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ABSTRACT Early diagnosis and treatment of diabetic retinopathy (DR) can reduce the risk of vision loss.
There are five stages of DR consisting of no DR, mild DR, moderate DR, severe DR, and proliferate DR.
This paper presents a multitask deep learning model to detect all the five stages of DR more accurately than
existing methods. The developed multitask model consists of one classification model and one regression
model, each with its own loss function. After training the regression model and the classification model
separately, the features extracted by these two models are concatenated and inputted to a multilayer
perceptron network to classify the five stages of DR. A modified Squeeze Excitation Densely Connected
deep neural network is also developed as part of this multitasking approach. The developed multitask model
is applied to the two large Kaggle datasets of APTOS and EyePACS. The results obtained indicate that
the developed multitask model achieved a weighted Kappa score of 0.90 and 0.88 for the APTOS and
EyePACS datasets, respectively. In addition, the micro and macro average area under the receiver operating
characteristic (ROC) curve was found to be 0.96, and 0.93, respectively, which are higher than existing
methods for detecting the five stages of DR.

INDEX TERMS Diabetic retinopathy (DR), eye fundus images, five stages of diabetic retinopathy,
multitasking deep neural network, squeeze excitation densely connected network.

I. INTRODUCTION
International Diabetes Federation (IDF) states that there are
more than 460 million adults (20-79 years) in the world
living with diabetes. The number of adults with diabetes has
more than tripled over the past 20 years and 1 in 2 peo-
ple (about 230 million) with diabetes are undiagnosed [1].
A complication of diabetes is Diabetic Retinopathy (DR),
an eye retinal disease that can lead to visual impairments and
even blindness. DR is caused bymicrovascular complications
of diabetes appearing as morphological changes in the eye
fundus. Diagnosis and treatment of DR at its initial stages
reduces the risk of vision loss to a great extent.With the devel-
opment of color fundus photography, DR can be detected
non-invasively at its early stages.

Along with the detection of DR, the severity level of DR
also needs to be determined for treatment purposes. There
are two major types or classes of DR: non-proliferative
DR (NPDR) and proliferative DR (PDR) [2]. NPDR is further
categorized into the following three stages: (i) mild NPDR,
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which is the earliest stage of DR, (ii) moderate NPDR,
and (iii) severe NPDR. PDR denotes the advanced stage of
DR. The severity level of DR is thus generally graded as these
five stages: no DR, mild DR, moderate DR, severe DR, and
proliferate DR.

Lesions in fundus images that appear as small circular red
dots at the end of blood vessels indicate the earliest sign
of DR. The tiny bulges in the blood vessels in the retina
are called Microaneurysms. At least one Microaneurysm is
present in the mild stage of DR [3], [4]. Microaneurysms,
Hemorrhages and/or Exudates are signs of moderate DR.
In the PDR stage, new blood vessels are formed along with
the above abnormalities [5]. FIGURE 1 shows sample color
fundus images of normal retina and different severity levels of
DR. A major issue with DR detection involves the difficulty
of identifying symptoms at its early stages due to visual sim-
ilarities between no DR, mild DR, and sometimes moderate
DR. If DR proceeds to the advanced stage, vision loss can
occur.

Many computer-basedmethods have been developed in the
literature for the detection of DR. In these previous methods,
to mimic human experts, much attention has been paid to
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FIGURE 1. Sample fundus images from EyePACS and APTOS datasets.

the automatic detection of lesions for DR screening and
grading. A representative set of methods already developed
are stated here. Detection and segmentation of blood ves-
sels in retinal images was discussed in [6] and [7]. In case
of Microaneurysm detection, automated image processing
approaches were developed in [8]–[11]. Several methods for
detection of Exudates in color fundus images were introduced
in [12]–[15]. In [16], the detection of neovascularisation and
lesions was performed for the Messidor dataset.

