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ABSTRACT This paper addresses the adaptive event-triggered non-fragile output pinning synchronization
control for complex networks subject to random saturations and cyber-attacks. An adaptive event-triggered
scheme (AETS) based on the output synchronization error is proposed to save network bandwidth, and a
pinning control strategy is employed to reduce the input of control signal. Considering the effect of AETS,
randomly occurring saturations and cyber-attacks on the drive and response systems, we investigate a novel
output security synchronization error model, and then design an event-triggered non-fragile controller such
that the asymptotic stability of the error system can be guaranteed. Meanwhile, we obtain the controller gains
and event-triggered matrices in terms of solving the linear matrix inequalities (LMIs). Finally, a simulation
example is provided to verify the design method.

INDEX TERMS Complex networks, pinning synchronization control, adaptive event-triggered scheme,
output saturations, cyber-attacks.

I. INTRODUCTION
Complex networks generally represent a class of large-scale
systems with multiple nodes, in which each node refers to
different individuals with specific characteristics. Recently,
complex networks have been deeply studied and widely
applied in logistics, cloud manufacturing, power grids and so
on [1]–[7].

Synchronization, which is an important feature of com-
plex networks, has important implications to the real-world
systems. Generally speaking, the nodes in complex networks
cannot automatically tend to be synchronized, which will
exert an influence on the performance of the system. There-
fore, the study on synchronization of complex networks is
quite promising. In practice, however, each node in complex
networks has different autonomous behavior, thus it is dif-
ficult for them to achieve synchronization without external
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intervention. This leads to the emergence of some synchro-
nization control strategies, such as global and group syn-
chronization [8]–[11], finite-time synchronization [12], [13],
output synchronization [14], [15] and lock synchroniza-
tion [16], [17]. In fact, it is too expensive to design controllers
for all nodes in a large-scale network. To reduce the number
of the controlled nodes, some local feedback injections are
employed to a small part of network nodes, that is the pinning
control [18], [19]. The main objective of such control scheme
is to design controllers on a small part of the nodes in complex
networks such that the final synchronization of the whole
network can be achieved. In current study, we utilize pinning
synchronization control strategy based on output error to
discuss the synchronization problem for complex networks
under network attacks.

Currently, information technology is developing rapidly,
which means the structure of complex networks is becoming
larger and more and more complex. Therefore, more signals
need to be transmitted and an increasing number of data
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will be generated in the process. In practice, however, net-
work bandwidth is limited and low transmission efficiency
will be possible to happen in the process of network trans-
mission. To avoid these problems, an effective transmission
strategy, i.e., event-triggered scheme (ETS), has been devel-
oped for networked systems [20]–[25]. For example, in [22],
the distributed event-triggered strategy has been studied for
internally coupled second-order nonlinear systems with time
variation. In [23], an event-based synchronization control
problem has been studied for a class of complex networks
with stochastic switching topologies. However, the ETS used
in the above literature is static, i.e., the trigger threshold is
a fixed constant, which means it cannot reply the impact of
network emergencies flexibly. In recent years, an AETS was
developed based on the ETS, in which the trigger threshold is
a variable function related to the measurement errors. Up to
now, there have been some control results based on the AETS
(see, e.g., [26]–[32]), however, such communication scheme
has not been studied in the design of pinning control for
complex networks. Therefore, the event-triggered pinning
synchronization control for complex networks is worthy of
further investigation.

In the real environment, due to the limitation of physics
and technology, the components of the systems cannot receive
or send signals indefinitely, which is called the saturation
phenomenon. Up to now, some important results have been
achieved in responding to the issues of saturation prob-
lems [33]–[35]. Output saturation, which is a common non-
linear phenomenon in the real environment, will affect the
system performance and even induce instability. Moreover,
some random factors such as channel noise often lead to the
output saturation, which brings some additional challenges to
the stability of the systems [36]–[38]. Based on this, the ran-
dom saturations are considered in this paper.

In addition, the wireless channel in the data interaction
layer is open and the deployment of sensor nodes in the
sensing layer is random,whichmeans that the signal transmit-
ted in the network communication channel could be stolen,
modified, or discarded maliciously. Among these threats,
the most common and destructive one is cyber-attacks which
will result a huge security risk to the system. Thus, it is nec-
essary to study effective emergency defense measures against
network security problems caused by cyber-attacks. Cyber-
attacks cause the internal components of the systems to fail to
operate normally or evenmake the system unstable. Recently,
network security is becoming a hot topic in the field of
networked control systems and some interesting results have
been published [39]–[42]. In [40], the decentralized event-
triggered control was considered for the neural networks
under the threat of cyber-attacks. As we know, there is little
relevant literature on the output security pinning synchro-
nization control of complex networks subject to time-varying
delay and random saturations. This situation promotes the
further study of this paper.

According to the above discussions, we aim to study
the adaptive event-triggered pinning security synchronization

control problem of complex networks with random satura-
tions and time-varying delay. The main contributions are
organized as:
(1) To reduce the stress of network bandwidth greatly,

an adaptive event-triggered scheme based on the out-
put synchronization error is proposed. Considering the
influence of stochastic cyber-attacks and saturations,
a new output pinning synchronization error model is
established.

(2) The proposed event-based synchronization non-fragile
control results are more applicable for complex net-
worked systems as the two typical issues are considered
in sensor networks, i.e., the communication resource
limitation and the controller gain variation are investi-
gated in a unified framework instead of analyzing sepa-
rately in some existing works.

(3) A new sufficient criterion for the stability of synchro-
nization error systems is proposed, and the controller
gains and AETS are co-designed simultaneously.

The remainder of this paper is organized as: Section 2 is the
problem statement. Section 3 gives the main results including
stability analysis and controller design. Section 4 provides a
numerical example and this paper is concluded in Section 5.
Notation: The n-dimensional Eculidean space is denoted

byRn. The set of n×m real matrices is represented byRn×m.
We use the symbol 0m to denote a row vector with m zero
elements, and let I represent an identity matrix with appropri-
ate dimensions. ‖ · ‖ is the Euclidean vector norm. diagn{X}
denotes a n-dimensional diagonal matrix whose diagonal
elements are all X . diagn{Xi} represents a n-dimensional
diagonalmatrixwhose diagonal elements areX1,X2, · · · ,Xn.
coln{X} and coln{Xi} stand for column vectors similar to
the definitions of the above diagonal matrices. E{X} is the
expectation of the stochastic variable X . The symbol ⊗ rep-
resents the Kronecker product of matrices. The symbol ∗ in
a symmetric matrix stands for the implicit entries of some
symmetry terms.

