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ABSTRACT Feature selection is one basic and critical technology for data mining, especially in current
‘‘big data era’’. Rough set theory (RST) is sensitive to noise in feature selection due to the strict condition of
equivalence relation. However, D-S evidence theory is flexible to measure uncertainty of information. This
paper introduces robust feature evaluation metrics ‘‘belief function’’ and ‘‘plausibility function’’ into feature
selection algorithm to avoid the defect that classification effect is affected by noise. First of all, similarity
between information values in an interval-valued information system (IVIS) is given and a variable parameter
to control the similarity of samples is introduced. Then, θ -lower approximation and θ -upper approximation
in IVIS are put forward. Next, belief function and plausibility function based on θ -lower approximation
and θ -upper approximation are put forward. Finally, four feature selection algorithms in an IVIS based on
D-S evidence theory are proposed. The experimental results on four real interval-valued datasets show that
the proposed metrics are robust to noise, and the proposed algorithms are more effective than the existing
algorithms.

INDEX TERMS Interval-valued data, IVIS, D-S evidence theory, belief function, plausibility function,
feature selection.

I. INTRODUCTION
A. RESEARCH BACKGROUND AND RELATED WORKS
Rough set theory (RST) is put forward by Pawlak [24], [25].
It is a significant method to deal with imprecision, fuzziness
and uncertainty. It also doesn’t need any prior informa-
tion beyond the data set that the problem needs to be pro-
cessed [17], [37]. RST, based on classification mechanism,
regards classification as equivalence relation in a specific
space, and equivalence relation constitutes the division of
space. The main idea of RST is to use the known knowl-
edge base to describe the imprecise or uncertain knowledge.
RST can effectively deal with the uncertainty of informa-
tion system (IS). In recent years, RST has attracted many
researchers’ attention, and its application is mostly related to
an IS [19]–[21], [44].

Another important method used to deal with uncertainty
in an IS is D-S evidence theory. It is originated by Demp-
ster’s concepts of lower and upper probabilities [3], and
extended into a theory by Shafer [33]. The theory is nowa-
days widely used for the objective and subjective uncertainty
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analysis [11], [12], [35]. The use of D-S evidence the-
ory in risk analysis has many advantages over the con-
ventional probabilistic approach. It provides convenient and
comprehensive way to handle uncertain problems includ-
ing imprecisely specified distributions, poorly known and
unknown correlation between different variables, modeling
uncertainty, small sample size, and measuring uncertainty.
The basic representational structure in this theory is a belief
structure. The primitive numeric measurements derived from
the belief structure are a dual pair of belief and plausibility
functions. Belief function and plausibility function can suc-
cessfully distinguish the difference between ‘‘uncertainty’’
and ‘‘don’t know’’, and satisfy the relativelyweaker condition
than probability theory.

Feature selection is an effective way to eliminate nega-
tive effects caused by redundant features. In the framework
of RST, feature selection is also called attribute reduction,
which is to find a minimal feature subset that provides the
same discriminating information as the whole set of features.
Specifically, some features in an IS are redundant. We want
to find a reduct that has the fewest features. Feature selection
in an IS mean deleting redundant features under keeping
the classification ability. The core step of feature selection
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is to construct an feature evaluation function. This function
can be used to select key representative features from high-
dimensional data. Thus, feature selection can simplify data
and reduce the computational complexity of machine learn-
ing. At present, this technology is widely applied in data
mining, pattern recognition, and other real-life fields [36].

Belief and plausibility functions in D-S evidence theory
can be used in feature selection. For example, Wu et al. [42]
discussed feature selection in complete decision systems
based on D-S evidence theory. Moreover, Wu [38] studied
knowledge reduction in incomplete ISs without decision with
evidence theory. Zhang et al. [49] proposed the concepts of
belief reduction and plausibility reduction in complete ISs
without decision.

An interval-valued information system (IVIS) means an IS
where the information values are interval numbers. In order
to study interval-valued data, some researchers have extended
RST and established a generalized model of single IS.
Dai et al. [9] introduced uncertainty measurement for an
IVIS based on α-weak similarity. Zhang et al. [48] presented
incremental updating of rough approximations in an IVIS
under attribute generalization. Leung et al. [18] brought up
the minimal attribute reduction method for an IVIS and
obtained all classification rules hidden in an IS through a
knowledge induction process. Xie et al. [44] considered new
measurements of uncertainty and information structures for
an IVIS. Yang et al. [46] investigated the dominance-based
rough set in an IVIS, which contains both incomplete and
imprecise evaluations of objects. Sakai et al. [29] developed a
rule generation prototype system for incomplete information
databases that can process IVISs.

In this paper, we introduce robust feature evaluation met-
rics ‘‘belief function’’ and ‘‘plausibility function’’ into feature
selection algorithms to avoid the defect that classification
effect is affected by noise in an IVIS. Similarity between
information values in an IVIS is established and then θ -lower
and θ -upper approximations in IVIS are presented. Second,
feature selection algorithms in an IVIS based onD-S evidence
theory are proposed. Finally, experiments are performed to
evaluate the robustness of the proposed metric and the perfor-
mance of the algorithms. Experimental results show that the
proposed metrics are robust to noise and the proposed feature
selection algorithms are effective.

