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ABSTRACT In order to improve the diagnosis accuracy and solve the weak fault signal of rolling
element of rolling bearings due to long transmission path, a novel fault diagnosis method based on
variational mode decomposition (VMD) and maximum correlation kurtosis deconvolution (MCKD), namely
VMD-MCKD-FD is proposed for rolling elements of rolling bearings in this paper. In the proposed
VMD-MCKD-FD, the vibration signal of rolling element of rolling bearings is decomposed into a series
of Intrinsic Mode Functions (IMFs) by using VMD method. Then the number of modes with outstanding
fault information is determined by Kurtosis criterion in order to calculate the deconvolution period T. The
periodic fault component of reconstructed signal is enhanced by using sensitivity MCKD method. Finally,
the power spectrum of the reconstructed signal is analyzed in detail in order to obtain the fault frequency and
diagnose the rolling element fault of rolling bearings. The simulation signal and actual vibration signal are
selected to verify the effectiveness of the VMD-MCKD-FD method. The experimental results show that the
VMD-MCKD-FD method can effectively diagnose the rolling element fault of rolling bearings and obtain
better fault accuracy.

INDEX TERMS Fault diagnosis, rolling element, signal decomposition, VMD, MCKD, feature extraction.

I. INTRODUCTION
As one of the core components in industrial production,
rolling bearings are widely applied in various rotating
machinery. Therefore, it is very necessary to accurately diag-
nose faults of rolling bearings [1]-[3]. Rolling bearing faults
mainly occur in the inner race, outer race and rolling ele-
ment [4]-[7]. In recent years, most of researches focus on
the fault of the rolling bearing outer race and inner race, and
these methods are very effective, while the faults of the rolling
elements are less studied [8]-[13]. Because the rolling ele-
ments are located inside the rolling bearings, the fault signal
of the rolling elements is easily interfered by the external
environment during the transmission [14]-[18]. Therefore,
it is necessary to diagnose the faults of rolling elements of
rolling bearings.

To effectively extract fault features from vibration sig-
nal of rolling bearings, a lot of experts have proposed
effective feature extraction methods, such as wavelet
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transform (WT) [19], Hilbert-Huang transform [20], empir-
ical mode decomposition (EMD) [21], Ensemble EMD
(EEMD) [22], and so on [23]-[28]. Although these meth-
ods can better extract fault features, they still exist defi-
ciencies in processing vibration signals. The WT is not an
adaptive signal analysis method, and it requires to choose
wavelet basis function in advance [29]-[33]. The EMD is
limited due to mode mixing. Although the EEMD can
solve the mode mixing problem, the increase of itera-
tions results in the increase of computation time [34]-[39].
Zhao and Ye [40] gave the concept of singular value decom-
position packet to realize signal decomposition. Guo and
Deng [41] proposed an improved EMD to effectively extract
fault features of inner and outer race. Hou ef al. [42] pro-
posed a weak fault feature extraction method based on opti-
mized sparse coding and approximate SVD. Liu et al. [43]
proposed a feature extraction method using EEMD and
curve code. Zheng et al. [44] proposed a fault diagno-
sis method based on feature extraction and bag-of-words.
Kuncan et al. [45] proposed a one-dimensional ternary
pattern method to extract the features of rolling bearings.
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Li et al. [46] proposed a new feature extraction method
using EWT and improved MCKD with grid search.
Zhou et al. [47] proposed a hybrid fault diagnosis method
based on parameter-adaptive VMD and multi-point optimal
minimum entropy deconvolution. Li er al. [48] proposed a
double-feedback cascaded monostable stochastic resonance
system by signal-to-noise ratio. Mahgoun et al. [49] proposed
a gear fault detection method using VMD. From these meth-
ods, it can see that the VMD can extract fault features from
vibration signals. However, there are still residual noise com-
ponents in IMFs under strong noise interference. The MCKD
method is a new deconvolution method, which highlights
the periodic impact of fault signals by designing the optimal
FIR filter [50]. It is helpful to the fault diagnosis of rolling
bearings. Ren ef al. [51] combined MCKD with EEMD to
diagnose faults. Zhao and Li [52] proposed a new method
based on combining MCKD with EMD to diagnose the weak
faults. But these methods did not improve the weaknesses
of the EMD and EEMD. Wang et al. [53] proposed a new
fault diagnosis method for rolling bearings. In addition, some
latest fault diagnosis methods are proposed for or rolling bear-
ings. Wang and He [54] proposed a wavelet packet envelope
manifold (WPEM) approach to extract the intrinsic envelope
structure for well identification of the specific characteristic
frequency. Sun et al. [55] proposed a novel intelligent diag-
nosis method based on the idea of compressed sensing and
deep learning for fault identification of rotating machines.
Udmale and Singh [56] proposed a novel intelligent diagnosis
method using spectral kurtosis and extreme learning machine
for fault classification of rotating machines. Hu et al. [57]
proposed a new and adaptive spectral kurtosis method for the
bearing fault detection. Li ef al. [58] proposed an enhanced
FBE (EFBE) adopting WPT as the filter of FBE to overcome
the shortcomings of the original FBE. Chen et al. [59] pro-
posed a novel method to find formal languages, written with
signal spectral logic (SSL), to describe the fault behaviors
among frequency domain for fault diagnosis. The other some
methods are also proposed to realize the fault diagnosis of
rolling bearings [60]-[62].