II. PROBLEM FORMULATION AND SYSTEM MODELING
In this paper, we consider a class of drive-response complex
networks withN coupled nodes. The considered drive system
model is as follows:

ẋi(t) = Aixi(t)+ Bif (xi(t))

+ c1i
N∑
j=1

mij01Xj(t)

+ c2i
N∑
j=1

wij02Xj(t − τi(t)),

Xi(t) = Eixi(t), i = 1, · · · ,N ,

(1)

where xi(t) ∈ Rn represents the state of the node i,
Xi(t) denotes the output of the node i, Ai and Bi are the
system parameter matrices with appropriate dimensions,
f (·) : Rn

→ Rn is a continuous nonlinear vector function,
c1i > 0, c2i > 0 are the coupling strength of the network,
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M = [mij]N×N , W = [wij]N×N are the external coupling
matrices of the network with mij > 0 and wij > 0(i 6= j), but
not all zero. Generally, the matricesM andW are symmetric

and satisfy mii = −
N∑

j=1,j6=i
mij, wii = −

N∑
j=1,j6=i

wij(i =

1, 2, · · · ,N ). 01 and 02 are inner-coupling matrices between
connected nodes, τi(t) ∈ (0, τi] is the time-varying delay. Ei
is a given matrix with proper dimensions.

According to (1), we can get the output dynamic model as
follows:

Ẋi(t) = ĀiXi(t)+ B̄i f̄ (Xi(t))+ c1i
N∑
j=1

mij0̄1Xj(t)

+ c2i
N∑
j=1

wij0̄2Xj(t − τi(t)), (2)

where Āi = EiAiE
−1
i , B̄i = EiBi, f̄ (x(t)) = f (E−1i x(t)),

0̄1 = Ei01, 0̄2 = Ei02.
The considered response system model is described as

ẏi(t) = Aiyi(t)+ Bif (yi(t))+ c1i
N∑
j=1

mij01Yj(t)

+ c2i
N∑
j=1

wij02Yj(t − τi(t))+ giui(t),

Yi(t) = Eiy(t), i = 1, · · · ,N ,

(3)

where ui(t) is the control input of the node i. If the node i
is pinned, then gi > 0, otherwise gi = 0. Based on (3),
the following equation can be obtained

Ẏi(t) = ĀiYi(t)+ B̄i f̄ (Yi(t))+ c1i
N∑
j=1

mij0̄1Yj(t)

+ c2i
N∑
j=1

wij0̄2Yj(t − τi(t))+ giEiui(t), (4)

Let ηi(t) = Yi(t)−Xi(t) as the output synchronization error.
Then, based on (2) and (4), we obtain that

η̇i(t) = Āiηi(t)+ B̄i f̄ (ηi(t))+ c1i
N∑
j=1

mij0̄1ηj(t)

+ c2i
N∑
j=1

wij0̄2ηj(t − τi(t))+ giEiui(t). (5)

where f̄ (ηi(t)) = f̄ (Yi(t))− f̄ (Xi(t)).
The framework of the drive-response control system is

shown in Fig. 1. In practice, the bandwidth capacity of the net-
work transmission channel is limited, so it is necessary to save
network resources in the process of information transmission.
In this paper, an AETS based on output error is proposed.
We first provide the following standard assumption of the
AETS.
Assumption 1: The sampling period is denoted as h > 0

and the triggering time is assumed as t ikh(k = 0, 1, 2, · · · ),

FIGURE 1. Framework of pinning control for complex networks with AETS.

where t ik is a nonnegative integer. In addition, the initial
triggering time is set to t i0h = 0.
For the node i, we define the triggering protocol in the

following form.

%Ti (t)ϒi%i(t) ≤ ξi(t)η
T
i ((t

i
k + j)h)ϒiηi((t

i
k + j)h), (6)

where %i(t) = ηi(t ikh)− ηi((t
i
k + j)h), ϒi > 0 is the triggering

matrix of the AETS to be designed and ξi(t) is the threshold
parameter that satisfies the following condition

ξ̇i(t) =
εi

ξi(t)
(

1
ξi(t)
− λi)%Ti (t)ϒi%i(t) (7)

where 0 < ξi(t) < 1, εi > 0, λi > 0.
On the basis of the protocol (6) and the last released instant

t ikh, one can define the next released instant t ik+1h as

t ik+1h = t ikh+min{jh|%Ti (t)ϒi%i(t)

> ξi(t)ηTi ((t
i
k + j)h)ϒiηi((t

i
k + j)h)}. (8)

On the other hand, the delay induced by the network is
unavoidable when the information is transmitted through net-
work transmission channel. Therefore, the transmission delay
is also considered in this paper, which is coincidence with the
engineering practice. Here, let d ik as the communication delay
of the node i.

Define [t ikh+ d
i
k , t

i
k+1h+ d

i
k+1) =

ri⋃
w=1

µwi , where

µwi = [t ikh+ wh− h+ d
iw−1
k , tkh+ wh+ d

iw
k ),

d iwk =

{
d ik , w ≤ ri − 1,
d ik+1, w = ri.

Let di(t) = t − (t ik + j)h, t ∈ µwi , then under the action
of zero-order holder (ZOH), the actual sensor measurement
error can be represented as below,

η̄i(t) = ηi(t ikh) = ηi(t − di(t))+ %i(t) (9)

where 0 ≤ di(t) ≤ h+max{d ik} = d iM .
Remark 1: From (7), it can be seen that the error %i(t)

also approaches to zero if the system is reaching a stable.
In addition, the threshold will converge to a constant if there
is no disturbance destabilizes this system.
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Remark 2: If we set εi = 0 in (7), then the triggering
condition in (6) becomes to the traditional one as follows

%Ti (t)ϒi%i(t) ≤ ξ̄iη
T
i ((t

i
k + j)h)ϒiηi((t

i
k + j)h) (10)

where 0 < ξ̄i ≤ 1 is a given value. Particularly, the above
event-triggered scheme becomes the time-triggered scheme
if ξ̄i = 0. From (6), it can be found that the threshold variable
ξi(t) has a significant influence on the transmitted number of
packets for a certain time period. In (7), ξi(t) is a sequence of
invariable parameter by flexible adjustment of the adaptive
law (7).
Remark 3: Based on the condition (6), one can know

that the sampling time is the discrete instants t ikh(k =
0, 1, 2, · · · ). The minimum triggering interval is h for the
AETS, therefore, Zeno behavior can be avoided under the
AETS (6).