This paper is organized as follows. In Section 2, we review
binary relations, IVISs and D-S evidence theory. In Section 3,
we study feature selection in an IVIS based on D-S evidence
theory and give the corresponding algorithms. In Section 4,
we perform numerical experiments and do effectiveness anal-
ysis of the proposed metrics. In Section 5, we evaluate the
performance of the given algorithms. Section 6 concludes the
paper.

The work flow of this paper is displayed in FIGURE 1.

II. PRELIMINARIES
The binary relation, IVIS and D-S evidence theory are briefly
introduced in the section.

FIGURE 1. CV-Values of belief measurement and plausibility
measurement on four interval-valued datasets.

In this paper, U = {u1, u2, . . . , un} and A =

{a1, a2, . . . , am} denote two non-empty finite sets, 2U

denotes the family of all subsets on U , |X | denotes the cardi-
nality of X ∈ 2U , δ = U × U denotes the universal relation
and 4 = {(u, u) : u ∈ U} denotes the identity relation.
For any X ∈ 2U , P(X ) = |X |

|U | =
|X |
n .

A. BINARY RELATION
R is a binary relation on U if R ⊆ U × U ,. If (x, y) ∈ R,
we also denote it by xRy.

Let R be a binary relation on U . Then R is called
(1) Reflexive, if xRx for any x ∈ U .
(2) Symmetric, if xRy implies yRx for any x, y ∈ U .
(3) Transitive, if xRy and yRz imply xRz for any x, y, z ∈ U .
R is called an equivalence relation on U , if R is reflexive,

symmetric and transitive. R is called a tolerance relation on
U , if R is reflexive and symmetric. Moreover, R is called a
universal relation on U if R = δ; R is said to be an identity
relation on U if R = 4.

B. INTERVAL-VALUED NUMBER
[R] = {m = [m−,m+] : m−,m+ ∈ R, m− ≤ m+} is called
an interval-valued number.

For any r ∈ R, express r = [r, r].
For any m, n ∈ [R], define
(1) m = n⇒ m− = n−,m+ = n+.
(2) m ≤ n ⇒ m− ≥ n−,m+ ≤ n+; m < n ⇒ m ≤ n,

m 6= n.
Definition 1 ([23]): Let m, n ∈ [R]. Then the possible

degree of m relative to n is defined as follows:

p(m, n) = min{1,max{
m+ − n−

(m+ − m−)+ (n+ − n−)
, 0}}.

Proposition 1 ([23]): The following properties hold:
(1) ∀ m, n ∈ [R], 0 ≤ p(m, n) ≤ 1;
(2) ∀ m ∈ [R], p(m,m) = 0.5;
(3) ∀ m, n ∈ [R], p(m, n)+ p(n,m) = 1.
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Definition 2 ([6]): Let m, n ∈ [R]. Then the similarity
degree of m and n is defined as follows:

s(m, n) = 1− |p(m, n)− p(n,m)|.

Proposition 2 ([6]): The following properties hold:
(1) ∀ m, n ∈ [R], s(m, n) = s(n,m);
(2) ∀ m, n ∈ [R], 0 ≤ s(m, n) ≤ 1;
(3) ∀ m, n ∈ [R], s(m, n) = 1 ⇒ m = n.
Example 1: Pick m = [4, 10] and n = [6, 9]. Then

p(m, n) = min{1,max{
10− 6

(10− 4)+ (9− 6)
, 0}} =

4
9
,

p(n,m) = min{1,max{
9− 4

(10− 4)+ (9− 6)
, 0}} =

5
9
,

s(m, n) = 1− |p(m, n)− p(n,m)| = 1− |
4
9
−

5
9
| =

8
9
.

C. AN IVIS
Definition 3 ([25]): Let U be a finite set of objects and A a

finite set of attributes. Then the ordered pair (U ,A) is referred
to as an IS, if a ∈ A is able to decide a function a : U → Va,
where Va = {a(u) : u ∈ U}.

Let (U ,A) be an IS and B ⊆ A. Then we can define

ind(B) = {(u, v) ∈ U × U : ∀ a ∈ A, a(u) = a(v)}.

Obviously, ind(B) is an equivalence relation on U .
Denote

[u]B = {v ∈ U : (u, v) ∈ ind(B)}.

Then [u]B is known as the equivalence class of the object u
under the equivalence relation ind(B).
Definition 4 ([6]): Let (U ,A) be an IS. Then (U ,A) called

an IVIS, for ∀ a ∈ A and u ∈ U, a(u) is an interval-valued
number. If B ⊆ A, then (U ,B) is known as the subsystem of
(U ,A).
Definition 5: Let (U ,A) be an IVIS. Given B ⊆ A and θ ∈

[0, 1]. Define

RθB = {(u, v) ∈ U × U : ∀ a ∈ B, s(a(u), a(v)) ≥ θ}.
Clearly, RθB is a tolerance relation on U and RθB =

⋂
a∈B

Rθa

where Rθ
{a} = Rθa .