Lately, due to the success of deep learning models in many
image processing tasks, researchers have utilized them for
DR detection. In [17], a region-based fully convolutional
network (R-FCN) for lesion detection and DR grading into
four stages was developed. In [18], an instance learning was
used to detect lesions in fundus images for the Messidor
dataset.

There have also been some works reported on detect-
ing DR stages, that is conducting detection as well as
classification of DR at the same time. These types of
image classification tasks can be grouped into conventional
image processing techniques where handcrafted features
were considered [19]–[26], and more recent deep learning
techniques [27]–[29]. In [23], an algorithm based on random
forest was applied to handcrafted features to detect the pres-
ence of DR and assess its risk. In [24], a DR classification was
performed by using BossaNova and Fisher Vector midlevel
features which extended the classical Bags of Visual Words
features. In [25], a two-step method based on handcrafted
features was covered: one step for detecting the presence of
DR and one step for detecting its severity level. A bag of
features approach was developed for detection of DR stages
by using the histogram of orientated gradients in [26]. In [30],
both binary and multiclass classification of DR was achieved
by using Haralick and multiresolution features.

Deep learning techniques, especially convolutional neu-
ral networks (CNNs), have generated much success in
image classification due to their end-to-end learning
capabilities or not requiring to devise handcrafted fea-
tures [31]–[33]. In [29], three CNN models were utilized
for the binary classification of DR, that is DR/no DR. Deep
learning-based classification approaches were also discussed

in [28] and [34]–[37]. References [28], [36], [37] focused on
binary classification of DR as referable and non-referable.
In [37], the EfficientNet-B5 model was used for this clas-
sification task. In [38], binocular fundus images from both
eyes (left and right eye) were taken as the inputs to a transfer
learning-based CNN model. In [39], a DCNN (Deep Con-
volution Neural Network) for detecting two stages of DR
(normal and NPDR) was discussed. In [40], the right and
left eye images were inputted to two separate CNN models
with each model performing a binary classification of DR.
In [27], a CNN based smartphone app was developed for
binary classification of DR in real-time.

Classification of the severity stages of DR were presented
in [41]–[43]. In [44], a deep neural network for four-degree
classification of DR was covered. A hyperparameter tuning
was done in the Inception-v4 model to obtain four classes
of DR in [41]. A CNN model was developed to classify
the five stages of DR in [42]. In [45], three deep learning
models (Feed Forward Neural Network (FNN), Deep Neural
Network (DNN), and Convolutional Neural Network (CNN)
were applied to the EyePACS dataset for DR classification
whereas the performance of the EyePACS dataset was exam-
ined for different CNN models in [45]. In [46], several deep
learning models (AleXNet, VggNet, GoogleNet, ResNet)
were compared for DR classification using the Kaggle Eye-
PACS dataset with VggNet achieving the best accuracy.
A transfer learning-based smartphone app using a pretrained
Xception model was previously developed for the classifica-
tion of the five stages of DR in [43] by our research group.
This app runs in real-time on smartphone platforms based on
fundus images that are captured via commercially available
lenses that snap onto smartphones in front of their cameras.

A few recent papers have utilized ensembles of two or
more deep learning models for DR classification. In [47], the
integration of deep learning models was used to detect no
DR, referable DR (rDR), vision threatening DR, and macular
edema. In [48], an ensemble of five pretrained CNN models
consisting of Resnet50, Inceptionv3, Xception, Dense121,
and Dense169, were used for DR classification into five
stages. All these papers considered ensemble of two or more
classification models but did not employ any regression task.
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Moreover, the above mentioned or existing five-stage DR
classification papers have reported not high accuracy when
considering all the stages. A few papers in the literature
also proposed multitasking network for fundus image anal-
ysis mainly focusing on lesion segmentation task [49]–[51].
In [49], a weakly supervised multitask architecture is pro-
posed for retinal lesions segmentation whereas simultaneous
segmentation of bright and red lesions in fundus images is
performed using a multitasking architecture in [50]. In [51],
a region-specific multitask recognition model was proposed
to classify 36 different retinal disease without examining the
classification of different DR stages.