The error η̄i(t) under the randomly occurring saturation
nonlinearities can be rewritten as follows:

η̃i(t) = (1− αi(t))η̄i(t)+ αi(t)ρ(η̄i(t)), (11)

where ρ(η̄i) =
[
ρ1(η̄i1) ρ2(η̄i2) · · · ρν(η̄iν)

]T is the satura-
tion function, and ρj(η̄ij)(j = 1, 2, · · · , ν) satisfies

ρj(η̄ij) =


σj, η̄j ≥ σj

η̄j,−σj < η̄j < σj, j = 1, 2, · · · , ν.
−σj,−η̄j ≤ −σj

(12)

and αi(t) ∈ {0, 1} is a random variable subject to
Bernoulli distribution and one assumes that E{αi(t)} = αi,
E{(αi(t)− αi)2} = θ21i.
According to the results in [43], the saturation signal

ρ(η̄i(t)) can be decomposed as below,

ρ(η̄i(t)) = ϕi(t)+ η̄i(t), (13)

where ϕi(t) is a nonlinear function satisfying the following
condition with 0 < ε < 1,

ϕTi (t)ϕi(t) ≤ εη̄
T
i (t)η̄i(t). (14)

Combining (11) and (13), one gets

η̃i(t) = (1− αi(t))η̄i(t)+ αi(t)(ϕi(t)+ η̄i(t))

= η̄i(t)+ αi(t)ϕi(t). (15)

In this paper, based on the considerations of the possi-
ble external disturbances and the fluctuations of the con-
troller gains, the non-fragile controller will be designed, i.e.,
ui(t) = (Ki + 1Ki)ηi(t). Then, combing (9) and (15),
the actual input is taken as follows,

ui(t) = (Ki +1Ki)η̃i(t)

= (Ki +1Ki)(η(t − di(t))+ %i(t)+ αi(t)ϕi(t)), (16)

where Ki is the gain to be determined and 1Ki is unknown
but the norm is bounded. In addition, let 1Ki = TiF(t)Zi,
where Ti, Zi are known constant matrices, and F(t) is a non-
linear matrix function subject to the condition FT (t)F(t) ≤ I .

Due to the open principle of network communication,
the transmitted information is vulnerable tomalicious attacks,
which may damage the stability of the systems. Here, we con-
sider a case that the non-fragile controller is attacked by a
class of random deception attacks, and we assume that the
attack signal is modeled as nonlinear matrix function h(ui(t))
based on the input ui(t). Then, after considering the deception
attack, the actual input in (16) is rewritten as follows,

ūi(t) = ui(t)+ βi(t)h(ui(t)), (17)

where βi(t) ∈ {0, 1} is a Bernoulli random variable and is
independent of αi(t), and we assume that E{βi(t)} = βi,
E{(βi(t)− βi)2} = βi(1− βi) = θ22i.
Remark 4: According to (17), one can easily know that if

βi(t) = 0, then ūi(t) = ui(t), which means that the controller
is not threatened by cyber-attacks. Otherwise, ūi(t) = ui(t)+
h(ui(t)), which means that the controller is suffered from
cyber-attacks.

Combining (5) and (17), we can obtain the output synchro-
nization error system as follows

η̇i(t) = Āiηi(t)+ B̄i f̄ (ηi(t))+ c1i
N∑
j=1

mij0̄1ηj(t)

+ c2i
N∑
j=1

wij0̄2ηj(t − τi(t))

+ giEi((Ki +1Ki)(ηi(t − di(t))+ %i(t)

+αi(t)ϕi(t))+ βi(t)h(ui(t))), (18)

for i = 1, 2, · · · ,N .
According to (18) and the Kronecker product of the matrix,

one has the following augmented error model,

η̇(t) = Āη(t)+ B̄f̄ (η(t))+ C1M ⊗ 0̄1η(t)

+C2W ⊗ 0̄2η(t − τ (t))

+GE[(K +1K )(η(t − d(t))

+ %(t)+ α(t)ϕ(t))+ β(t)h(u(t))], (19)

where

Ā = diagN {Āi}, f̄ (η(t)) = colN {f̄ (ηi(t))},

C1 = diagN {c1i}, h(u(t)) = colN {h(ui(t))},

G = diagN {gi} ⊗ I , β(t) = diagN {βi(t)} ⊗ I ,

K = diagN {Ki},1K = diagN {1Ki},

η(t) = colN {ηi(t)}, B̄ = diagN {B̄i},

%(t) = colN {%i(t)}, ϕ(t) = colN {ϕi(t)},

α(t) = diagN {αi(t)} ⊗ I ,C2 = diagN {c2i},

E = diagN {Ei}.

This paper aims to investigate the event-based output pin-
ning synchronization control for the drive-response complex
networks subject to random saturations and cyber-attacks.
Before giving the main results, we first introduce the follow-
ing necessary lemmas and assumptions.
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Lemma 1: [8] For given d > 0, if the function d(t)
satisfies d(t) ∈ (0, dM ], then for ε̇(t) : (0, dM ] → Rn, there
exists U > 0 such that

−d
∫ t

t−d
η̇T (s)U η̇(s)ds ≤ µT (t)6µ(t) (20)

where

µ(t) =
[
ηT (t) ηT (t − d(t)) ηT (t − d)

]T
6 =

−U ∗ ∗

U −2U ∗

0 U −U

 .
Lemma 2: [21] Assume that L1 and L2 are real

matrices with appropriate dimensions, and F(t) satisfies
FT (t)F(t) ≤ I . Then, for any scalar ι > 0, one has

LT2 F(t)L
T
1 + L1F(t)

TL2 ≤ ιL1LT1 + ι
−1LT2 L2 (21)

Assumption 2: The functions h(·) and f (·) describing the
attack signal and nonlinear dynamics of the system are
assumed to satisfy the following Lipschitz conditions, respec-
tively.