Definition 6: Let (U ,A) be an IVIS. Given θ ∈ [0, 1] and
B ⊆ A. Then ∀ u ∈ U, the θ -tolerance class of u under RθB is
defined as

RθB(u) = {v ∈ U : (u, v) ∈ R
θ
B}.

Clearly, RθB(u) =
⋂
a∈B

Rθa(u).

Definition 7: Let (U ,A) be an IVIS. Given X ∈ 2U ,
B ⊆ A and θ ∈ [0, 1]. Suppose that RθB is the tolerance
relation induced by the subsystem (U ,B) with respect to θ .
Based on the approximation space (U ,RθB), we define a pair
of operations RθB and R

θ
B as follows:

RθB(X ) = {u ∈ U : R
θ
B(u) ⊆ X},

RθB(X ) = {u ∈ U : R
θ
B(u) ∩ X 6= ∅}.

Then RθB(X ) and RθB(X ) are called θ -lower and θ -upper

approximations of X, respectively. In general, RθB and R
θ
B are

named as θ -rough approximations of X.
Theorem 1: Let (U ,A) be an IVIS. Then the following

properties hold.

(1) RθB(∅) = RθB(∅) = ∅, R
θ
B(U ) = RθB(U ) = U.

(2) RθB(X ) ⊆ X ⊆ RθB(X ).

(3) X ⊆ Y ⇒ RθB(X ) ⊆ RθB(Y ), R
θ
B(X ) ⊆ RθB(Y ).

(4) If B1 ⊆ B2 ⊆ A, then ∀ θ ∈ [0, 1] and X ∈ 2U ,

RθB1 (X ) ⊆ RθB2 (X ), R
θ
B2
(X ) ⊆ RθB1 (X ).

(5) If 0 ≤ θ1 ≤ θ2 ≤ 1, then ∀ B ⊆ A and X ∈ 2U ,

Rθ2B (X ) ⊆ Rθ1B (X ), R
θ1
B (X ) ⊆ Rθ2B (X ).

(6) RθB(X ∩ Y ) = RθB(X ) ∩ R
θ
B(Y ); RθB(X ∪ Y ) = RθB(X ) ∪

RθB(Y ).

(7) RθB(U −X ) = U −RθB(X ); RθB(U −X ) = U −RθB(X ).
Proof: Obviously. �

D. D-S EVIDENCE THEORY
D-S evidence theory, also called ‘‘Evidence theory’’ or
‘‘Belief function theory’’, is treated as a promising method of
dealing with uncertainty in IS. Basic representational struc-
ture in D-S evidence theory is a belief structure [40].
Definition 8 ([40]): Let U be a non-empty finite set, a set

functionm : 2U → I is referred to as a crisp basic probability
assignment if it satisfies the following conditions:

m(∅) = 0,
∑
A⊆U

m(A) = 1.

A set X ∈ 2U with nonzero basic probability assignment
is referred to as a focal element. We denote the family of all
focal elements of m byM. The pair (M,m) is called a belief
structure on U. A set function Bel : 2U → I is referred to as
a belief function if

Bel(X ) =
∑
A⊆X

m(A), ∀ X ∈ 2U .

A set function Pl : 2U → I is referred to as a plausibility
function if

Pl(X ) =
∑

A∩X 6=∅

m(A), ∀ X ∈ 2U .

‘

A belief function Bel : 2U → I can also be equivalently
defined by axioms. That is, Bel is a belief function if it
satisfies the following axioms:

1) Bel(∅) = 0;
2) Bel(U ) = 1;
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3) For all Xi ∈ 2U , i = 1, 2, . . . , k ,

Bel(
k⋃
i=1

Xi) ≥
∑

∅6=J⊆{1,2,...,k}

(−1)|J |+1Bel(
⋂
i∈J

Xi).

Belief and plausibility functions based on the same belief
structure are connected by the dual property

Pl(X ) = 1− Bel(∼ X ),

and furthermore, Bel(X ) ≤ Pl(X ), for all X ∈ 2U .
A basic probability assignment m can also be represented

by its belief function Bel by using the following Möbius
transform:

m(X ) =
∑
Y⊆X

(−1)|X\Y |Bel(Y ), ∀ X ∈ 2U

III. FEATURE SELECTION IN AN IVIS BASED ON
D-S EVIDENCE THEORY
In this section, we study feature selection in an IVIS based on
D-S evidence theory.

A. BELIEF REDUCTION AND PLAUSIBILITY REDUCTION
Theorem 2: Let (U ,A) be an IVIS. Given B ⊆ A and

θ ∈ [0, 1]. ∀ X ∈ 2U , define

BelθB(X ) = P(RθB(X )), Pl
θ
B(X ) = P(RθB(X )).

