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ABSTRACT As a promising paradigm, computation offloading technology can offload computing tasks
to multi-access edge computing (MEC) servers, which is an appealing choice for resource-constrained
terminal devices to reduce their computational effort. However, due to limited resources, one crucial research
challenge for computation offloading is to design the appropriate offloading policy to determine which
tasks should be offloaded in some complex circumstances. In this paper, we study the offloading decision
problem in a software-defined networking (SDN) drivenMEC environment with multiple users and multiple
servers. To ensure that end-users do not abuse the computing resources in the MEC system, we formulate
the profit of MEC servers as our optimization objective. We jointly optimize the selection of MEC servers,
the size of offloading data, and the price of MEC computing service to maximize the profit of MEC servers.
However, considering the dynamic and stochastic of end-users, it is challenging to obtain the optimal policy
in such aMEC environment. We apply deep reinforcement learning (DRL) and Game theory to our proposed
approach. Specifically, we propose a proximal policy optimization (PPO) reinforcement learning framework
to tackle the selection ofMEC servers. Secondly, a two-step optimization problem is formulated to determine
the size of offloading data and the pricing of computing services. The optimal values of those two were
determined by achieving the Nash equilibrium of the strategy game between end-users. Extensive simulation
results prove that our proposal has a better performance than existing solutions in convergence time and
stability.

INDEX TERMS Edge computing, offloading decision, Markov decision process, deep reinforcement
learning, game theory, Nash equilibrium.

I. INTRODUCTION
Driven by the Internet of Things (IoT) and 5G networks,
mobile computing has seen a paradigm shift recently, from
centralized cloud computing to multi-access edge computing
(MEC) [1]. Because of the advantages of low latency, mobile
energy saving, context awareness, privacy/security enhance-
ment, etc., edge computing has stimulated extensive efforts
in academia and industry to develop this technology [2]. The
rapid development of MEC technology has paved the way for
integrating MEC servers as intelligent entities into IoT and
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5G networks [3]. The architecture of the multi-access edge
computing network is depicted in Figure 1.

Although a series of proposedMEC offloading approaches
can significantly enhance user’s computing power, develop-
ing an efficient and reliable edge computing system remains
challenging. Those challenges include architecture design,
mobility management, security, QoS and QoE compliant ser-
vices, content caching, and computation offloading [4]. Due
to some growing problems, including but not limited to limi-
tations of resources, dynamic and stochastic of the end-users,
scalability, reliability, security, and privacy, the offloading
decision is considered one of the most challenging prob-
lems of MEC. Therefore, designing an efficient offloading
approach is necessary to determine which tasks should be
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FIGURE 1. The architecture of multi-access edge computing network.

offloaded to the MEC servers. However, most of the existing
work could only achieve the entire operation of the system by
centralized control [5], [6].

At present, more and more literature [7]–[9] shows that
researchers apply reinforcement learning (RL) to the offload-
ing decision in the MEC environment, which is suitable
for the dynamic and stochastic of mobile devices. How-
ever, most RL-based offloading approaches are designed by
Q-learning and Deep Q-Network algorithms, which do not
have good performances in a complex MEC offloading envi-
ronment. In RL-based approaches, it takes time for the agent
to explore and learn the policy to take appropriate action to
get higher cumulative rewards, depending on the state-space
of the problems. If the dimensions of states and actions
increase, exploration and learning will become considerably
time-intensive [10].

Game theory is an effective theoretical framework to ana-
lyze the interaction between different participants acting on
their benefits. Since the game theory approaches explore
the best policy in the current situation, which seems to be
more suitable for the dynamic behavior of mobile equip-
ment, any participant has no incentive to deviate unilat-
erally. Due to its broad prospects, recent research applies
game theory to edge computing offloading decisions in the
MEC environment. Game theory provides end-users with
enhanced flexibility and allows users tomake their computing
offloading decisions autonomously in a distributed manner
[11], making a decentralized computing offloading approach
possible. In addition, in the game theory approach, it is
assumed that end-users can effectively make decisions based
on local observations without obtaining global information
with low complexity for optimization purposes. Moreover,
game theory approaches can be easily analyzed by ubiquitous
mathematical tools [12]. The main advantage of game theory
lies in its distributed nature, which can match multi-user
offloading scenarios. However, game theory can only guaran-
tee theNash equilibrium,whichmay not be the global optimal
solution.