To sum up, some experts and scholars have proposed EMD,
EEMD, VMD, SVD, MCKD, and so on in order to realize the
signal analysis, fault feature extraction and fault diagnosis.
These methods can better obtain processing results. But these
methods have many deficiencies in analyzing signal, extract-
ing fault features and diagnosing faults for rolling elements
of rolling bearings, such as the over decomposition of VMD
by improper selection of k, modal aliasing of EMD, preset-
ting parameters of MCKD and so on. In addition, it is very
difficult to realize rolling element fault feature extraction and
fault diagnosis due to weak fault signal of long transmission
path by using the traditional methods. Therefore, in order
to solve the weak fault signal of rolling elements of rolling
bearings due to the long transmission path and improve the
diagnosis accuracy for rolling elements of rolling bearings,
the advantages of VMD and MCKD are fully integrated
to propose a novel rolling element fault diagnosis method
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to obtain better performance in extracting fault features for
rolling elements of rolling bearings in this paper. Firstly,
the vibration signal is decomposed into some IMFs by using
VMD with the robustness. The number of modes with out-
standing fault information is determined by Kurtosis criterion
in order to calculate the deconvolution period T and IMFs
with more fault information are chosen to reconstruct the
vibration signal. Then the MCKD with sensitivity is used to
enhance the periodic fault component of reconstructed signal.
The power spectrum of the reconstructed signal is analyzed
in detail in order to obtain the fault frequency and diagnose
the rolling element faults of rolling bearings. The proposed
method doesn’t only eliminate the noise interference, but also
solves the problem of selecting k& of the VMD. It takes on
better effect in extracting weak fault features.

The innovations and main contributions of this paper are
described as follows.

« Anovel rolling element fault diagnosis method based on
combining VMD with MCKD is proposed.

o The VMD with the robustness used to decompose fault
vibration signal of rolling element into a series of IMFs.

o The number of modes with outstanding fault information
is determined by Kurtosis criterion in order to calculate
the deconvolution period T.

o The MCKD with the sensitivity is applied to enhance the
periodic fault component of the reconstructed signal.

Il. BASIC METHODS
A. KURTOSIS CRITERION
Kurtosis is a dimensionless parameter that describes the
sharpness of the waveform and reflects the distribution char-
acteristic of the vibration signal. The expression of kurtosis
is described as follow.
4
kur = M (1
o

where, 1 is the mean of x, x is vibration signal, o is the
standard deviation of x.