Then BelθB and Pl
θ
B are θ -belief and θ -plausibility functions

on U, respectively and the corresponding basic probability
assignment is

mθB(Y ) = P(jθB(Y )), ∀ Y ∈ 2U ,

where jθB(Y ) = {u ∈ U : R
θ
B(u) = Y }.

Proof:
(1) Since jθB(∅) = ∅, we know mθB(∅) =

|∅|

n = 0.
∀ u ∈ U , pick Y ∗ = RθB(u), we have u ∈ jθB(Y

∗).
Then u ∈

⋃
Y∈ 2U j

θ
B(Y ). Hence U ⊆

⋃
Y∈ 2U j

θ
B(Y ). Since⋃

Y∈ 2U j
θ
B(Y ) ⊆ U , we have⋃

Y∈ 2U

jθB(Y ) = U .

Note that Y1 6= Y2, jθB(Y1) ∩ j
θ
B(Y2) = ∅. This follows that∑

Y∈ 2U

|jθB(Y )| = n.

Then ∑
Y∈ 2U

mθB(Y ) =
∑
Y∈ 2U

|jθB(Y )|
n
= 1.

So,mθB is a crisp basic probability assignment according to
Definition 8.

(2) ∀ X ∈ 2U , u ∈ RθB(X ), by Definition 7, we have
RθB(u) ⊆ X . Denote RθB(u) = Y ∗. Then we have u ∈ jθB(Y

∗)
and Y ∗ ⊆ X . So u ∈

⋃
Y⊆X j

θ
B(Y ).

Hence

RθB(X ) ⊆
⋃
Y⊆X

jθB(Y ).

∀ X ∈ 2U , u ∈
⋃

Y⊆X j
θ
B(Y ), we have ∃ Y ∗ ⊆ X , u ∈

jθB(Y
∗). Then RθB(u) = Y ∗ and Y ∗ ⊆ X . This follows that

RθB(u) ⊆ X . So u ∈ RθB(X ).
Hence ⋃

Y⊆X

jθB(Y ) ⊆ RθB(X ).

Thus

RθB(X ) =
⋃
Y⊆X

jθB(Y ).

Note that Y1 6= Y2, jθB(Y1) ∩ j
θ
B(Y2) = ∅. This follows that

∀ X ∈ 2U ,

|RθB(X )| =
∑
Y⊆X

|jθB(Y )|.

Then we obtain ∀ X ∈ 2U ,

|RθB(X )|

n
=

∑
Y⊆X

|jθB(Y )|
n

.

Hence

BelθB(X ) =
∑
Y⊆X

mθB(Y ).

By Definition 8, BelθB is a belief function.
(3) ∀X ∈ 2U , u ∈ RθB(X ), byDefinition 7, we haveR

θ
B(u)∩

X 6= ∅. Denote RθB(u) = Y ∗. Then we have u ∈ jθB(Y
∗) and

Y ∗ ∩ X 6= ∅. So u ∈
⋃

Y∩X 6=∅ j
θ
B(Y ).

Hence

RθB(X ) ⊆
⋃

Y∩X 6=∅

jθB(Y ).

∀ X ∈ 2U , u ∈
⋃

Y∩X 6=∅ j
θ
B(Y ), we have ∃ Y

∗
∩ X 6= ∅,

u ∈ jθB(Y
∗). Then RθB(u) = Y ∗ and Y ∗ ∩ X 6= ∅. This follows

that RθB(u) ∩ X 6= ∅. So u ∈ R
θ
B(X ).

Hence ⋃
Y∩X 6=∅

jθB(Y ) ⊆ RθB(X ).

Thus

RθB(X ) =
⋃

Y∩X 6=∅

jθB(Y ).

Note that Y1 6= Y2, jθB(Y1) ∩ j
θ
B(Y2) = ∅. This follows that

∀ X ∈ 2U ,

|RθB(X )| =
∑

Y∩X 6=∅

|jθB(Y )|.
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Then we obtain ∀ X ∈ 2U ,

|RθB(X )|
n
=

∑
Y∩X 6=∅

|jθB(Y )|
n

.

Hence

PlθB(X ) =
∑

Y∩X 6=∅

mθB(Y ).

By Definition 8, PlθB is a plausibility function. �
Proposition 3: Let (U ,A) be an IVIS. If C ⊆ B ⊆ A, then
∀ X ∈ 2U and θ ∈ [0, 1],the following inequalities hold,

BelθC (X ) ≤ Bel
θ
B(X ) ≤ P(X ) ≤ Pl

θ
B(X ) ≤ Pl

θ
C (X ).

Proof: ∀ X ∈ 2U , by Theorem 1(2), we have

RθB(X ) ⊆ X ⊆ RθB(X )

.
Then

|RθB(X )| ≤ |X | ≤ |R
θ
B(X )|

.
So

BelθB(X ) ≤ P(X ) ≤ Pl
θ
B(X ).

Since C ⊆ B, by Theorem 1(4), we have

RθC (X ) ⊆ RθB(X ), R
θ
B(X ) ⊆ RθC (X ).