In this paper, a multitasking deep learning architecture is
introduced for classifying fundus images into the five stages
of DR (no DR, mild DR, moderate DR, severe DR, and
proliferate DR). For example, severe DR stage comes after
moderate DR stage, moderate DR stage comes after mild
DR stage, etc. Thus, there is a dependency among different
stages. This dependency between the stages can be learnt by a
regression model towards the classification task. Keeping this
in mind, we have introduced a multitasking model consisting
of a regression and a classification model to classify or detect
the five stages of DR (no DR, mild DR, moderate DR, severe
DR, and proliferate DR). Normally, the classification task
is done based on the difference or distinction between the
classes using a single loss function. Our model uses two loss
functions, one for the classification task and the other for the
regression task. This approach to addressing classification of
the DR stages is indeed novel and it is the first time such an
approach is taken. In this work, a densely connected network
modified with squeeze excitation (SE) layers is developed to
implement the multitasking approach due to the capability of
SE layers to learn channel interdependencies. A MultiLayer
Perceptron (MLP) model is used at the end to classify the five
stages of DR based on the features extracted from the two
networks (classification and regression). Since deep neural
networks require a large amount of training data, the intro-
duced multitasking approach is examined based on an Xcep-
tion transfer learning model. The two large public domain
Kaggle datasets, namely APTOS [52] and EyePACS [53],
are examined in this work to evaluate the performance of the
introduced approach.

The rest of the paper is organized as follows: a description
of the datasets considered together with a description on the
proposed multitasking approach are provided in Section II.
The developed multitasking squeeze excitation densely con-
nected model and multitasking Xception transfer learning
model are then presented in Section III. Section IV describes
the experimentations carried out together with their results
followed by the conclusion in Section V.

II. MATERIALS AND METHODS
A. DATASETS
Choice of dataset is important as it needs to contain a rich col-
lection of images. In this work, two publicly available Kaggle
datasets that incorporate a large number of images of all the

five stages of DR are considered. These datasets are Eye-
PACS (Eye Picture Archive Communication System) [53]
andAPTOS 2019 (Asia Pacific Tele-Ophthalmology Society)
Blindness Detection Dataset [52].

1) APTOS 2019 BLINDNESS DETECTION DATASET
This dataset includes fundus images for the five stages of DR
labeled by the severity level 0 to 4, where label 0 indicates no
DR, label 1 mild DR, label 2 moderate DR, label 3 severe DR,
and label 4 proliferate DR. It contains a total of 3,662 retinal
images where 1,805 images belong to no DR, 370 images to
mild DR, 999 to moderate DR, 193 images to severe DR, and
295 images to proliferate DR. The resolution of the images is
3216× 2136.

2) EyePACS DATASET
Similar to the APTOS dataset, the EyePACS dataset also
contains fundus images belonging to the five stages of DR.
This dataset contains 35,126 retina images of size 3888 ×
2951 for both the left and right eyes, with 25,810 images
labeled as 0 DR (no DR), 2,443 mild DR, 5,292 moderate
DR, 873 severe DR, and 708 proliferate DR images. Here,
10,000 images are randomly selected from the no DR stage
and our model is trained on a total 19,316 images (10,000 no
DR, 2,443 mild DR, 5,292 moderate DR, 873 severe DR, and
708 proliferate DR).

It is to be noted that the above datasets are highly imbal-
anced thus introducing bias. To have a balanced dataset,
a class weightingmethod is applied to weigh classes inversely
proportional to their frequency according to (1).

wj =
n
knj

(1)

where wj denotes the weight of class j, n the total number
of samples, nj the number of samples in class j, and k the
total number of classes. This class weighing method provides
different class weights to the cost function to reduce errors for
the minority class.