The vibration signal is normally distributed, so its kurtosis
is about 3. But when there are more impulse components
in signal, the kurtosis value increases obviously. The fault
information of rolling bearings is often included in these sig-
nals with more impulse components. The signal with higher
kurtosis has more obvious impulse components and easier to
extract fault information.

B. VMD
The VMD is an adaptive signal decomposition method,
which decomposes the signal into a series of IMFs accord-
ing to different center frequencies. The decomposition pro-
cess is mainly divided into the construction and variational
solution.

In the VMD, each IMF is regarded as an AM-FM signal
with limited bandwidth, which is described as follow.

ur (1) = A (1) cos (¢ (1)) @
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where, Ay (¢) is instantaneous amplitude, wy (¢) is the instan-
taneous power of the signal, wy () = d¢y (¢) /dt.

The variation problem is to decompose the input signal f
into k IMFs, and each IMF signal is analyzed by Hilbert
transform, then mix it by means of the estimated center
frequency e3¢, The sum of components is equal to the
input signal under the constraint, so the variational problems
is described as follow.

|
2 3)

. J —jwt
min SO+ =) xu (1) |e??
{; [( <>+m) m}
s.t. Z uy =f
k

where, {uy} = {ur,u2,u3,-- i} and {ox} = {1, w2,
w3, - wk} are IMFs and each IMF’s central frequencies.

The quadratic penalty operator « is used to ensure the
reconstruction accuracy of the signal, and the Lagrange mul-

tiplication operator A () is used to maintain the constraint
strictness.

L ({u}, {ok}, A)
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The alternate direction method of multipliers is used to
alternatively update QEH, (Z)ZH is used to get the optimal
solution, that is the saddle point of the Lagrangian function
of Eq. (4). The Fourier transform of QEH is the intrinsic
A1 mode functions, so that the set of IMFs {u; } and central

frequency {wy} can be expressed as follows.

+
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C. MCKD

In order to restore the collected signal to the original input
signal, the MCKD is used to find a finite impulse response
filter according to the maximum correlation kurtosis.

y(m) =hm*x®) +en) (N

where, y (n) is the collected signal by the sensor, x (1) is
the periodic pulse signal, 4 (n) is attenuation response of the
transmission path, e (n) is the noise component.

The kurtosis is affected by a single or partial high-
amplitude pulse, so the periodicity and continuity of the faults
signal cannot be fully considered. Therefore, the MCKD
uses the correlation kurtosis to extract the pulse sequence.
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The correlation kurtosis is described as follow.

S (T vr)

CKy (T) = maxy M 8)
(ny:] X )
Matrix form of optimal filter f is obtained as follow.
21y oy s
f=sr (YY) Y Yardn ©)
28] o

where, L is the filter length, T is the deconvolution period,
and M is the shift-order.

lIl. DETERMINATION METHOD OF DECONVOLUTION
PERIOD

The MCKD has a strong ability to decrease noise and enhance
the signal features, but it needs to preset parameters to
ensure the effect of signal processing, such as deconvolu-
tion period 7, and these advantages depend on the correct
selection of T. Only by finding a suitable deconvolution
period can the periodic impulse component of the fault signal
will be highlighted, and fault frequency will be found in the
frequency domain. Conversely, if a wrong value of decon-
volution period is determined, the fault frequency will be
shielded, which cannot be effectively extracted.

The deconvolution period is actual impulse period of the
fault in the vibration signal, which can also be understood as
the samples of each revolution. Therefore, in actual operation,
all samples are used to calculate the deconvolution period.
The value of T can be calculated according to the Eq. (10).

*
_S At ) (10)
So  fo*t  fo
where, S is the number of samples, Sy is the number of
fault samples, ¢ is the time of sampling, f; is the sampling
frequency, and fj is fault frequency.