Then

|RθC (X )| ≤ |R
θ
B(X )|, |R

θ
B(X )| ≤ |R

θ
C (X )|.

So

BelθC (X ) ≤ Bel
θ
B(X ), PlθB(X ) ≤ Pl

θ
C (X ).

Thus ∀ X ∈ 2U ,

BelθC (X ) ≤ Bel
θ
B(X ) ≤ P(X ) ≤ Pl

θ
B(X ) ≤ Pl

θ
C (X ).

�
In this paper, denote

U/RθA = {R
θ
A(u) : u ∈ U} = {D1,D2, . . . ,Dt }.

For any B ⊆ A, put

Belθ (B) =
t∑
i=1

BelθB(Di),

Plθ (B) =
t∑
i=1

PlθB(Di).

Definition 9: Let (U ,A) be an IVIS. Given B ⊆ A and
θ ∈ [0, 1].
(1) B is referred to as a classical θ -consistent set of A,

if RθB = RθA.
(2) B is referred to as a θ -belief consistent set of A, if

∀ i, BelθB(Di) = BelθA(Di).

(3) B is referred to as a θ -plausibility consistent set
of A, if

∀ i, PlθB(Di) = PlθA(Di).

Definition 10: Suppose that (U ,A) is an IVIS. Given
a ∈ B ⊆ A and θ ∈ [0, 1].

(1) a is called θ -independent in B, if RθB 6= RθB−{a}.
(2) a is called θ -belief independent in B, if ∃ i, BelθB(Di) 6=

BelθB−{a}(Di).
(3) a is called θ -plausibility independent in B, if ∃ i,

PlθB(Di) 6= PlθB−{a}(Di).
Definition 11: Assume that (U ,A) is an IVIS. Given B ⊆ A

and θ ∈ [0, 1].
(1)B is called θ -independent, if ∀ a ∈ B, a is θ -independent

in B.
(2) B is called θ -belief independent, if ∀ a ∈ B, a is θ -belief

independent in B.
(3) B is called θ -plausibility independent, if ∀ a ∈ B, a is

θ -plausibility independent in B
Definition 12: Let (U ,A) be an IVIS. Given B ⊆ A and

θ ∈ [0, 1].
(1) B is called a θ -reduct of A, if B is both θ -consistent and

θ -independent.
(2) B is called a θ -belief reduct of A, if B is both θ -belief

consistent and θ -belief independent.
(3) B is called a θ -plausibility reduct of A, if B is both

θ -plausibility consistent and θ -plausibility independent.
In this paper, the family of all θ -consistent (resp.,

θ -belief, θ -plausibility) subsets of A is denoted by coθ (A)
(resp., coθb(A), co

θ
p(A)), and the family of all θ -reducts (resp.,

θ -belief reducts, θ -plausibility reducts) A is denoted by
redθ (A) (resp., redθb (A), red

θ
p (A)).

Obviously,

B ∈ redθ (A) ⇐⇒ B ∈ coθ (A) and ∀ C ⊂ B,C 6∈ coθ (A);

B ∈ redθb (A) ⇐⇒ B ∈ coθb(A) and ∀ C ⊂ B,C 6∈ coθb(A);

B ∈ redθp (A) ⇐⇒ B ∈ coθp(A) and ∀ C ⊂ B,C 6∈ coθp(A).

Theorem 3: Let (U ,A) be an IVIS. Given B ⊆ A and
θ ∈ [0, 1], then the following conditions are equivalent:

(1) B ∈ coθ (A);
(2) B ∈ coθb(A);
(3) Belθ (B) = Belθ (A).
Proof: (1)⇒ (2).

Suppose B ∈ coθ (A), we have RθB = RθA.
Then ∀ u ∈ U ,RθB(u) = RθA(u).
This implies that ∀ i,

RθB(u) ⊆ Di ⇔ RθA(u) ⊆ Di.

Then ∀ u ∈ U ,

u ∈ RθB(Di)⇔ u ∈ RθA(Di).

So ∀ i,

|RθB(Di)| = |R
θ
A(Di)|.
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Hence ∀ i,

BelθB(Di) = BelθA(Di).

By Definition 9, B ∈ coθb(A).
(2)⇒ (3).
Suppose B ∈ coθb(A). By Definition 9, ∀ i, we have

BelθB(Di) = BelθA(Di).

Then
t∑
i=1

BelθB(Di) =
t∑
i=1

BelθA(Di).

Thus

Belθ (B) = Belθ (A).

(3)⇒ (1).
Suppose Belθ (B) = Belθ (A). Then

t∑
i=1

BelθB(Di) =
t∑
i=1

BelθA(Di).

This implies that
t∑
i=1

(BelθA(Di)− Bel
θ
B(Di)) = 0.

By Proposition 3, ∀ i, BelθA(Di)− Bel
θ
B(Di) ≥ 0.

Then ∀ i,

BelθA(Di) = BelθB(Di).

So ∀ i,

|RθB(Di)| = |R
θ
A(Di)|.

Since B ⊆ A, by Theorem 1(4), we have ∀ i,

RθB(Di) ⊆ RθA(Di).