B. DATA PREPROCESSING AND AUGMENTATION
The datasets considered in this paper contain images of high
resolution. The images are resized to 299 × 299 to feed into
the networks. It should be noted that although the aspect
ratio is altered as a result of this resizing, the DR related
lesions including Microaneurysms, Hemorrhages, Exudates
still remain preserved. After resizing, input image intensity
values are normalized between 0 and 1. Deep learning is
data hungry. The amount of data in the above two datasets
are not sufficient for training a deep neural network from
scratch. Therefore, data augmentation techniques such as
rotation, horizontal flip, width shift, height shift, zooming,
and shearing are applied to the original data.

C. PROPOSED MULTITASKING METHOD
DR progresses to higher severity levels after the lower sever-
ity levels leading to a dependency among different stages.

123222 VOLUME 9, 2021



S. Majumder, N. Kehtarnavaz: Multitasking Deep Learning Model for Detection of Five Stages of DR

Algorithm 1Algorithm of Multitasking Approach (lr=Learning Rate, β1, β2=Exponential Decay Rate in Adam Optimization
for the First Moment and Second Moment Estimates, Respectively)

Require: Fundus Images and Labels (X, Y), where Y = {y/y ∈ {0, 1, 2, 3, 4} [0: No DR, 1: Mild DR, 2: Moderate DR, 3:
Severe DR, 4: Proliferate DR]
Input: fundus images x ∈ X
Output: Trained model predicts probability scores corresponding to∀y for an input x Perform Preprocessing:

� Resize the image to 299× 299× 3
� Perform Data Augmentation techniques: rotation, horizontal flip, width shift, height shift, zooming, and shearing.
Design a Classification Model and a Regression Model H = {ClassificationModel,RegressionModel}

For ∀h ∈ H (do
lr=0.001, momentum=0.7
for epochs=1 to 250 do
for each minibatch (Xmini,Ymini) ∈ (X ,Y ) do
if h = Classification Model then
Update the parameters of the Classification Model using Stochastic Gradient Decent optimization (SGD).
if epochs>150then
lr=0.0001

end
if epochs>200 then
lr=0.00001, momentum=0.5

end
end
if h = Regression Model then
if epochs<50 then

Update the parameters of the Regression Model using Adaptive Moment Estimation (Adam).
end

end
end

end
Concatenate the features extracted from ∀h ∈ H and fed to a MLP classifier to generate the Multitasking Model.
forMultitasking Model do
lr=0.001, β1=0.9, β2=0.999
for epochs =1 to 50 do
for each minibatch (Xmini,Ymini) ∈ (X ,Y ) do
Update the parameters of the Multitasking Model using Adaptive Moment Estimation.
if the validation error is not improving for four epochs then
lr = lr × 0.01

end
end

end
end

for x ∈ Xtest do
Trained Multitasking Model predicts probability scores for ∀y
end

A regression model can learn the dependency or progres-
sive characteristics between the stages. Here, a multitasking
model consisting of a classification model and a regression
model is considered in order to classify or detect the five
stages of DR.

The classification model learns the distinguishing char-
acteristics between the five stages whereas the regression
model learns the inter-dependency characteristics among

the stages. Classification task usually works based on one
loss function. More than one loss function may improve
the classification performance [54]. In this paper, two loss
functions are considered, cross entropy loss function as
given in (2) is used for classification task and mean square
error loss function as defined by (3) is used for regres-
sion task. The regression model and the classification model
are trained separately on the fundus images using a linear
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FIGURE 2. Developed multitasking approach for detecting the five stages
of DR.

activation function and a softmax activation function, defined
by (4), in the last layer of the regression model and
the classification model, respectively.

Cross entropy = −
M∑
i

yi log(ŷi) (2)

MSE =
1
M

M∑
i=1

(yi − ŷi)2 (3)

where, ŷi is the predicted value and y is the true value. M is
the number of classes.