IV. A NOVEL FAULT DIAGNOSIS METHOD

A. THE BASIC IDEA

For the problem that the weak fault features of rolling ele-
ments are difficult to be extracted, the other methods usually
cannot effectively solve. Therefore, a novel rolling element
fault diagnosis method based on VMD and MCKD, namely
VMD-MCKD-FD is proposed in this paper. The function of
the VMD is to decompose the original signal into k IMFs to
extract effective information. Because the VMD needs to be
preset a suitable value of & to avoid the under-decomposition
problem or over-decomposition problem. The selection of
k is a difficult problem, but it can be avoided by signal
reconstruction. The improper value of k£ will directly affect
the decomposition result of the signal. If the value of k is
too small, the similar components are decomposed to the
same time scale, which results in mode aliasing. If the value
of k is too large, the false components will appear in the
decomposition. Therefore, before the VMD is used to decom-
pose the signal, the number of k is preset as a fixed value.
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The different value of k (k = 2,3,4,5,6,7,8) is set for VMD to
verify the influence of different number of modes. The tested
results show that it would be best for the value of k = 5.
At the same, a large number of literatures about the value
of k for VMD are published to address the issue of
VMD [63]-[66]. In most of the literatures, the value of k is 5.
Therefore, it would be more beneficial to the VMD that the
value of k is taken as 5 according to the experiment, some
published papers and our experiences. Therefore, the VMD
decomposes the signal into 5 IMFs, and 3 IMFs with larger
kurtosis are selected for signal reconstruction according to the
kurtosis criterion. Kurtosis value is used to evaluate signal
pulse. In the bearing fault diagnosis, it is generally used to
evaluate the proportion of fault impact component of signal.
The kurtosis value is greater, the more fault information is
contained in IMF. There are two reasons for selecting three
IMFs in here. Firstly, in the process of weak fault diagno-
sis, due to the interference of noise, the fault information
may also appear in the IMF with the second or third largest
kurtosis value. Secondly, three IMFs are selected for signal
reconstruction in order to avoid the problem of selecting the
K value of VMD. Therefore, we choose the 3 IMFs with
the highest kurtosis as useful IMFs. Because it is difficult to
use the VMD to extract the fault frequency. Therefore, the
MCKD is used to further process the signal, and the maxi-
mizing correlation kurtosis is applied to enhance the periodic
impulse component to achieve the fault frequency extraction
of rolling elements for rolling bearings.

B. IMPLEMENTATION STEPS
The flow of VMD-MCKD-FD is shown in FIGURE 1.

The steps of the VMD-MCKD-FD for rolling elements of
rolling bearings are described in detail as follows.

Step 1. Firstly, the fault vibration signals are decomposed
into k IMFs by using the VMD method.

Step 2. Then some IMFs with larger kurtosis are selected
for reconstruction according to the kurtosis criterion.

Step 3. Calculate deconvolution period T'.

Step 4. The MCKD is used to process reconstructed sig-
nals, the periodic impulse component is enhanced, and the
noise interference is reduced.

Step 5. Finally, the power spectral density is calculated
from the Hilbert envelope of the obtained signal, and the fault
frequency is found by analyzing the power spectrum, so as to
diagnose the rolling element faults.

V. SIMULATION RESULTS

In order to verify the validity of the VMD-MCKD-FD
for fault diagnosis of rolling elements of rolling bearings,
the simulation signals are formed according to the periodic
feature faults of rolling elements.

x (1) = x1 (1) +x2 (1) +x3 (2) (11)

where, x1 (z) = 0.7* sin (8007 ¢)* sin (30007 ¢), fault signals
X (1) = 2A;*¢733% 5in (80007 1), and random noise signal
x3 (). A; is a sequence of random numbers from O to 1.