Hence ∀ i,

RθB(Di) = RθA(Di).

This implies that ∀ u ∈ U , ∀ i,

RθB(u) ⊆ Di ⇔ RθA(u) ⊆ Di.

∀ u ∈ U , we have

RθA(u) ⊆ RθB(u).

Put RθA(u) = Di∗ . Then RθA(u) ⊆ Di∗ . This implies that
RθB(u) ⊆ D∗i .
So, ∀ v ∈ RθB(u), we obtain v ∈ D

∗
i . Then v ∈ R

θ
A(u).

Hence

RθB(u) ⊆ RθA(u).

Thus

RθB(u) = RθA(u).

By Definition 9, B ∈ coθ (A). �

Corollary 1: Let (U ,A) be an IVIS. Given B ⊆ A and θ ∈
[0, 1], then the following conditions are equivalent:

(1) B ∈ redθ (A);
(2) B ∈ redθb (A);
(3) Belθ (B) = Belθ (A) and ∀ C ⊂ B,Belθ (C) 6= Belθ (B).
Proof: It immediately follows from Theorem 3 and

Definition 12. �
Theorem 4: Let (U ,A) be an IVIS. Given B ⊆ A and

θ ∈ [0, 1], then coθ (A) ⊆ coθp(A).
Proof:

Suppose B ∈ coθ (A), we have RθB = RθA.
Then ∀ u ∈ U ,RθB(u) = RθA(u).
This implies that ∀ i ∈ {1, 2, . . . , t},

RθB(u) ∩ Di 6= ∅ ⇔ RθA(u) ∩ Di 6= ∅.

That is ∀ u ∈ U ,

u ∈ RθB(Di)⇔ u ∈ RθA(Di).

Then ∀ i, RθB(Di) = RθA(Di).
Hence ∀ i,

PlθB(Di) = PlθA(Di).

By Definition 9, B ∈ coθp(A).
Hence coθ (A) ⊆ coθp(A). �
Definition 13: Let (U ,A) be an IVIS. Given B ⊆ A,

θ ∈ [0, 1] and a ∈ A− B.
(1) θ -belief significance of the feature a relative to B is

defined as

sigθb(a,B) = Belθ (B)− Belθ (B− {a}).

(2) θ -plausibility significance of the feature a relative to B
is defined as

sigθp(a,B) = Plθ (B− {a})− Plθ (B).
We stipulate

sigθb(a,∅) = 0, sigθp(a,∅) = 0.

Theorem 5: Let (U ,A) be an IVIS. Suppose θ ∈ [0, 1] and
B ⊆ A, then the following conditions are equivalent:

(1) B ∈ redθb (A);
(2) Belθ (B) = Belθ (A) and ∀ a ∈ B, sigθb(a,B) > 0.
Proof: It can be proved by Theorem 3. �

Theorem 6: Let (U ,A) be an IVIS. Suppose θ ∈ [0, 1] and
B ⊆ A, then the following conditions are equivalent:

(1) B ∈ redθp (A);
(2) Plθ (B) = Plθ (A) and ∀ a ∈ B, sigθp(a,B) > 0.
Proof: It can be proved by Theorem 3. �

B. FEATURE SELECTION ALGORITHMS IN AN IVIS
Feature selection algorithms based on θ -belief and
θ -plausibility functions are given as follows.

Algorithm 1 uses belief function to obtain the feature
which is added to the current selected coordinated set in each
loop. This algorithm terminates when the addition of any
remaining feature does not increase the evaluating function.
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Algorithm 1 θ -Belief Feature Selection Algorithm in an
IVIS
input : An IVIS (U ,A) and θ ∈ [0, 1].
output : One θ -belief reduct B.
begin

Let B← ∅,
start = 1.
Compute Belθ (A).
while start do

for each a ∈ A− B do
if Belθ (B ∪ {a}) 6= Belθ (A) then
B← B ∪ {a}

else
start = 0

end if
end for

end while
return B

end

Algorithm 2 θ -Plausibility Feature Selection Algorithm
in an IVIS
input : An IVIS (U ,A) and θ ∈ [0, 1].
output : One θ -plausibility reduct B.
begin

Let B← A,
start = 1.
Compute Plθ (A).
while start do

for each feature a ∈ B do
if Plθ (B− {a}) = Plθ (B) then
B← B− {a}

else
start = 0

end if
end for

end while
return B

end

For attribute set A, the worst search time for a reduct will
result in |A|(|A| + 1)/2 evaluations using the evaluation
function. So, the overall time complexity of Algorithm 1
is O(|A|2).
Algorithm 2 applies plausibility function to determining

the feature which is thrown away from the current selected
coordinated set in each loop. This algorithm terminates when
reducing any remaining features increase the evaluation func-
tion. For attribute set A, the worst search time for a reduct will
also result in |A|(|A| + 1)/2 evaluations using the evaluation
function. So, the overall time complexity of Algorithm 2 is
also O(|A|2).
We can give another two feature selection algorithms based

on θ -belief significance and θ -plausibility significance in an
IVIS (see Algorithms 3 and 4).