Soft max(i) =
eδ(i)

K∑
j=1

eδ(j)
, j = 1, ..i, ..K (4)

where K denotes the total number of classes, and δ denotes
the output of the last fully connected layer. The output prob-
abilities of each class lie between 0 and 1 with all the values
adding up to 1.

The classification model outputs five probability scores
(sum to one) corresponding to the five classes or stages
of DR. The regression model has one output providing the
severity level of DR. The regression model is trained with the
output labels 0 for no DR, 0.2 for mild DR, 0.4 for moderate
DR, 0.6 for severe DR, and 0.8 for proliferate DR. In other
words, the regression model outputs one score corresponding
to the five stages of DR. Features learnt by the classification
model and the regression model are concatenated and fed
into a multilayer perceptron network (MLP) classifier for the
final classification of the five stages of DR. The introduced
approach is presented as an algorithm in Algorithm 1 and the
steps to implement it are shown in FIGURE 2.

III. IMPLEMENTATION OF MULTITASKING DEEP
LEARNING MODELS
A. SQUEEZE EXCITATION DENSELY CONNECTED
MULTITASKING NETWORK (MSEDenseNet)
A modified densely connected network (DenseNet) is devel-
oped here to implement the multitasking approach. A basic
DenseNet with compression is combined with a squeeze-
excitation (SE) network. SE network introduces a building
block that improves channel interdependencies to improve
the performance of the model.

The Multitasking Squeeze Excitation Densely Connected
Network (MSEDenseNet) consists of a SEDenseNet classi-
fication model, a SEDenseNet regression model, and a MLP
classifier. The architecture of the developed MSEDenseNet
is shown in FIGURE 3.

1) MODEL ARCHITECTURE
As shown in FIGURE 3, SEDenseNet consists of five dense
blocks and four transition blocks each in between two dense
blocks. In each dense block, a SE-dense module has been
repeated for 16 times. A SE-dense module consists of a batch
normalization layer, ReLU activation, a 3 × 3 convolution
layer, and a SE block. A SE block comprises a squeeze layer
which is a global average pooling layer, and an excitation
layer with two 1×1 convolution layers. The first convolution
layer is followed by a ReLU activation and the second convo-
lution layer is followed by a sigmoid activation. In SE block,
each channel is squeezed to a single numeric value using
average pooling. The ratio to reduce the channel complexity
is set to 16. Finally, each channel of the input to the SE
block is scaled by the respective weight obtained from the
SE block. Down-sampling is achieved by the transition layer
between two dense blocks. A transition layer is made of
batch normalization, ReLU, 1 × 1 convolution, and average
pooling. A SE block is also added to the transition layer.
The last fully connected layer of the original network is
replaced with 2×2 convolution layer to reduce the number of
parameters.

The depth and growth rates of the developed SEDenseNet
network is set to 164 and 18, respectively. Therefore, the num-
ber of dense modules in one dense block is 16. The number
of filters for the first convolution layer is 2× growth rate
whereas for the convolution layers in the dense block and in
the transition block are 2× growth rate× compression ratio.
The compression ratio for the network is set to 0.5.

In the SEDenseNet multitasking model, a SEDenseNet
classification model, and a SEDenseNet regression model are
combined to enrich the learned features. Fig. 3 illustrates the
concatenation of the regression model and the classification
model. Outputs from the last average pooling layer of the
trained classification model and the regression model are
fused together to feed into the MLP. The MLP comprises a
batch normalization layer, a fully connected layer of 512 units
with ReLU activation, and another fully connected layer with
softmax activation function as the output layer.
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FIGURE 3. Architecture of the developed Multitasking Squeeze Excitation Densely Connected
Deep Neural Network (MSEDenseNet) - CONV: Convolution.

FIGURE 4. Architecture of the developed multitasking Xception transfer learning model (MXception) - CONV: Convolution,
FC: Fully Connected Layer, SCONV: Separable Convolution.