‖h(x)− h(y)‖ ≤ ‖�1(x − y)‖, (22)

‖f (x)− f (y)‖ ≤ ‖�2(x − y)‖, (23)

where �v(v = 1, 2) are two upper bound matrices.

III. MAIN RESULTS
In this part, two theorems are given. Theorem 1 provides a
sufficient condition for the asymptotic stability of the sys-
tem (19). Theorem 2 gives a co-design method of the con-
troller and AETS based on the LMI approach.
Theorem 1: For given positive parameters αi, βi(i =

1, · · · ,N ), νj > 0(j = 1, 2), c1i, c2i, (i = 1, · · · ,N ), ςj(j =
1, 2), dM = maxN {d iM }, τM = maxN {τi}, 0 < ε < 1 and
matrices 0̄k > 0(k = 1, 2), Ā > 0, B̄ > 0, G = diagN {gi},
Ē > 0, �i(i = 1, 2), ε, λ, the augmented error system (19) is
asymptotically stable under the proposed AETS and random
cyber-attacks, if there exist P = diagN {Pi} > 0, Ri(i =
1, 2) > 0, Ui(i = 1, 2) > 0 and matrices ϒ , K̂ , such that
the following matrix inequality holds

8=



811 ∗ ∗ ∗ ∗ ∗ ∗ ∗

821 − Ũ ∗ ∗ ∗ ∗ ∗ ∗

831 0 − Ũ ∗ ∗ ∗ ∗ ∗

841 0 0 − Ũ ∗ ∗ ∗ ∗

851 0 0 0 − ς2I ∗ ∗ ∗

861 0 0 0 0 − ς2I ∗ ∗

871 0 0 0 0 0 − I ∗

881 0 0 0 0 0 0 − ς1I


< 0, (24)

where

811 =


311 ∗ ∗ ∗

321 322 ∗ ∗

0 332 −U2 − R2 ∗

0 342 0 −U1 − R1

 ,

311 = P(Ā+ C1M ⊗ 0̄1)+ (Ā+ C1M ⊗ 0̄1)TP+ R1
+R2 − U1 − U2, K̂ = K +1K ,

321 = col{BTP, (C2W ⊗ 0̄2)TP+ U2, K̂TETGTP+ U1,

K̂TETGTP, K̂TαTETGTP, βTETGTP},

322= diag{−ς1I ,−2U2,−2U1+εϒ,−ελϒ,−εI ,−ς2I },

332 =
[
0 U2 0 0 0 0

]
,

342 =
[
0 0 U1 0 0 0

]
,

821 =
[
8211 8212

]
,

8211 =
[
Ũ (Ā+ C1M ⊗ 0̄1) ŨB ŨC2W ⊗ 0̄2

]
,

8212 =
[
ŨGEK̂ ŨGEK̂ ŨGEαK̂ ŨGEβ 0 0

]
,

831 =
[
0 0 0 0 0 ŨGEθ1K̂ 0 0 0

]
,

841 =
[
0 0 0 0 0 0 ŨGEθ2 0 0

]
,

851 =
[
01×3 ς2�2K̂ ς2�2K̂ ς2�2αK̂ 01×3

]
,

561 =
[
0 0 0 0 0 ς2�2θ1K̂ 0 0 0

]
,

871 =
[
0 0 0 εI εI 0 0 0 0

]
,

881 =
[
ς1�1 0 0 0 0 0 0 0 0

]
,

Ũ = d2MU1 + τ
2
MU2, ε = diagN {εi} ⊗ I ,

λ = diagN {λi} ⊗ I , ϒ = diagN {ϒi},

θ1 = diagN {θ1i} ⊗ I , θ2 = diagN {θ2i} ⊗ I ,

�1 = diagN {�1i}, �2 = diagN {�2i},

α = diagN {αi} ⊗ I , β = diagN {βi} ⊗ I .

Proof: For the system (19), the Lyapunov functional
is constructed in the following form.

V (t) =
4∑
i=1

Vi(t), (25)

where
V1(t) = ηT (t)Pη(t),

V2(t) =
∫ t

t−dM
ηT (s)R1η(s)ds+

∫ t

t−τM
ηT (s)R2η(s)ds,

V3(t) = dM

∫ t

t−dM

∫ t

s
η̇T (υ)U1η̇(υ)dυds

+ τM

∫ t

t−τM

∫ t

s
η̇T (υ)U2η̇(υ)dυds,

V4(t) =
1
2
ξT (t)ξ (t), ξ (t) = colN {ξi(t)},

Taking the derivative of V (t) on t and taking expectation
on it, one obtains

E{V̇ (t)} =
4∑
i=1

E{V̇i(t)}, (26)

where
E{V̇1(t)} = 2ηT (t)Pη̇(t)

= 2ηT (t)P[(Ā+ C1M ⊗ 0̄1)η(t)

+ B̄f̄ (η(t))+ C2W ⊗ 0̄2η(t − τ (t))

+GE[(K +1K )(η(t − d(t))

+ %(t)+ α(t)ϕ(t))+ β(t)h(u(t))],
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E{V̇2(t)} = ηT (t)(R1 + R2)η(t)

− ηT (t − dM )R1η(t − dM )

− ηT (t − τM )R2η(t − τM ),

E{V̇3(t)} = E{dM

∫ t

t−dM
[η̇T (t)U1η̇(t)− η̇T (s)U1η̇(s)]ds

+ τM

∫ t

t−τM
[η̇T (t)U2η̇(t)− η̇T (s)U2η̇(s)]ds}

= E{d2M η̇
T (t)U1η̇(t)+ τ 2M η̇

T (t)U2η̇(t)

− dM

∫ t

t−dM
η̇T (s)U1η̇(s)ds

− τM

∫ t

t−τM
η̇T (s)U2η̇(s)ds}

= E{η̇T (t)Ũ η̇(t)} − E{dM

∫ t

t−dM
η̇T (s)U1η̇(s)ds

− τM

∫ t

t−τM
η̇T (s)U2η̇(s)ds},

E{V̇4(t)} = ξT (t)ξ̇ (t)

= ε1(
1
ξ1(t)

− λ1)%T1 (t)ϒ1%1(t)

+ ε2(
1
ξ2(t)

− λ2)%T2 (t)ϒ2%2(t)

+ · · · + εN (
1

ξN (t)
− λN )%TN (t)ϒN%N (t).

