are
modeled with an external diameter of 7/8′′ while pumps are
characterized by a flow of 4 l/min.

The two subsystems form a water distribution testbed in a
hardware-in-the-loop fashion where water flow goes from the
real subsystem to the simulated one and vice versa.

B. PROCESS DETAILS
For the sake of clarity, we now describe in detail the nominal
behaviour of the process. According to the scheme repre-
sented in Figure 3, the process consists of four stages each
of which is controlled by a specific PLC. The first stage S1,
which is controlled by the real PLC, PLCr

1 , starts with pump-
ing the water from the reservoir towards two different paths:

• Path 1: The water is pumped by Pr1 towards T r2 . Then,
thanks to V r

17, it starts to fill up T r3 . When the water
level reaches a specific threshold, V r

10, V
r
11 and V r

12 are
activated in order to get water back to the reservoir.

• Path 2: The water is pumped by Pr2 towards T r1 . Then,
Pr4 is activated in order to fill up T r5 . When the water
level reaches a specific threshold, Pr4 is deactivated. As a
result, the remaining water in T r1 is drained towards T r4
thanks to the opening ofV r

18 and then through valvesV
r
13,

V r
14 and V

r
15 towards the reservoir.

The second stage S2 starts when water level in T r5 reaches
the predefined threshold. PLCs

2, simulated in minicps, opens
solenoid valve V r

20 and starts to fill up T s6 : its water level
increases as much as water level in T r5 decreases. Thus, even
if V r

20 drains the water towards the reservoir, it is virtually
deviated towards T s6 in order to start the simulated physical
process inminicps. The water then reaches stage S3 thanks to
Ps5 controlled by PLCs

3: T
s
7 starts to fill up while F s1 records

water flow downstream of the pump.
The last stage S4 is controlled by PLCs

4 which defines
water flowing from T s7 towards T s8 thanks to Ps6. Also in this
case the water flow is measured by F s2. When the water level
in T s8 reaches a specific threshold, PLC

s
4 opens solenoid valve

V s
22 in order to virtually drain the water towards the reservoir.

C. NETWORK ARCHITECTURE
Network architecture is consistent with the typical three-
layer SCADA architecture defined in [31] and shown in
Figure 4. The adopted communication protocol is MODBUS
TCP/IP which is the de-facto standard used in industrial
networks [32].

The first layer is the Field Instrumentation Control Layer
which consists of sensors and actuators connected to the
PLCs via wired links. All of them are connected to the I/O
analog or digital module of the PLCs with the exception of
flow sensors F s1 and F

s
2 which are MODBUS TCP/IP sensors

with their own IP addresses.
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FIGURE 2. WDT schematic: the left red rectangle represents the real subsystem while the right blue rectangle the simulated subsystem of
the water testbed. Blue rows represent virtual water flowing between the two subsystems.

FIGURE 3. WDT physical process divided into 4 stages: the first is controlled by the real PLC, PLC r
1 , while the remaining ones are controlled

by the simulated PLCs, PLCs
2 , PLCs

3 and PLCs
4 .

The second layer is the Process Control Layer which
consists of the four PLCs. In particular, the real one is a
Modicon M340 equipped with BMX P342020 processors,
DDM16025 discrete I/O and AMM0600 mixed analog I/O
modules.

The third and last layer is the Process Control Layer
which consists of the Supervisory Control and Data Acqui-
sition system Movicon 11.6 installed on a Windows Server
2012 machine with the following characteristics: Intelr

Xeonr CPU E5-2620 v2 @ 2.10 GHz with a RAM
of 16 GB. The SCADA includes the Human Machine

Interface (HMI) and a Historian which reads and stores data
from PLCs.

As shown in Figure 5, the communication network consists
of four PLCs, 2 MODBUS TCP/IP flow sensors, the SCADA
workstation and an additional host, a Kali Linux machine,
which was used to launch cyber attacks, described in detail
in Section III.

III. ATTACKS AGAINST THE TESTBED
As mentioned in Section I, in this work, we considered two
different types of attack:

122388 VOLUME 9, 2021
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TABLE 2. Cyber and physical attacks.

TABLE 3. Attack scenarios per each acquisition.