2) MODEL TRAINING
The developed SEDenseNet classification model is trained
with 250 epochs using Stochastic gradient descent (SGD)
optimization algorithm and Categorical Cross-entropy (CCE)
loss function. For the first 150 epoch, the learning rate, batch
size, and momentum are set to 0.001, 2, and 0.7, respec-
tively. For the next 50 epochs, the learning rate is reduced
to 0.0001. For the last 50 epochs, the learning rate and
momentum are changed to 0.00001 and 0.5, respectively.

The Validation accuracy is checked in every epoch and the
model with the highest validation accuracy is saved using the
model checkpoint feature of the Keras callback. The output
layer of the classification model is a convolution layer with
softmax activation function to generate five probability scores
corresponding to the five classes of DR.

The developed SEDenseNet regression model is trained
with 50 epochs. Adaptivemoment estimate (Adam) optimiza-
tion algorithm with a learning rate of 0.001 and mean square
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error (MSE) loss function are used to train the model. The
mini batch size is kept 2. The output layer of the regression
model is a convolution layer with linear activation function to
score one output corresponding to the severity level of DR.

After concatenation of the features from the previously
trained classification and regression model, a batch normal-
ization layer with momentum 0.9 is added for the purpose
of normalizing data across a batch. A batch normalization
layer is usually used to speed up the training and to reduce
the sensitivity to initialization. The CCE loss function and the
Adamoptimization algorithmwith a learning rate of 0.001 are
considered during training for 50 epochs. The learning rate is
reduced by a factor of 0.1 if the validation loss is not reduced
for four consecutive epochs. The model which has the highest
validation accuracy is then saved.

The so-called ‘He normal’ initialization and ‘l2 kernel’’
regularization are considered for the units of the convolution
and fully connected layers of MSEDenseNet. The regulariza-
tion protects the model against overfitting.

B. MULTITASKING XCEPTION TRANSFER LEARNING
MODEL (MXception)
Due to the scarcity of sufficient training data to train a
deep neural network from scratch, a widely used model with
transfer learning is also considered. A pretrained Xception
ImageNet model is fine-tuned to implement the multitasking
approach to classify the five stages of DR.

1) MODEL ARCHITECTURE
The architecture of the Xception model [55] is based on
depthwise separable convolution layers and consists of three
major sections: entry flow, middle flow, and exit flow.
FIGURE 4 shows the architecture of the Xception model.
Image data first goes through the entry flow, then through the
middle flowwhich is repeated eight times, and finally through
the exit flow. Note that all the convolution and separable
convolution layers are followed by batch normalization. This
model is composed of 36 convolutional layers forming the
feature extraction base of the network. The Xception model
was previously trained with 299× 299 ImageNet images for
1000 classes with the top-1 accuracy of 79%.

2) MODEL FINE TUNING
A pretrained Xception ImageNet model is fine-tuned as a
regression model with one class in the output. The architec-
ture of the regression Xception model is shown in Fig. 4. The
last fully connected layer of the Xception model is chopped
and then an average pooling layer is added. A dense layer
consisting of one neuron is also added as the output layer
with linear activation function. The adaptive moment esti-
mate (Adam) optimization algorithm with a learning rate of
0.001 and MSE loss function are used to train the model for
25 epochs. During training, the image dataset is split intomini
batches of size 16.

Another pretrained Xception model is fine-tuned with
retinal images to classify the five stages of DR. The last

fully connected layer is replaced with an average pooling
layer, and a dense layer with softmax activation function.
A dropout layer is also added before the output layer with
0.8 keep probability to regularize the model. The CCE loss
function and Adam optimization with a learning rate of 0.001
(0.9 exponential decay rate for the first-moment estimates,
β1 and 0.999 exponential decay rate for the second-moment
estimates, β2) are used for training. Model with the highest
validation accuracy is saved. The model is fine tuned for
25 epochs with minibatch size of 16. If the validation loss
is not reduced for four consecutive epochs, the learning rate
is reduced by a factor of 0.1.