Edge computing is a physical infrastructure that can bring
computing, storage, and energy resources closer to the end-
user, device, and source of data which significantly reduces

latency and the computational effort of end-devices. How-
ever, we have found that deploying computing infrastruc-
ture near end-users cannot solve all technical challenges
well. In recent years, software-defined networking (SDN),
as another significant trend in networking, is taken into
account by tons of researchers [13]. SDN is by far the most
promising proposal for programmable networks. It sepa-
rates the control plane from the data plane and enables pro-
grammable control mechanisms [14]. The control mechanism
provided by SDN can reduce the complexity of network
architecture, which is suitable for the MEC environment.
In [15], the capabilities of SDN are efficiently and effectively
used to address computation offloading problems such as
the selection of MEC server, the routing of offloading data,
announcing pricing, and controlling the smooth completion
of the MEC system operations in the MEC environment.
In [16], a fog computing architecture based on SDN was
proposed to select a computing mode for each end user’s
computing task, determining where the tasks are executed.

This paper fills the research as mentioned above gaps
by proposing an approach based on Game theory and deep
reinforcement learning (DRL). However, challenges arise
due to partial offloading in factual circumstances. Specif-
ically, we consider that task is partible when we model
the offloading problem, which is different from the simple
binary offloading mode considered in existing work [17]. It is
noted that our study refers to the model proposed by existing
research [18].

The main contributions of our proposal that differ-
entiate it from the existing works are summarized as
follows.

1) Our proposal studies the offloading decision-making
problem in the SDN-driven MEC environment with
multi-user and multi-server. We formulate maximizing
the MEC servers’ profit as the optimization objective.

2) To maximize the profit of the MEC server, we jointly
optimize the selection of the MEC server, the size of
offloading data, and the price of the MEC computing
service. We introduce the PPO-based dynamic com-
putation offloading algorithm (PDCO) to optimize the
offloading policy.
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3) Specifically, we propose a PPO-based RL framework
to tackle the selection of MEC servers. The problem
is further formulated as a Markov decision process
(MDP), with well-designed expressions of state, action,
and reward to represent the environment features. Sec-
ondly, a two-step optimization problem is formulated to
determine the size of offloading data and the pricing of
computing services. We solve the two-step optimiza-
tion problem by formulating a non-cooperative game
between end-users.

4) A series of detailed simulation results prove our pro-
posal’s advantage in convergence time and stability by
comparing the PDCO algorithm with other RL-based
approaches.

The remainder of this paper is organized as fol-
lows. Section 2 briefly reviews the related literature.
Section 3 provides the system model and problem formu-
lation. Section 4 gives the algorithm design and provides
detailed work of the algorithm. Section 5 evaluates the
proposed approach performance by a series of simulations.
Section 6 concludes the paper.

II. RELATED WORK
As a promising paradigm, MEC brings computing, storage,
and energy resources closer to the network’s edge. The con-
cept of MEC was first proposed by the ETSI in 2014, which
aims at providing ultra-low latency and ultra-high bandwidth
for latency-sensitive applications [19], [20]. The emergence
of new technologies, especially 5G technology, has promoted
the continuous prosperity and development of MEC tech-
nology. As mentioned above, 5G technology defines three
typical usage scenarios: enhanced mobile broadband, ultra-
reliable low-latency communication, and massive machine-
type communication [21]. These scenarios are consistent with
edge computing, and these features also provide significant
advantages for computing offloading.