For Algorithms 3 and 4, the worst search time for a reduct
will result in |A|(|A|+1)(|A|+2)/6 evaluations using the eval-
uation function. So the time complexity of Algorithms 3-4
is O(|A|3).

Algorithm 3 An Algorithm of θ -Reduction Based on
θ -Belief Significance in an IVIS
input : An IVIS (U ,A) and θ ∈ [0, 1].
output : One θ -belief reduct B.
begin

Initialize the reduct to the empty set, i.e., B← ∅,
while Belθ (B) 6= Belθ (A) do
Belθ (B ∪ {â})= max

a∈A−B
Belθ (B ∪ {a}), where â ∈ A−B.

B← B ∪ {â}
end while
return B

end

Algorithm 4 An Algorithm of θ -Reduction Based on
θ -Plausibility Significance in an IVIS
input : An IVIS (U ,A) and θ ∈ [0, 1].
output : One θ–plausibility reduct B.
begin

Initialize the reduct to the universal set, i.e., B← A,
Plθ (B− {â}) = min

a∈B
Plθ (B− {a}), where â ∈ B.

while Plθ (B− {â}) = Plθ (A) do
B← B− {â}
Plθ (B− {â}) = min

a∈B
Plθ (B− {a}), where â ∈ B.

end while
return B

end

IV. NUMERICAL EXPERIMENTS AND EFFECTIVENESS
ANALYSIS OF THE PROPOSED METRICS
A. MONOTONICITY ANALYSIS
In order to test the proposed belief and plausibility functions,
we apply them to four real-life interval-valued datasets which
are shown in TABLE 1.

TABLE 1. Four interval-valued datasets from the real world.

For the dataset Car [2], let Ci = {a1, . . . , ai} (i =
1, . . . , 7). And for each i, Belθ (Ci) and Plθ (Ci) denote the
belief measurement and plausibility measurement of subsys-
tem (U ,Ci), respectively. Then the two measurement sets on
the dataset Car are defined as follows:

XBelθ (Car) = {Bel
θ (C1), . . . ,Belθ (C7)},

XPlθ (Car) = {Pl
θ (C1), . . . ,Plθ (C7)},

For the dataset Face [1], let Fi = {a1, . . . , ai} (i =
1, . . . , 6). And for each i, Belθ (Fi) and Plθ (Fi) denote the
belief measurement and plausibility measurement of subsys-
tem (U ,Fi), respectively. Then the two measurement sets on
the dataset Face are defined as follows:

XBelθ (Face) = {Bel
θ (F1), . . . ,Belθ (F6)},

XPlθ (Face) = {Pl
θ (F1), . . . ,Plθ (F6)},
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For the dataset Fish [16], let Yi = {a1, . . . , ai} (i =
1, . . . , 13). And for each i, Belθ (Yi) and Plθ (Yi) denote the
belief measurement and plausibility measurement of subsys-
tem (U ,Yi), respectively. Then the two measurement sets on
the dataset Fish are defined as follows:

XBelθ (Fish) = {Bel
θ (Y1), . . . ,Belθ (Y13)},

XPlθ (Fish) = {Pl
θ (Y1), . . . ,Plθ (Y13)},

For the dataset Water [26], let Wi = {a1, . . . , ai} (i =
1, . . . , 48). And for each i, Belθ (Wi) and Plθ (Wi) denote the
belief measurement and plausibility measurement of subsys-
tem (U ,Wi), respectively. Then the two measurement sets on
the dataset Water are defined as follows:

XBelθ (Water) = {Bel
θ (W1), . . . ,Belθ (W48)},

XPlθ (Water) = {Pl
θ (W1), . . . ,Plθ (W48)},

Measurements of belief and plausibility on four interval-
valued datasets are shown in FIGUREs 2-5.

FIGURE 2. Measurements of Belief and Plausibility on dataset Car.

From FIGUREs 2-5, the following conclusions can be
obtained:

(1) Belief measurement increases monotonically with the
increase of the number of features.

(2) Plausibility measurement decreases monotonically
with the increase of the number of features.

(3) The uncertainty of an IVIS decreases with the increase
of the number of features.

(4) Belief function and plausibility function can be used to
measure the uncertainty of an IVIS.

B. DISPERSION ANALYSIS
Standard deviation is mainly used to measure the disper-
sion of numerical data. The larger the standard deviation,
the higher the dispersion of the data. On the contrary, it means
that the dispersion of data is lower. In this paper, the standard
deviation coefficient is applied for effectiveness analysis of
the proposed measurements.

LetX = {x1, . . . , xn} be a data set. Then arithmetic average
value, standard deviation and standard deviation coefficient

of X are denoted by x,σ (X ) and CV (X ), respectively. They
are defined as follows:

x =
1
n

n∑
i=1

xi, σ (X ) =

√√√√1
n

n∑
i=1

(xi − x)2, CV (X ) =
σ (X )
x
.