• Physical attacks: they are defined as attacks against the
physical elements such as sensors and actuators. Some
examples are leaks from tanks and pipes, sensors or
actuators failures.

• Cyber attacks: they are defined as attacks against
hosts (SCADA, PLC, and flow sensor) or communica-
tion links. Some examples are Denial of Service (DoS)
attacks, scanning attacks and MITM attacks.
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FIGURE 4. SCADA architecture.

FIGURE 5. SCADA network.

FIGURE 6. Effect of a MITM attack against PLCs
2 and PLCs

3 on physical
process (Scenario 1.1). The attack changes the water level value of T s

6
requested by PLCs

3 to PLCs
2 . (a) shows the normal scenario while (b) the

attack effect. Black lines indicate the start and the end of the MITM
attack.

According to the ontology provided in [25] and [26], each
type of attack is classified and described in Table 2. Attacks
can be divided into five different classes and, for each of them,
we considered specific subclasses such as SYN scan and
FIN scan for scanning attacks [26]. All attacks are launched
against both real and simulated subsystems of the WDT.
In particular, cyber attacks are carried out thanks to a Kali
Linux machine with the following hardware configuration:

FIGURE 7. Effect of a DoS attack against PLC r
1 on physical process

(Scenario 3.5). The attack causes the disconnection of PLC r
1 from the

network causing a delay in the filling of T s
6 . (a) shows the normal

scenario while (b) the attack effect. Black lines indicate the start and the
end of the DoS attack.

FIGURE 8. Effects of a physical attack against Pr
4 on the physical process

(Scenario 2.6). The attack causes the breakdown of Pr
4 , which stops water

flow towards T r
5 . (a) shows the normal scenario, while (b) the effect of the

attack. Black lines indicate the start and the end of the physical attack.

Intel R, Core(TM) i7-8750H CPU @2.20GHz (1CPU),
4GB RAM.

A. ATTACK SCENARIOS
Considering the different attacks described in Table 2,
we have defined 28 attack scenarios by varying the start
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time and the specific target. As summarized in Table 3,
the effects of such attacks scenarios are collected in three
of the four different acquisitions that will be described in-
depth in Section IV-A. Table 3 shows the scenarios specifying
whether a particular attack has an impact on the physical pro-
cess or on the network traffic. In particular, as we expected,
physical attacks have no effect on the network traffic because
they are focused only on the physical components of the
testbed. On the other hand, all cyber attacks have effects
against the network traffic but not necessarily on the physical
process. This behaviour depends on three factors: the time
when a specific attack is launched, the current process state,
and the specific target. In this perspective, notice that despite
Scenario 3.6 and Scenario 3.7 are characterized by the same
type of attack (MITM), only the first one has an impact on
the physical process. Specifically, in our dataset, a MITM
attack fixes the required sensor value to the last value read
by the victim before the attack. Thus, in these two scenarios,
the attack fixes the water level of T s7 to the last not impaired
value required by PLCs

4 to PLC
s
3.

The presence or absence of attack effects against both
physical and network behaviour makes the classification task
of machine learning algorithms more complex and challeng-
ing, as will be described in Section V-D.

Figures 6, 7 and 8 show three different attack scenarios
against the physical process; specifically, they refer to Sce-
nario 1.1, Scenario 3.5 and Scenario 2.6 respectively.

Figure 6 shows the effects of a MITM attack against PLCs
2

and PLCs
3. The attacker fixes the water level of T

s
6 at the last

value required byPLCs
3 toPLC

s
2 before the attack. In this way,

PLCs
3 will receive always the same compromised value for the

entire duration of the attack. Thus, PLCs
3 does not activate P

s
5

causing an abnormal increase in the water level of T s6 while
T s7 remains empty until the attack ends.

Figure 7 shows the effects of a DoS attack against PLCr
1 .

The attack causes the disconnection of PLCr
1 from the net-

work while T r5 is still filling up. As a result, PLCs
2 is not

able to read the actual value of water level in T r5 delaying the
filling of T s6 .

Figure 8 shows the effects of a physical attack against Pr4.
The attack causes the breakdown of Pr4 which stops water
flow towards T r5 .