Features generated from the last average pooling layer of
the fine-tuned Xception classification model and regression
model are concatenated and inputted to an MLP classifier.
Similar to the SEDenseNet, MLP in the Multitasking Xcep-
tion network also contains two fully connected layers with
softmax activation function at the last layer to generate five
score for the five classes or stages of DR. The training param-
eters to train the MLP classifier in the Xception multitask-
ing network are similar to the parameters used in the MLP
classifier of MSEDenseNet. The model which has the highest
validation accuracy is then saved.

IV. EXPERIMENTATIONS AND RESULTS
A. IMPLEMENTATION FRAMEWORK
The experimentations reported here were carried out on a
computer equipped with an NVIDIA Quadro P5000 GPU.
The computer had an Intel R© CoreTM i9 processor with
twenty 3.3GHZ cores and 32GBs of RAM. The software
packages used for implementation of the models included
Python 3.7 together with the deep learning libraries of Keras
with Tensorflow, H5PY, OpenCV, and Scikit-Learn.

B. PERFORMANCE MEASURES
Performance was assessed based on the five widely used per-
formance measures of Precision, Recall, F1 Score, Accuracy,
Receiver operating curve [48] and Weighted Kappa Score
(WKS) as stated in (5). Precision and Recall were computed
for the five classes separately and then a macro average
was taken for the multiclass classification. For Kappa Score,
quadratic weight was considered as follows:

WKS = 1−

N∑
i=1

N∑
j
WijOij

N∑
i=1

N∑
j
WijEij

(5)

where i and j denote the indices associated with the true class
and the classified class, respectively, O is actual observation
counts, E is expected counts, N is the total number of classes,
and Wij is given by (6):

Wij =
(i− j)2

(N − 1)2
(6)
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C. CLASSIFICATION OUTCOME
1) RESULTS FOR APTOS DATASET
For APTOS dataset, three different experiment sets are
considered where each experiment set contains randomly
selected 90% of the data for training and the remaining 10%
for validation. Confusion matrices of the validation datasets
for experiment 1 using the SEDenseNet Classification and
SEDenseNet multitasking model are shown in Table 1, and
Table 2, respectively. The performance measures of Preci-
sion, Recall, F1 Score, Accuracy, and Quadratic weighted
Kappa Score for experiment 1 are shown in Table 3. As can
be seen from this table, the multitasking model improved the
classification performance by nearly 4%.

TABLE 1. Confusion matrix on the APTOS dataset for SEDenseNet
classification model: Exp 1.

TABLE 2. Confusion matrix on the APTOS dataset for SEDenseNet
multitask model: Exp 1.

TABLE 3. Performance measures of the developed SEDenseNet models
for Exp 1: APTOS dataset.

The confusion matrices for the experiment 2 using the
two models are shown in Table 4 and Table 5, respectively,
whereas the performance measures are shown in Table 6.
This table also shows an improvement in the classification
performance for multitasking model.

The confusion matrices for experiment 3 in case of the
classification and multitasking SEDenseNet are presented
in Table 7 and Table 8, respectively. The performance mea-
sures for this experiment are shown in Table 9 indicating
improved classification performance in the multitasking case
by 2%.

As the Receiver Operating Curve (ROC) shows how the
model distinguishes among classes, we also generated ROC

TABLE 4. Confusion matrix on the APTOS dataset for SEDenseNet
classification model: Exp 2.

TABLE 5. Confusion matrix on the APTOS dataset for SEDenseNet
multitask model: Exp 2.

TABLE 6. Performance measures of the developed SEDenseNet models
for Exp 2: APTOS dataset.

TABLE 7. Confusion matrix on the APTOS dataset for SEDenseNet
classification model: Exp 3.

TABLE 8. Confusion matrix on the APTOS dataset for SEDenseNet
multitask model: Exp 3.