120300

Vibration signal dataset collections

| |
I |
| - |
I |
I |

Pre-processing and post-processing of dataset

Vibration signal decomposition

v
Obtain a series of IMFs

v

I

I

i

I

: ‘ Select IMFs with more fault information
I

| ‘

I

v

Vibration signal reconstruction

Feature extra%tion and selection |

Calculate the deconvolution period T

v

Enhance the periodic fault component of reconstruction signal

| |
| |
| |
! . !
! !
! !
| |

‘ Obtain the enhanced periodic fault component ‘

MCKD processing

Hilbert transform

v

Calculate the power spectral density of the processed signal

| !
| * |
I I
I‘ ‘I
I I

Obtain the fault frequency

Fault diagnosis

FIGURE 1. The flow of VMD-MCKD-FD for rolling element faults.

Due to the usual slip of rolling elements and cage, the repeti-
tion and the experience amplitude are a certain degree of ran-
domness [56], [57], {1 = mod (t, LO), the sampling frequency
is 40kHz. After random noise is added, the signal-to-noise
ratio (SNR) of the simulation signal is —13.2dB, —8.2 dB
and —3.3dB, which simulate the strong noise interference
in actual working condition. Finally, the fault frequency fo
is set as 120Hz. The value of « in VMD is 2000. The
time waveform and power spectrum of the simulation signals
(—13.2dB, —8.2 dB and —3.3dB) are shown in FIGURE 2,
FIGURE 3 and FIGURE 4.

From FIGURE 2 and FIGURE 3, it can be clearly
seen that the fault signal is submerged in strong noise
(SNR = —13.2 dB and SNR = —8.2 dB), and the valid
information of fault frequency or rotating frequency can-
not be found. For the simulation signal with less noise
(SNR = —3.3 dB), it can be seen that the fault frequency
can be found. Therefore, for the simulation signal with
strong noise(SNR = —13.2 dB and SNR = —8.2 dB), the
VMD method is used to decompose the weak fault signal
into 5 IMFs. The time waveforms of 5 IMFs are shown as
FIGURE 5 and FIGURE 6.

From FIGURE 5 and FIGURE 6, the simulation sig-
nal is decomposed into 5 IMFs with different frequency
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FIGURE 2. Simulation signal with noise (SNR = —13.2dB).
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FIGURE 3. Simulation signal with noise (SNR = —8.2dB).

components. Because each IMF contains different frequency
components, it is impossible to distinguish which IMF con-
tains more fault information. Therefore, Kurtosis criterion is
used to evaluate each IMF, and three frequency components
with the largest kurtosis are selected for reconstruction signal.
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TABLE 1. Kurtosis index of each IMF of simulated signal.

Index SNR(B) IMF1 IMF2 IMF3 IMF4 IMF5
Kurtosis -13.2 3.24 2.69 2.97 2.56 2.85
index -8.2 2.63 3.38 3.15 2.61 2.98
3
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FIGURE 4. Simulation signal with noise (SNR = —3.3dB).

This selection can retain the fault information. The kurtosis
indexes of 5 IMFs are shown in TABLE 1.

According to the Kurtosis criterion, IMF1, IMF3 and
IMFS5 are selected to reconstruct the signal for simulation
signal with the noise (SNR = —13.2dB), and IMF2, IMF3 and
IMFS5 are selected to reconstruct the signal for simulation sig-
nal with the noise (SNR-8.3dB). Then the power spectrums of
reconstructed signal are shown in FIGURE 7 and FIGURE 8.

Compared with the original signal in FIGURE 2(b) and
FIGURE 3(b), the noise interference of reconstructed sig-
nal is effectively suppressed in FIGURE 7 and FIGURE 8.
However, three most obvious frequency components have no
relationship with the fault frequency, which shows that there
is still noise interference in the signal. The VMD cannot
extract the weak fault feature, so the reconstructed signal
needs to be further processed.