Combining (6) and E{V̇4(t)}, one can get the following
inequality

E{V̇4(t)} ≤ ε1ηT1 (t − d1(t))ϒ1η1(t − d1(t))

+ ε2η
T
2 (t − d2(t))ϒ2η2(t − d2(t))+ · · ·

+ εNη
T
N (t − dN (t))ϒNηN (t − dN (t))

− ε1λ1%
T
1 (t)ϒ1%1(t)

− ε2λ2%
T
2 (t)ϒ2%2(t)

− · · · − εNλN%
T
N (t)ϒN%N (t)

= ηT (t − d(t))εϒη(t − d(t))

− %T (t)ελϒ%(t). (27)

Notice that η̇(t) = A+ GEK̂ (α(t)− α)ϕ(t)+ GE(β(t)−
β)h(u(t)), whereA = (Ā+C1M⊗0̄1)η(t)+B̄f̄ (η(t))+C2W⊗
0̄2η(t−τ (t))+GE[K̂ (η(t−d(t))+%(t)+αϕ(t))+βh(u(t))].
Thus, one has
E{η̇T (t)Ũ η̇(t)} = AT ŨA

+ ϕT (t)K̂T θT1 E
TGT ŨGEθ1K̂ϕ(t)

+ hT (u(t))θT2 E
TGT ŨGEθ2h(u(t)). (28)

Based on Assumption 2, for any scalar ς1 > 0 and ς2 > 0,
we can derive the following two inequalities

ς1f T (t)f (t) ≤ ς1ηT (t)�T
1�1η(t), (29)

ς2hT (u(t))h(u(t)) ≤ ς2uT (t)�T
2�2u(t). (30)

Furthermore, we can rewrite (16) as
u(t) = (Ki +1Ki)(B + (α(t)− α)ϕ(t)), (31)

where B = η(t − d(t))+ %(t)+ αϕ(t).

From (30), we can get

ω = ς2uT (t)�T
2�2u(t)− ς2hT (u(t))h(u(t)) ≥ 0. (32)

Taking the expectation of the formula (32), the following
inequality can be derived

E{ω} = ς2BT�T
2�2B + ς2ϕT (t)θT1 �

T
2�2θ1ϕ(t)

− ς2hT (u(t))h(u(t)) ≥ 0. (33)

Based on Lemma 1 and (26)-(33), one further comes to

E{V̇ (t)}

≤ 2ηT (t)P[(Ā+ C1M ⊗ 0̄1)η(t)+ B̄f̄ (η(t))

+ C2W ⊗ 0̄2η(t − τ (t))

+ GE[(K +1K )(η(t − d(t))

+ %(t)+ α(t)ϕ(t))+ β(t)h(u(t))]

+ ηT (t)(R1 + R2)η(t)− ηT (t − dM )R1η(t − dM )

− ηT (t − τM )R2η(t − τM )+AT ŨA
+ ϕT (t)K̂T θT1 E

TGT ŨGEθ1K̂ϕ(t)

+ h(u(t))T θT2 E
TGT ŨGEθ2h(u(t))

+ µT1 (t)61µ1(t)+ µT2 (t)62µ2(t)

+ ηT (t − d(t))εϒη(t − d(t))− %T (t)ελϒ%(t)

+ ς1η
T (t)�T

1�1η(t)− ς1 f̄ T (η(t))f̄ (η(t))

+ ς2BT�T
2�2B + ς2ϕT (t)θT�T

2�2θϕ(t)

− ς2hT (u(t))h(u(t))+ ε2η̄T (t)η̄(t)− εϕT (t)ϕ(t)

= ζ T (t)(8̄11 +95 +96)ζ (t). (34)

where

µ1(t) =
[
ηT (t) ηT (t − d(t)) ηT (t − dM )

]T
µ2(t) =

[
ηT (t) ηT (t − τ (t)) ηT (t − τM )

]T
61 =

−U1 ∗ ∗

U1 −2U1 ∗

0 U1 −U1


62 =

−U2 ∗ ∗

U2 −2U2 ∗

0 U2 −U2


ζ (t) = col{η(t), f̄ (η(t)), η(t − τ (t)), η(t − d(t)), %(t),

ϕ(t), h(u(t)), η(t − τM ), η(t − dM )},

8̄11 =

3̄11 ∗ ∗

3̄21 3̄22 ∗

3̄31 3̄32 3̄33

 ,
3̄11 = P(Ā+ C1M ⊗ 0̄1)+ (Ā+ C1M ⊗ 0̄1)TP+ R1

+R2 − U1 − U2 + ς1�
T�,

3̄21 = col{BTP, (C2W ⊗ 0̄2)TP+ U2, K̂TETGTP+ U1},

3̄22 = diag{−ς1I ,−2U2, 91},

3̄31 = col{K̂TETGTP, K̂TαTETGTP, βTETGTP, 0, 0},

3̄32 =
[
05×1 3̄322 3̄323

]
,

3̄322 = col{0, 0, 0,U2, 0}, 3̄323 = col{ε2I , 0, 0, 0,U1},

3̄33 = diag{92, 93, 94,−U2 − R2,−U1 − R1},
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91 = ε
2I + εϒ − 2U1, 92 = ε

2I − ελϒ,

93 = K̂θT1 E
TGT ŨGEθ1K̂ + ς2θT1 �

T
2�2θ1 − εI ,

94 = θ
T
2 E

TGT ŨGEθ2 − ς2I , 95 = ϑ1ŨϑT1 ,

96 = ς2ϑ2�
T
2�2ϑ2,

ϑ1 = col{(Ā+C1M⊗0̄1)T , B̄T , (C2W⊗0̄2)T , (GEK̂ )T ,

(GEK̂ )T , (GEK̂α)T , βT , 0, 0},

ϑ2 = col{0, 0, 0, K̂T , K̂T , (K̂α)T , 0, 0, 0}.