IV. DATASET ANALYSIS
A. DATA ACQUISITION
With the aim of reducing the total size of the dataset, we pro-
vide four different acquisitions characterised by an overall
duration of about 2 hours. Each acquisition consists of a
certain number of cycles of the physical process in order to
ensure a sufficient knowledge about the normal operation and
to define the 28 attack scenarios described in Section III.
Specifically, the first acquisition lasts 1 hour and shows a
total of 12 process cycles: it refers to theWDTwhile working
in normal conditions without any attack. On the contrary,
the remaining three acquisitions, which last 60 minutes,
provide 8, 7 and 4 process cycles respectively. They report

data about the attacks described in Section III which cause
different effects on the physical process or on the network
behaviour. These effects depend on the type of attack, the time
at which the attack was launched and on the particular target.
Consecutive attacks were avoided if both of them caused
significant variations in the physical process or network traf-
fic: in these cases, the time between two attacks is at least
as long as the time needed to bring WDT back in a safe
and normal condition. As shown in Table 2, attack scenarios
are distributed along the different cycles and are temporally
separated in order to reduce mutual influence. In particular,
the column Cycle defines the specific physical cycle that is
affected by the attack scenario; while, the column Elapsed
time defines the time elapsed since the beginning of the same
cycle.

The acquisitions started with all tanks empty.
For each acquisition, we provide two different datasets:

a physical one, which reports the physical measurements of
sensors, solenoid valves and pumps taken from PLCs and
saved by the historical data recorder (Historian), and a net-
work one, which reports packets features about the traffic
exchanged in the SCADA network.

In Figures 9 and 10, the total number of samples for
network and physical datasets are reported.

FIGURE 9. Number of samples for physical dataset reported for each
acquisition.

B. PHYSICAL DATASET
The Historian recorded the physical data every second in a
csv file. Thus, each record represents sensors, pumps and
solenoid valves states taken from the four PLCs at a particular
time. Samples are defined by 41 features which are reported
in Table 4.

C. NETWORK DATASET
Network traffic of all network segments was captured thanks
to the Wireshark software. Features were extracted from the
outgoing pcap file using Python. Specifically, features were
selected by considering that ICS networks are more deter-
ministic and static than IT networks where, on the contrary,
changes in terms of network topology and network traffic are
more frequent, as described in [33]. Taking this into account,
features were selected according to [34] where the authors
studied which attributes best differentiate between anoma-
lous and normal behaviour in ICS networks. We considered
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TABLE 4. Features of physical dataset.

TABLE 5. Features of network dataset.

FIGURE 10. Number of samples for network dataset reported for each
acquisition.

packet-based features, which help with the examination of
packets payload in addition to the headers. This choice is
justified by the presence of attacks that affect exclusively
packets payload such as the MITM attack [35], [36]. Specif-
ically, we analyzed the effectiveness and the applicability of
the following features:
• Src IP address: Source IP address. In ICS networks,
IP addresses are statically assigned; moreover, the num-
ber of hosts is static and well-defined. Thus, the appear-
ance of new devices has to trigger an event.

• Dst address: Destination IP address. As for the source,
also destinations in ICS networks are fixed and well
known.

• Src MAC address: Source MAC address. Changes in
MAC to IP mapping is very infrequent. Thus, the use of
ARP messages to resolve MAC addresses of unknown
IP addresses has to be notified. Changes in this feature
could be the consequence of malfunctions or of ARP-
poisoning MITM attack.

• Dst MAC address: Destination MAC address. As for
the source, also the destinations are well-defined. Any
unknown and additional MAC address indicates the
presence of malicious hosts connected to the network.

• Src Port: Source port. In ICS networks, ports are stan-
dard and related to the configuration of hosts and to the
protocols adopted.

• Dst Port: Destination port. As for the source, also the
destination ports are static and well-defined. Unknown
ports may indicate the use of protocols that are not
allowed in the specific ICS network.

• Proto: Protocol. Protocols in ICS networks are limited
and well-defined. Thus, the appearance of new protocols
must be reported as a network modification.

122392 VOLUME 9, 2021



L. Faramondi et al.: Hardware-in-Loop WDT Dataset for Cyber-Physical Security Testing

FIGURE 11. Total number of samples divided into normal and malicious.