According to Eq. (10), the deconvolution period 7 is cal-
culated to 333. The filter size L is generally in the range
of [100,500]. M is generally in the range of [1,7], because
the iterative method can reduce the numerical precision if we
select a lager M. From experience, L is selected as 300, and
M is selected as S. For the simulation signal with the noise
(SNR = —13.2dB), the MCKD is further used to process
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FIGURE 7. Power spectrum of simulated signal using VMD
(SNR = —13.2dB).

the reconstructed signal, the power spectrum of processed
signal is shown in FIGURE 9(c). In order to illustrate the
advantages of the VMD to preprocess the vibration signal,
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FIGURE 8. Power spectrum of simulated signal using
VMD(SNR = —8.2dB).

the EMD and EEMD are selected to decompose the simu-
lation signal, and 3 IMFs with larger kurtosis are selected
to reconstruct the signal. These reconstructed signals are
processed by using MCKD with same parameters, the power
spectrum of processed signals is shown in FIGURE 9(a) and
FIGURE 9(b). For the simulation signal with the noise
(SNR = —8.2dB), the power spectrums of the simu-
lated signal using EMD-MCKD-FD, EEMD-MCKD-FD and
VMD-MCKD-FD are shown in FIGURE 10.

From FIGURE 9(a) and (b), it can be seen that
the most obvious frequency component is 839.8Hz.
From FIGURE 10 (b), it can be seen that the most obvious
frequency component is 957Hz. In FIGURE 9(a), the most
obvious frequency component is 839.8Hz, although the
fault frequency and its harmonics can be found, but the
frequency component with the largest amplitude of them
is 3fp (351.6Hz), the fault frequency fp (117.2Hz) is not
obvious. In FIGURE 9 (b), the frequency component with
maximum amplitude is still 839.8Hz, the amplitude of the
fault frequency is the second largest. In FIGURE 9(c),
the frequency component with the largest amplitude is the
fault frequency fy (117.2Hz), and the second harmonic is
found, the amplitude of other frequency components is
relatively small. In FIGURE 10(a), the fault frequency fy
(117.2Hz) and 4 fy (468.8Hz) are found. In FIGURE 10(b),
the fault frequency fy (117.2Hz) and 4 f; (468.8Hz) are found,
the other amplitudes of frequency components also exist.
In FIGURE 10(c), the fault frequencies fy (117.2Hz),
2fo (234.4Hz), 3fo (351.6Hz) and 4f; (468.8Hz) are found,
and the other amplitude of frequency components don’t
exist. Because the collected vibration signal contains some
interference signals, which will affect the feature extraction
of vibration signal. As a result, the obtained fault frequency
has some deviations for dominant frequencies, 117 Hz,
234 Hz, 351Hz and 468Hz. These phenomena show that the
VMD has better robustness than EMD and EEMD, and
the VMD-MCKD-FD has better performance in extracting
the features of weak fault signals.
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FIGURE 9. Power spectrum of the simulated signal with
noise (SNR = —13.2dB).

In order to prove the value of deconvolution period 7 on
the result of feature extraction, the value of T was changed
to 250 without changing L and M, and then the reconstructed
signal (—13.2dB) is reprocessed. The power spectrum of the
simulated signal by using the VMD-MCKD-FD (T = 250) is
shown in FIGUREI11.

It can be seen from FIGURE 11, Three most obvious fre-
quency components in the figure are 17.58Hz, 146.5Hz and
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FIGURE 10. Power spectrum of the simulated signal with
noise (SNR = —8.2dB).

46.88Hz, they are not related to the fault frequency or its har-
monics. This phenomenon is due to the fact that the MCKD
method can shield the signal component whose impact period
is not 250. Therefore, it can be known that the deconvolution
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FIGURE 11. Power spectrum of the simulated signal processed by
VMD-MCKD (T = 250).

Motor

'q‘ | |
" —

|

!