On the basis of Lemma 3, it can be known that
8̄11 + 95 + 96 < 0 is equivalent to the matrix 8 < 0.
According to (24), 8 < 0 holds. Therefore, 8̄11 +

95 + 96 < 0 holds. Thus, we have E{V̇ (t)} < 0, such that
the system (19) is asymptotically stable. The end of the proof.
Remark 5: In (25), the constructed Lyapunov functional

contains both the double integrals terms of time-delays and
the threshold parameter states of triggers. Compared with the
existing literature such as [44], where the Lyapunov func-
tional only considered basic one-fold integrals in deriving the
sufficient condition of systems stability, the obtained results
in Theorem 1 are expected to be less conservative.

Theorem 1 only provides a sufficient condition for the sta-
bility of the system (19) and does not solve the design of the
event-triggered controller. Based on this, Theorem 2 provides
a design method of controller gains Ki(i = 1, 2, · · · ,N ) and
trigger matrices ϒi(i = 1, 2, · · · ,N ).
Theorem 2: For given scalars αi, βi(i = 1, · · · ,N ),

νi > 0(i = 1, 2), c1i, c2i, (i = 1, · · · ,N ), ςi(i = 1, 2),
ιi(i = 1, 2), σi(i = 1, 2), dM = maxN {d iM }, τM = maxN {τi},
0 < ε < 1 and matrices 0̄i > 0(i = 1, 2), Ā > 0, B̄ > 0,
G = diagN {gi}, Ē > 0, �i(i = 1, 2), Z = diagN {Zi},
T = diagN {Ti}, ε and λ, the system (19) is asymptotically
stable, if there exist matrices Y = diagN {Yi}, R̄i(i = 1, 2),
Ūi(i = 1, 2), X , ϒ̄ , such that the following LMI holds

5 =


8̃ ∗ ∗ ∗ ∗

51 −ι1I ∗ ∗ ∗

52 0 −ι1I ∗ ∗

52 0 0 −ι2I ∗

52 0 0 0 −ι2I

 < 0, (35)

where

8̃ =



8̃11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

8̃21 Û ∗ ∗ ∗ ∗ ∗ ∗

8̃31 0 Û ∗ ∗ ∗ ∗ ∗

8̃41 0 0 Û ∗ ∗ ∗ ∗

8̃51 0 0 0 − ς2I ∗ ∗ ∗

8̃61 0 0 0 0 − ς2I ∗ ∗

8̃71 0 0 0 0 0 − I ∗

8̃81 0 0 0 0 0 0 − ς1I


,

8̃11=


8111 ∗ ∗ ∗ ∗

8̃112 41 ∗ ∗ ∗

8̃113 0 −ς2I ∗ ∗

8̃114 0 0 −Ū2 − R̄2 ∗

8̃115 0 0 0 −Ū1 − R̄1

 ,

8̃111=


3̃ ∗ ∗ ∗ ∗

BT −ς1I ∗ ∗ ∗

42 0 −2Ū2 ∗ ∗

43 0 0 −2Ū1 + εϒ̄ ∗

44 0 0 0 −ελϒ̄

 ,
3̃ = (Ā+ C1M ⊗ 0̄1)Y + Y (Ā+ C1M ⊗ 0̄1)T

+ R̄1 + R̄2 − Ū1 − Ū2,

8̃112 =
[
XTαTETGT 0 0 0 0

]
,

8̃113 =
[
βTETGT 0 0 0 0

]
,

8̃114 =
[
0 0 Ū2 0 0

]
,

8̃115 =
[
0 0 0 Ū1 0

]
, 41 = ε(−2σ2Y + σ 2I ),

42 = Y (C2W ⊗ 0̄2)T + Ū2, 43 = XTETGT + Ū1,

44 = XTETGT , 8̃21 =
[
8̃211 8̃212

]
,

8̃211 =
[
(Ā+ C1M ⊗ 0̄1)Y B C2W ⊗ 0̄2Y GEX

]
,

8̃212 =
[
GEX GEαX GEβ 0 0

]
,

8̃31 =
[
0 0 0 0 0 GEθ1X 0 0 0

]
,

8̃41 =
[
0 0 0 0 0 0 GEθ2 0 0

]
,

8̃51 =
[
0 0 0 ς2�2X ς2�2X ς2�2αX 0 0 0

]
,

5̃61 =
[
0 0 0 0 0 ς2�2θ1X 0 0 0

]
,

8̃71 =
[
0 0 0 εY εY 0 0 0 0

]
,

8̃81 =
[
ς1�1Y 0 0 0 0 0 0 0 0

]
,

Û = −2σ2Y + σ 2
2 Ũ ,

51 =
[
0 0 0 ι1ZY ι1ZY 09

]
,

52 =
[
T TETGT 08 T TETGT 0 0 T T�T

2 0
]
,

53 =
[
0 0 0 0 0 ι2ZY 08

]
,

54 =
[
541 542

]
.

541 =
[
T TαTETGT 08 T TαTETGT

]
.

542 =
[
T T θT1 E

TGT 0 T TαT�T
2 T T θT1 �

T
2

]
.

Furthermore, the gain matrices and trigger matrices are
designed by

Ki = XiY
−1
i , ϒi = Y−1i ϒ̄iY

−1
i , i = 1, 2, · · · ,N . (36)

Proof: According to the congruence transformation of
the matrix, it can be known that the matrix inequality (24)
holds, if and only if the following inequality (37) holds.[

811 ∗

3̃21 3̃22

]
< 0, (37)

where

3̃21 = col{8̄21, 8̄31, 8̄41,851,861,871,881},

3̃22 = diag{3̃221, 3̃222},

3̃221 = diag{−PŨP,−PŨP,−PŨP},

3̃222 = diag{−ς2I ,−ς2I ,−I ,−ς1I },

8̄21 =
[
8̄211 8̄212

]
,

8̄211 =
[
P(Ā+ C1M ⊗ 0̄1) PB PC2W ⊗ 0̄2

]
,

8̄212 =
[
PGEK̂ PGEK̂ PGEαK̂ PGEβ 0 0

]
,
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8̄31 =
[
0 0 0 0 0 PGEθ1K̂ 0 0 0

]
,

8̄41 =
[
0 0 0 0 0 0 PGEθ2 0 0

]
.