TABLE 9. Performance measures of the developed SEDenseNet models
for Exp 3: APTOS dataset.

curve for our proposed multitasking SEDenseNet model. The
ROC curve of the proposed model is shown in FIGURE 5.
The micro-average ROC sums up the individual true positive,
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TABLE 10. Performance measures of the developed models: APTOS
dataset.

false positive and false negative and then map a value on a
graph, where macro-average takes the average of precision
and recall and map a value on a graph. This figure shows
that the micro-average and the macro-average area under the
curve (AUC) are 0.96, and 0.93, respectively. As the micro
and macro average shows the overall performance of the
model, this result indicates a good model.

FIGURE 5. ROC of the proposed multitasking SEDenseNET model for
APTOS dataset.

The highest AUC of 0.99 is achieved by the class 0 which
shows our model predicts the Not DR class very well. The
lowest AUC is 0.90, for the Proliferate DR class. By applying
the class weighting method, we are able to generate balanced
dataset which in turn improves the accuracy of the minority
classes by reducing the error for minority classes. From the
ROC curve of our model, AUC for all the classes are more
than 0.90 which reflects a good performance of the model for
all classes.

In addition, the Xception transfer learning was examined to
show the effectiveness of themultitaskingmethod. 90% of the
data were randomly selected for fine tuning the model and the
remaining 10% were used for validation. The performance
of Xception Classification and Xception Multitask models
along with the performance of the SEDenseNet Classification
and SEDenseNet Multitask model averaged over the three
experiments are shown in Table 10. As can be seen from this
table, the multitasking approach improved the classification
performance by nearly 3% when using the SEDenseNet and
the Xception models.

2) RESULTS FOR EyePACS DATASET
The multitasking method was also applied to the EyePACS
dataset. For this dataset, only the Xceptionmultitasking trans-
fer learningmodel was considered. Themodel was fine-tuned
using a total of 19,316 images from the EyePACS dataset.
80% of the images were randomly selected for training and
the remaining 20% were used for validation. For the APTOS
dataset, a 90%-10% division of training and testing sets were
considered due to the smaller number of training images
in this dataset compared with the EyePACS dataset. The
performance measures of Recall, Precision, F1 Score, Accu-
racy, and Quadratic weighted Kappa Score for the Xception
multitask model are presented in Table 11.

TABLE 11. Performance measures of Xception multitask model: EyePACS
dataset.

D. COMPARATIVE STUDY
The results of the developed MSEDenseNet model for the
APTOS dataset was compared with four recent works where
the same APTOS dataset was used. The comparison of the
performance measures is shown in Table 12. As can be seen
from this table, the developed multitasking model generated
the highest performance measures for the detection of the
five stages of DR. Table 13 shows the comparison of the
performance measures of the multitasking model for the Eye-
PACS dataset with two recent works by Pratt et al. [42] and
Qummar et al. [48] where the EyePACS dataset was used.
This table also shows the highest performance measures were
obtained by the developed multitasking model.

TABLE 12. Comparison with recent works: APTOS dataset.

TABLE 13. Comparison with recent works: EyePACS dataset.
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V. CONCLUSION
In this paper, a multitasking deep neural network is developed
to classify all the five stages of diabetic retinopathy from
eye fundus images based on the DenseNET architecture.
The largest publicly available datasets of eye fundus images
(EyePACS andAPTOS datasets) were used to train and evalu-
ate the developed model. The results show that the developed
multitasking model generated the highest performance mea-
sures compared to the existing five-stage diabetic retinopa-
thy classification methods. A limitation of the developed
approach which is commonly encountered in deep learning
models is the comprehensiveness of the datasets used and the
training time associated with using a very large number of
images. However, once the model is trained, it classifies a test
or unknown image in a short time (<0.5 s). A possible future
extension of this work includes the real-time implementation
of this model as a smartphone app so that it can easily be
deployed in clinical environments for diabetic retinopathy eye
examination.
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