‘1

\
\

FIGURE 12. The experiment platform of QPZZ-II rotating machinery.

period T should be correctly selected when the MCKD is used
to extract fault features, especially for the weak fault feature.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. EXPERIMENTAL ENVIRONMENT AND DATA

In order to verify the effectiveness of the VMD-MCKD-FD
for the weak fault of rolling elements, the experiment
QPZZ-1I platform is used to measure the vibration signal
of rolling bearings in FIGURE 12. It was measured at a
motor speed of 1500r/min and no-load, and the sampling fre-
quency is 12kHz. The experiment used N205 rolling bearings.
This bearing contains 13 rolling elements with a diameter
of 7.5mm. And the pitch diameter of bearings is 38.5mm.
According to the above information, the shaft rotation fre-
quency f, can be calculated to be about 25Hz, and rolling
element fault frequency fj is 125.2Hz.

The time waveform and power spectrum of normal
signal of rolling bearings are shown in FIGURE 13(a)
and FIGURE 13(b).

The time waveform and power spectrum of fault signal of
rolling elements are shown in FIGURE 14(a) and (b).

From FIGURE 14(a) and FIGURE 14(b), the fault sig-
nal of rolling elements of rolling bearings contains strong
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noise, the frequency components of the vibration signal are
irregularly distributed in the power spectrum, and the invalid
information can be extracted. To extract fault features from
the weak fault information, the vibration signal needs to be
denoised firstly.

B. EXPERIMENTAL RESULT AND ANALYSIS

1) THE RESULTS OF VMD-MCKD-FD

The VMD-MCKD-FD method is used to process the normal
vibration signal and fault vibration signal of rolling elements

VOLUME 9, 2021
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rolling elements.

of rolling bearings. Firstly, the VMD method is used to
decompose the normal vibration signal and fault vibration
signal into 5 IMFs. Time waveform of each IMF of the
normal vibration signal and fault vibration signal are shown
FIGURE 15 and FIGURE 16.

From FIGURE 15 and FIGURE 16, each IMF contains
different frequency components. In order to obtain 3 IMFs
with more fault information, it is necessary to calculate the
Kurtosis value of each IMF. The calculated results are shown
in TABLE 2 and TABLE 3.

According to Kurtosis criterion, IMF3, IMF4 and IMFS5 are
selected to reconstruct the vibration signal. The power spec-
trum of the reconstructed fault vibration signal of rolling
elements of rolling bearings is shown in FIGURE 17.

From FIGURE 17, the fault frequency fy (123Hz), and its
harmonics 2/3fy (82.03Hz) can be obtained. The frequency
component with the largest amplitude is 2/3fj, the amplitude
of fault frequency is not obvious. This phenomenon shows
that the VMD can effectively denoise weak fault signals,

VOLUME 9, 2021

TABLE 2. Kurtosis index of each IMF of normal vibration signal.

IMF1 IMF2 IMF3 IMF4 IMF5

Kurtosis index ~ 4.08 2.77 6.83 3.46 4.06

TABLE 3. Kurtosis index of each IMF of fault vibration signal of rolling
element.

IMF1 IMF2 IMF3 IMF4 IMFS
Kurtosis index 3.39 3.42 3.60 6.13 3.69
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FIGURE 17. Power spectrum of fault vibration signal of rolling elements
of rolling bearings using VMD.

but it is not enough to extract fault frequency. Therefore,
the MCKD is used to further process the reconstructed signal.

In order to illustrate the advantages of the
VMD-MCKD-FD for processing weak fault vibration sig-
nals, the fault vibration signal of rolling elements of rolling
bearings is processed by using EMD-MCKD-FD and EEMD-
MCKD-FD methods, and the obtained results are compared
with the results of the VMD-MCKD-FD. FIGUREI18(a)
is fault signal power spectrum of the EMD-MCKD-FD,
FIGUREI18(b) is fault signal power spectrum of the EEMD-
MCKD-FD, and FIGURE 18(c) is fault signal power spec-
trum of the VMD-MCKD-FD. According to Eq. (10),
the deconvolution period 7 is 96. L is selected as 200, and
M is selected as 5.