For any positive scalar σ , we have

(Ũ − σ−1P)Ũ−1(Ũ − σ−1P) ≥ 0, (38)

which yields

−PŨ−1P ≤ −2σP+ σ 2Ũ . (39)

Thus, taking the place of −PŨ−1P by −2σP + σ 2Ũ
in (37), it can be verified that (37) holds if the following
matrix inequality holds.

5̄ =



811 ∗ ∗ ∗ ∗ ∗ ∗ ∗

8̄21 Û ∗ ∗ ∗ ∗ ∗ ∗

8̄31 0 Û ∗ ∗ ∗ ∗ ∗

8̄41 0 0 Û ∗ ∗ ∗ ∗

851 0 0 0 − ς2I ∗ ∗ ∗

861 0 0 0 0 − ς2I ∗ ∗

871 0 0 0 0 0 − I ∗

881 0 0 0 0 0 0 − ς1I


< 0. (40)

Based on the product of the matrix, one can rewrite the
matrix 5̄ in the following form.

5̄ = 5̂+ 5̂T
1 F(t)5̂2 + 5̂

T
2 F

T (t)5̂1

+ 5̂T
3 F(t)5̂4 + 5̂

T
4 F

T (t)5̂3, (41)

where

5̂ = 5̄|K̄=K , 5̂1 =
[
0 0 0 Z Z 09

]
,

5̂2 =
[
5̂21 5̂22

]
,

5̂21 =
[
T TETGTP 08 T TETGTP

]
,

5̂22 =
[
0 0 T T�T

2 0
]
,

5̂3 =
[
0 0 0 0 0 Z 08

]
, 5̂4 =

[
5̂41 5̂42

]
,

5̂41 =
[
T TαTETGTP 08 T TαTETGTP

]
,

5̂42 =
[
T T θT1 E

TGTP 0 T TαT�T
2 T T θT1 �

T
2

]
.

By using Lemma 2, for any ιi > 0(i = 1, 2), we know that

5̄ ≤ 5̂+ι15̂
T
1 5̂1+ι

−1
1 5̂T

2 5̂2+ι25̂
T
3 5̂3+ι

−1
2 5̂T

4 5̂4. (42)

On the basis of (42), (40) holds if the following inequality
holds

5̂+ι15̂
T
1 5̂1+ι

−1
1 5̂T

2 5̂2+ι25̂
T
3 5̂3 + ι

−1
2 5̂T

4 5̂4 < 0. (43)

Then employing the Schur complement to (43), one has

5̆ =


5̂ ∗ ∗ ∗ ∗

5̂1 −ι1I ∗ ∗ ∗

5̂2 0 −ι1I ∗ ∗

5̂3 0 0 −ι2I ∗

5̂4 0 0 0 −ι2I

 < 0. (44)

Letting P = diagN {Pi}, and defining P−1 = Y ,
P−1i = Yi, pre- and post-multiplying the both sides of (44) by

diag{R, I , I , I , I , I , I , I } with R = diag{Y , I ,Y ,Y ,Y ,Y , I ,
Y ,Y ,Y ,Y ,Y }, and denoting X = KY , ϒ̄ = diagN {ϒ̄i},
R̄i = YRiY (i = 1, 2), Ūi = YUiY (i = 1, 2), ϒ̄i = YiϒiYi,
it yields

5̈ =


5́ ∗ ∗ ∗ ∗

51 −ι1I ∗ ∗ ∗

52 0 −ι1I ∗ ∗

52 0 0 −ι2I ∗

52 0 0 0 −ι2I

 < 0, (45)

where

5́ =



8̆11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

8̃21 Û ∗ ∗ ∗ ∗ ∗ ∗

8̃31 0 Û ∗ ∗ ∗ ∗ ∗

8̃41 0 0 Û ∗ ∗ ∗ ∗

8̃51 0 0 0 − ς2I ∗ ∗ ∗

8̃61 0 0 0 0 − ς2I ∗ ∗

8̃71 0 0 0 0 0 − I ∗

8̃81 0 0 0 0 0 0 − ς1I


,

8̆11=


8111 ∗ ∗ ∗ ∗

8̃112 − εYY ∗ ∗ ∗

8̃113 0 − ς2I ∗ ∗

8̃114 0 0 − Ū2 − Ō2 ∗

8̃115 0 0 0 − Ū1 − Ō1

 .
Similar to (39), for any σ2 > 0, one has

−εYY ≤ ε(−2σ2Y + σ 2
2 I ). (46)

Replacing −εYY by ε(−2σ2Y + σ 2
2 I ), then (45) holds

only if (35) holds. To sum up, we can conclude that the LMI
(35) is a sufficient condition of the matrix inequality (24),
which means that the designed event-based controller can
guarantee the asymptotically stable of the system (19). More-
over, we can get K = XY−1 and ϒ = Y−1ϒ̄Y−1, that is,
Ki = XiY

−1
i and ϒi = Y−1i ϒ̄iY

−1
i . The end of the proof.

IV. SIMULATION EXAMPLE
Here, one provides an example to verify the effective-
ness of above theoretical results. Consider the systems (1)
and (3) with four nodes, and the pinning matrix is chosen as
G = diag{2.2, 3.4, 0, 0}. Moreover, we choose the coupled
configuration matrices and inner coupled matrices of the two
systems as following:

M =


−1.5 0.5 0.5 0.5
0.5 −1.5 0.5 0.5
0.5 0.5 −1.5 0.5
0.5 0.5 0.5 −1.5

 ,

W =


−2.4 0.8 0.8 0.8
0.8 −2.4 0.8 0.8
0.8 0.8 −2.4 0.8
0.8 0.8 0.8 −2.4

 ,
01 =

[
0.5 0
0 0.5

]
, 02 =

[
0.6 0
0 0.6

]
.
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In this example, one chooses the following functions
f (xi(t)) and h(ui(t)) to describe the nonlinearity and network
attack, respectively.

f (xi(t)) =
[
xi1(t)sin(0.15xi1(t))

0.1xi2(t)sin(0.15xi1(t))

]
,

h(ui(t)) =
[
0.1tanh(xi1(t))
0.12tanh(xi2(t))

]
.