According to the above formula, we calculate the
CV -values of belief measurement and plausibility measure-
ment on four interval-valued datasets. The results are shown
in FIGURE 6.

FIGURE 6 shows that the CV -values of Plθ (B) are much
larger than the CV -values of Belθ (B) on datasets Fish and
Water, but there is little difference between them on datasets
Car and Face This is to say, the dispersion of Belθ (B) is
small, so Belθ (B) has the better performance in measuring
the uncertainty of an IVIS than Plθ (B).

C. CORRELATION ANALYSIS
In statistics, Pearson correlation coefficient is used to mea-
sure the linear correlation between two data sets.

Suppose that X = {x1, . . . , xn} and Y = {y1, . . . , yn} are
two data sets. Pearson correlation coefficient between X and
Y , denoted by r(X ,Y ), is defined as

r(X ,Y ) =

n∑
i=1

(xi − x)(yi − y)√
n∑
i=1

(xi − x)2
√

n∑
i=1

(yi − y)2
,

where x = 1
n

n∑
i=1

xi, y = 1
n

n∑
i=1

yi.

Obviously,

−1 ≤ r(X ,Y ) ≤ 1.

The correlation degree between X and Y can be obtained
according to TABLE 2.

TABLE 2. Different degrees of correlation between X and Y .

r-values between belief measurement and plausibility
measurement are given on each of four interval-valued
datasets according to the above equation. The results are
shown in TABLEs 3-6.

TABLEs 3-6 show that the correlation between belief
measurement and plausibility measurement is MNC on the
dataset Water, while the correlation between belief measure-
ment and plausibility measurement is HNC on the datasets
Car, Face and Fish.
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FIGURE 3. Measurements of Belief and Plausibility on dataset Face.

FIGURE 4. Measurements of Belief and Plausibility on dataset Fish.

TABLE 3. r -values between belief measurement and plausibility
measurement on dataset Car.

TABLE 4. r -values between belief measurement and plausibility
measurement on dataset Face.

TABLE 5. r -values between belief measurement and plausibility
measurement on dataset Fish.

V. PERFORMANCE ANALYSIS OF FEATURE
SELECTION ALGORITHMS
In order to verify the performance of the proposed fea-
ture selection algorithms, they are applied to four real

TABLE 6. r -values between belief measurement and plausibility
measurement on dataset Water.

interval-valued datasets described in TABLE 1. Interval-
valued data can be regarded as a kind of data with noise.
Since there are very few feature selection algorithms for
interval-valued data, we only compare our algorithm with
the algorithm in reference [7]. We compare the classification
accuracy of all feature selection results. The classification
accuracy of all experiments is the result of 10-fold cross
validation.

Classical classifiers cannot classify interval-valued data.
In this paper, we transform KNN (K -Nearest Neighbors) to
classify interval-valued datasets by redefining the distance
between two samples.
Definition 14: Let X = (x1, x2, . . . , xt ) and Y =

(y1, y2, . . . , yt ) be two samples of interval-valued dataset,
where both xi and yi are interval numbers at the i-th feature.
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FIGURE 5. Measurements of Belief and Plausibility on dataset Water.

FIGURE 6. CV-Values of belief measurement and plausibility measurement on four interval-valued datasets.

TABLE 7. The results of feature selection and classification accuracy of our algorithm on four interval-valued datasets.

TABLE 8. The results of feature selection and classification accuracy of the algorithm in reference [7] on four interval-valued datasets.

Then the distance between X and Y is defined as follows:

d(X ,Y ) =

√√√√ t∑
i=1

(p(xi, yi)− p(yi, xi))2

If the features of dataset are disordered in each search,
the algorithms may produce different reduction results. This
paper only shows the results of a random search of all
four datasets using Algorithm 1. If our algorithm can show
good performance on four datasets, it can further prove the
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superiority of our algorithm because of the results of a search
in which the order of features is randomly arranged.

We use our algorithm and the algorithm in reference [7]
to select features from four interval-valued datasets in
TABLE 1. The value of parameter θ affects the result of
feature selection. The value of parameter θ is set to 0.2 in this
paper. The results of feature selection and the corresponding
classification accuracy are listed in TABLEs 7 and 8.

The proposed algorithm not only has higher classification
accuracy, but also selects fewer features than the algorithm
in reference [7], as shown in TABLEs 7 and 8. This fully
confirms that the proposed algorithm is robust to noise.

VI. CONCLUSION AND FUTURE WORK
Interval-valued data is difficult to deal with and can be con-
sidered as a kind of data with noise. Based on D-S evidence
theory, this paper has proposed two new metrics to measure
the uncertainty in IVIS, and applied them to feature selection
for interval-valued data to solve the problem of noise sensi-
tivity of RST. The experimental results on four real interval-
valued datasets have showed that the proposed metrics are
robust to noise, and the proposed feature selection algorithms
are efficiency and accuracy than other algorithms based on
RST. Our findings provide a new idea for feature selection
for interval-valued data. In the future, we will study the
optimization of parameter θ in the proposed feature selection
algorithms.
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