From FIGURE 18(a), 1/2f, (11.72Hz), 5.5f, (128.9Hz) and
4fo (492Hz) can obtained, the frequency component with the
largest amplitude is 1/2f.. From FIGURE 18(b), the fault
frequency and its harmonics can be obtained, but he obtained
fault frequency fy (123.7Hz) is not very close to the the-
oretical value(123Hz) and the frequency components with
the largest amplitude is also 1/2f, (11.72Hz), and the fault
frequency cannot be found. From FIGURE 18(c), the fault
frequency fy (123 Hz) has the largest amplitude, and its
harmonics can also be seen clearly. Therefore, although the
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FIGURE 18. Power spectrum of fault vibration signal of rolling elements
of rolling bearings using different methods.

EMD-MCKD-FD method and EEMD-MCKD-FD method
can also extract the fault frequency and its harmonics, but
the amplitude of fault frequency is not obvious in our experi-
ment. In contrast, the VMD-MCKD-FD can more effectively
extract the features of weak faults. By comparison, it is found
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that the VMD-MCKD-FD takes on better feature extraction
performance for the weak faults.

2) THE EFFECT OF DECONVOLUTION PERIOD T ON THE
MCKD

To illustrate the effect of the deconvolution period 7' on the
MCKD, the value of T is randomly selected as 150, but the
values of L and M have not changed, and then the same
method is used to process the reconstructed vibration signal.
The power spectrum of reconstructed vibration signal with a
wrong deconvolution period is shown in FIGURE 19.

From FIGURE 19, there does not occur fault fre-
quency or harmonic, and the frequency component with
the largest amplitude is 2f,(46.88Hz). Compared with the
processed signal power spectrum by using VMD-MCKD-
FD, the incorrect selection of deconvolution period 7" makes
the MCKD unable to find the impact period of the fault
signal, the fault information and noise are processed by
the filter together, so the fault frequency and its har-
monics are obviously shielded. This phenomenon further
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illustrates the importance of a suitable deconvolution
period T of the MCKD.

3) THE EFFECT OF VMD-MCKD-FD UNDER DIFFERENT
SPEED

In this section, the speed is selected as 1000r/min, and then
the experiment is carried out to verify the diagnosis effect of
the VMD-MCKD-FD for rolling elements under the different
speed. According to the information, the shaft rotation fre-
quency f can be calculated to be about 16.7Hz, and the fault
frequency fj of rolling elements is about 83.5Hz. According
to Eq. (10), the deconvolution period T is 144.

From FIGURE 20, the fault frequency fo (82.03Hz)
and its harmonics 3fy (246.1Hz) can be found. The
VMD-MCKD-FD can successfully extract the fault features
under different speed.

VII. CONCLUSION

In this paper, a novel rolling element fault diagnosis method
(VMD-MCKD-FD) is proposed. In addition, the influence of
different selections of the deconvolution period 7 on MCKD
also is analyzed and discussed. The VMD method is mainly
used to decompose non-linear and non-stationary vibration
signals of rolling elements of rolling bearings. After that,
the IMFs with larger kurtosis values are selected for recon-
structing the vibration signal. It not only avoids the selection
of k in the VMD, but also fully retains the information of
fault feature. The MCKD enhances the weak fault feature
of rolling elements. In here, the diagnosis results of the
EMD-MCKD-FD, EEMD-MCKD-FD and VMD-MCKD-
FD with different deconvolution periods 7' are compared.
The simulated and experimental results do not only prove
the effectiveness of the VMD-MCKD-FD, but also prove the
importance of the deconvolution period 7.

The value of T is calculated through theory, but the param-
eters in real working conditions are slightly different from
the theory. Therefore, it should consider how to adaptively
select the parameters, and further improve the effect of feature
extraction for the weak faults of rolling elements of rolling
bearings in the future.
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