Then, we can calculate the upper bound of f (·) and g(·) as

�1 =

[
0.15 0
0 0.1

]
, �2 =

[
0.1 0
0 0.12

]
,

respectively.
Other parameter matrices of the systems are given as

A1 =
[
−0.9 0.26
0.9 −0.26

]
, A2 =

[
−0.7 0.12
0.7 −0.12

]
,

A3 =
[
−0.98 0.8
0.98 −0.8

]
, A4 =

[
−0.34 0.9
0.34 −0.9

]
,

B1 =
[
1.2 −0.1
0 0.4

]
, B2 =

[
2.3 3.7
0 0.1

]
,

B3 =
[
1.5 0
−0.1 0.2

]
, B4 =

[
4.6 0.32
−2.1 0.45

]
,

E1 =
[
0.12 0
0 0.1

]
, E2 =

[
0.17 0
0 0.11

]
,

E3 =
[
0.12 0
0 0.12

]
, E4 =

[
0.11 0
0 0.14

]
.

The saturation function is chosen as

ρ(η̄i) =


0.05, η̄j ≥ 0.05
η̄j, −0.05 < η̄j < 0.05,
−0.05, −η̄j ≤ −0.05

and the uncertain parameter matrices are selected as

T1 =
[
−0.045 0.1
0.23 −0.05

]
, T2 =

[
0.062 0.13
0.3 −0.01

]
,

T3 =
[
0.092 0.2
0.2 0.07

]
, T4 =

[
0.011 0.14
0.1 0.035

]
,

Z1 =
[
0.24 0
0 0.34

]
, Z2 =

[
0.36 0
0 0.2

]
,

Z3 =
[
0.16 0
0 0.3

]
, Z4 =

[
0.24 0
0 0.84

]
.

We set the expectations of the probabilities of stochastic
saturations and network attacks as αi = 0.32(i = 1, 2, 3, 4)
and βi = 0.85(i = 1, 2, 3, 4), respectively. The coupled
strengths are c11 = 0.4, c12 = 0.21, c13 = 0.42, c14 = 0.97,
c21 = 0.8, c22 = 0.56, c23 = 0.69, c24 = 0.81. Other
relevant parameters are ς1 = 8.2, ς2 = 7.7, ε = 0.9, ι1 =
6.31, ι2 = 1.53, σ1 = 0.18, σ2 = 0.8. For the given bounds
of delay dM = 0.02, τM = 0.05, and adaptive event-triggered
parameter scalar εi = 0.3(i = 1, 2, 3, 4), λi = 60(i =
1, 2, 3, 4), one obtains the gains of the controller and AETS
as below by utilizing the MATLAB to solve Theorem 2,

K1=

[
−1.1945 − 1.1179
−0.8697 − 1.3348

]
, K2=

[
−0.8462 − 0.3243
−0.1966 − 1.2964

]
,

TABLE 1. Results of triggers with different cases.

FIGURE 2. Synchronization errors ηi (t)(i = 1,2,3,4) under control.

FIGURE 3. Synchronization errors ηi (t)(i = 1,2,3,4) without control.

ϒ1=

[
1.1773 − 0.1139
−0.1139 0.6507

]
, ϒ2=

[
1.0623 − 0.2758
−0.2758 0.9019

]
,

ϒ3=

[
0.9411 − 0.4324
−0.4324 0.8171

]
, ϒ4=

[
0.5367 − 0.2436
−0.2436 0.9611

]
.

Choose the initial state of the system (1) as xT1 (0) =[
0.37 −0.52

]T , xT2 (0) = [
0.01 −0.17

]T , xT3 (0) =[
0.41 −0.88

]T , xT4 (0) = [
0.24 −0.66

]T , and the ini-
tial state of the system (3) as yT1 (0) =

[
0.07 −0.07

]T ,
yT2 (0) =

[
0.68 −0.68

]T , yT3 (0) = [
0.16 −0.16

]T ,
yT4 (0) =

[
0.12 −0.12

]T . Moreover, the initial values of the
trigger threshold are selected as ξ1(0) = 0.401, ξ2(0) = 0.39,
ξ3(0) = 0.42, ξ4(0) = 0.426. According to the gains obtained
above, we can get the following simulation results. Table 1
gives the detailed trigger times for the four nodes in the
different parameters of εi. It is clearly that the trigger times of
the controlled node 1 and node 2 are less than the other two
uncontrolled nodes, which are reasonable. Figs. 2-3 display
the responses of synchronization errors with and without
control input, respectively. Based on these two figures, it is
easily to find that output synchronization errors converge
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FIGURE 4. The adaptive event-triggered instants and intervals.

FIGURE 5. Trajectories of event-triggered parameters ξi (t)(i = 1,2,3,4).

FIGURE 6. Trajectories of attack functions h(ui (t))(i = 1,2,3,4).

to zero in the case of employing the designed control input
signals. Fig. 4 depicts the released intervals and instants of
the AETS. Fig. 5 gives the trajectories of the adaptive event-
triggered threshold parameter. Fig. 6 displays the curves of
the attack functions h(ui(t)). These results demonstrate that
the design method of the non-fragile controllers proposed is
effective.

V. CONCLUSION
In this paper, we have investigated the adaptive output pin-
ning synchronization control for delayed complex networks
with random saturations and cyber-attacks. Different from the
traditional event triggered scheme, we use the adaptive law to
flexibly adjust the threshold of the event triggered condition.
The sufficient conditions for the stability of related systems
are derived in terms of stochastic analysis technique and

Lyapunov stability method. By using LMI method, the gains
of the controller and AETS have been got simultaneously.
One key point of this paper is that the AETS-based output
pinning synchronization control problem is firstly studied for
a class of delayed complex networks with random saturations
and cyber-attacks. In our future work, we will focus on the
pinning synchronization control for the drive-response com-
plex systems with adaptive coupling strength.
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