• TCP flags. In general, TCP flags are used to indicate a
specific state of a TCP connection. An attacker can vary
these protocol settings in order to gather information on
the networked devices as in the case of scanning attacks.

• Payload size. Packets exchanged in an ICS network are
well-defined and without extra buffering in order to
provide real-time requirements. Thus, anomalous packet
size could be the consequence of malfunctions or mali-
cious activity.

• MODBUS code: MODBUS function code. In MOD-
BUS protocol, the code specifies the type of PLC mem-
ory address which is requested. Unusual read requests
must be notified as a consequence of unauthorised PLC
access.

• MODBUS value. Abnormal payload data could be the
sign of misconfiguration or malicious actions such as
MITM attacks. Changes in MODBUS values could
cause a significant impact on the physical process.

• num_pkts_src: number of packets of the same source
address in the last 2 seconds. In ICS networks, the num-
ber of connections between hosts is quite always static
and constant. Any variation of this value may be the
consequence of malfunctions and DoS or DDoS attacks.
This feature captures an anomalous number of connec-
tions from one specific host.

• num_pkts_dst: number of packets of the same destina-
tion address in the last 2 seconds. This feature captures
an anomalous number of connections towards one spe-
cific target.

Table 5 summarizes the list of network features we consid-
ered in our dataset. In addition to those already described, all
the samples are identified by the date of acquisition.

D. LABELLING
To label the samples for each acquisition, we used attack logs
focusing in particular on the starting time, the ending time
and the type of attack. Each record is characterized by two
different labels: the first one defines the type of attack while
the second one is either 0 if the record is normal and 1 if the
record is attack. Figure 11 shows the total number of samples
divided into normal and malicious.

E. FINAL SHAPE OF DATASETS
We provide the two datasets in 8 different csv files. In par-
ticular, attack_1, attack_2 and attack_3 refer to normal and
malicious network traffic while phy_att_1, phy_att_2 and
phy_att_3 refer to the corresponding physical values of the
WDT. Files normal and phy_norm refer to legitimate network
and physical data.

Moreover, we provide raw network traffic packets in four
pcap files: attack_1.pcap, attack_2.pcap, attack_3.pcap and
normal.pcap).

The list of the events is defined in the file README.xslx.

F. USE OF THE WDT DATASET
The WDT dataset is available at the link1 and can be
used free of charge for research and study applications
(non-commercial activities) as long as it is reported in the
bibliography with reference to this article.

V. MACHINE LEARNING PERFORMANCE EVALUATION
As described in Section I, our dataset aims at support-
ing researchers in the validation of artificial intelligence
and machine learning algorithms. In this section, we show
some preliminary results by applying four different super-
vised machine learning algorithms to network and physical
datasets.

A. CLASSIFICATION TECHNIQUES
We adopted the following machine learning algorithms:
K-Nearest-Neighbor (KNN), Naïve Bayes (NB), Support
Vector Machine (SVM) and Random Forest (RF).

KNN is one of the simplest classifiers [37]. It is based on
the distribution of training samples in the so-called feature
space; a test sample is classified with the most represented
class by the k-nearest training samples.

NB is a class of probabilistic classifiers based on the
Bayes’ theorem which requires the strong assumption
of independence between the features. It computes the
a-posteriori probability of samples to belong to one of the
different classes knowing the likelihood of the features [38].

SVM is one of the best classifier algorithms [39]. It com-
putes a separating hyperplane that divides samples belonging
to the two classes in the best way.

RF is an ensemble learning classification algorithm [40].
It computes a predefined number of decision trees at training
time; then it returns the most represented class by computing
the mode of the classes for each individual tree.

B. EVALUATION SETUP
Considering both network and physical data, samples from
all four acquisitions were merged in order to obtain only two
different datasets: one for network traffic and one for PLC
data.

1https://ieee-dataport.org/open-access/hardware-loop-water-distribution-
testbed-wdt-dataset-cyber-physical-security-testing
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Before applying machine learning classifiers, we standard-
ized and removed identical records. Specifically, we scaled all
features by removing the mean and the variance in order to
make data normally distributed. Then, we removed identical
records in order to reduce possible biases towards the more
representative classes. Datasets were divided into training
and test sets using a K-Folds cross-validation. Feature stan-
dardization was performed on training set and, subsequently,
the mean and variance of training data were used to normalize
the test set.

Hyperparameters of classifiers were set as follows:
k=10 for the KNN and 100 trees for RF. SVM was applied
with a Radial Basis Function (RBF) Kernel and, for Naïve
Bayes, the Gaussian version was used.

In order to implement KNN, RF, SVM and NB, we used
the Python Scikit-learn library [41].

C. PERFORMANCE METRICS
Performance of machine learning algorithms were computed
with the following metrics:
• Accuracy: is the fraction of samples classified correctly

Accuracy =
Number of correct predictions
Total number of predictions

(1)

• Recall: is the fraction of actual positive samples identi-
fied correctly

Recall =
TP

TP+ FN
(2)

where, TP = True Positive and FN = False Negative.
In particular, we considered attack samples as positive
and normal samples as negative.

• Precision: is the fraction of positive identifications pre-
dicted correctly.

Precision =
TP

TP+ FP
(3)

where, FP = False Positive.
• F1-score: is the harmonic mean of precision and recall.

F1-score =
2

1
precision +

1
recall

(4)

D. EVALUATION RESULTS
Table 6 summarizes results in terms of Accuracy, Recall, Pre-
cision and F1-score for both physical and network datasets.
Regarding the physical dataset, we obtained performance
close to 100% for both RF and KNN; while NB and SVM
returned lower performance for Precision and Recall.

On the other hand, machine learning applied to the net-
work dataset shows worse results. RF and KNN have bet-
ter performance than those provided by SVM and NB; but,
in all cases, the accuracy does not exceed 75%. Moreover,
NB shows a poor ability to correctly detect true positive
samples, as reported by the recall value which is less than
20%. On the contrary, SVM is prone to assign as anomalous

TABLE 6. Machine learning evaluation results.

the majority of samples, as reported by the recall which is
close to 100% and the precision which is just 10%.

Finally, we can conclude that machine learning algorithms
singularly applied to network dataset are not sufficient in
order to separate malicious samples from normal samples
acquired from an ICS network. This behaviour is linked to
the intrinsic inability of network data to report the current
state of physical process which is essential in order to iden-
tify deviations from the correct dynamics. Thus, taking into
account the physical data from PLCs is necessary in order to
properly recognize cyber attacks that have an impact against
the physical process.

Moreover, as explained in Section III, our dataset provides
some attack scenarios that have no influence on network traf-
fic, as in the case of physical attacks. During these scenarios,
network data have no information about the attack in progress
resulting in the inability to recognize such attack.

On the other hand, we considered some cyber attacks, such
as scanning attacks, which only affect network traffic. In these
cases, physical data do not provide any discriminating fea-
tures causing performance penalty.

Thus, in order to get better performance and in order to
recognize all types of attacks, it is necessary to consider both
the network and the physical data in the classification task.

VI. CONCLUSION
In this paper, we provided a new hardware-in-the-loop cyber-
physical dataset obtained from a water distribution testbed.
The testbed is composed of a real subsystem and a simulated
one, which was used in order to add complexity by increasing
the number of tanks, valves, pumps and PLCs for control.
The dataset consists of both physical measurements and net-
work traffic in order to overcome well-known limitations
of the existing datasets providing enough complexity and a
more realistic network traffic with modern attack scenarios.
Physical data was extracted by using a Historian machine,
while network traffic was captured using theWireshark soft-
ware. Such attacks were implemented in 28 different attack
scenarios considering both the cyber and the physical attacks.
Their effects against physical and network dynamics can vary
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depending on the time, the type of attack, the specific target
and the current physical process. There are 41 features for the
physical dataset and 14 features for the network one; in the
latter, Python was used to extract and select features that
best differentiate between normal and anomalous network
packets.

Finally, we evaluated four machine learning algorithms,
KNN, RF, NB and SVM, which were applied to both network
and physical datasets. Results showed that classification algo-
rithms cannot detect all the attacks types if they are applied
separately on physical and network datasets. Thus, in order
to get better performance, both the network and the physical
data need to be considered.
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