The offloading decision is one of the most challeng-
ing problems in the field of computation offloading. Dif-
ferent approaches have been proposed recently to help
optimize offloading policy regarding whether, where, and
how much to offload to improve the efficiency of the
offloading process, which is crucial to computation offload-
ing. Shakarami et al. [10], [22], [23] have systematically
reviewed the computation offloading approaches from the
perspectives of machine learning, Game theory, and stochas-
tic, respectively. From the perspective of single users, many
existing works have studied computation offloading in the
early days. Computation offloading can save energy was
proven by Redenko et al. [24] according to their experimental
results. A hybrid method for computation offloading was
proposed to improve energy saving and minimize service
latency by Xian et al. [25]. More research currently has
focused on the MEC offloading environment with multi-
ple users and multiple servers. Moreover, the objective of
MEC is usually to optimize system delay [26]–[28], energy

consumption [29]–[31], and the weighted sum of delay and
energy consumption [32]–[34].

Although all the above works have shown the benefits
and potential of the MEC technology, they assume that the
MEC server provides free computing and communication
services for the users in the MEC environment, which is
usually unrealistic. In the multi-user multi-server MEC envi-
ronment, there will be a situation where a large number
of users compete for a limited quantity of servers, which
will cause the problem of uneven distribution of computing
resources. Some recent works [35]–[37], by setting prices
for MEC computing service and formulating a distributed
offloading game between end-users to solve offloading deci-
sion problems. Nevertheless, they mainly focus on offload-
ing problems in a relatively static MEC environment. Those
proposed approaches may not be suitable for real network
environments affected by various factors.

As mentioned above, RL or game theory alone may not
obtain the globally optimal policy. Therefore, some existing
studies combine RL and game theory to solve the problems
related to offloading decision-making in the MEC environ-
ment. In [38], the problem of MEC server activation was
formulated as a minority game, and RL was used to solve
the Nash equilibrium of non-cooperative games. [39] studied
the problem of security in the process of offloading decisions
based on RL and game theory, which derive the optimal
offloading rates and reduce the attack rate of smart attackers
at IoT devices. In [40], Zhan et al. studied the computation
offloading game in incomplete information sharing based on
the PPO algorithm. Unlike previous studies, our proposal for-
mally solves the problem of uneven allocation of computing
resources, the offloading decision for complex state space
problems, and the challenge of achieving Nash equilibrium in
the dynamicMEC environment. This joint optimization prob-
lem is non-trivial, and we describe our proposed approach in
detail in the following sections.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
The SDN-driven MEC system architecture with multiple
servers and multiple users is shown in Figure 2. Without
loss of generality, we consider a group of end-users u, where
u ∈ U ,U = [1, . . . , u, . . . ,U ] and a group of MEC servers
s, where s ∈ S,S = [1, . . . , s, . . . , S]. We divide the
continuous decision period into several time slots t , where
t ∈ T , T = [1, . . . , t, . . . ,T ] denotes the corresponding set.
Each end-user needs to execute computation-intensive and
delay-sensitive tasks periodically at each time slot. In general,
end-users will instinctively select MEC servers with strong
computing performance to improve their own QoE. Since
a large number of users compete for a limited quantity of
servers in the multi-user and multi-server MEC environment,
we establish a computingmarket model based on SDN-driven
multi-server competition. In this model, the MEC server pro-
vides computing services to end-users and charges users a
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FIGURE 2. The SDN-driven MEC system architecture with multiple servers
and multiple users.

certain form of fee. The SDN controller acts as an intermedi-
ary between servers and end-users to process information and
makes decisions. The SDN controller executes our proposed
PDCO algorithm at each time slot, which is equipped with
a strong computing power CPU, and advanced computing
power makes fast decision-making possible. Unless other-
wise stated, Table 1 summarizes the important notations used
in this paper.

Following the model in [18], the whole execution of the
SDN-driven MEC system is divided into several time slots.
During each time slot, the selection of the MEC server,
the size of offloading data, and the price of the MEC com-
puting service are determined by the SDN controller. Ini-
tially, each MEC server sends the price information of the
computing service to SDN to announce its price p(t)s [$/bit]
to end-users. Meanwhile, each end-user receives information
through the SDN controller and offloads its data b(t)u,s[bit] to
the selected MEC server. In each time slot t , each end-user
has a total of I (t)u computing tasks to execute. Due to partial
offloading mode, the part of computing tasks is executed on
the specifiedMEC server (i.e., b(t)u,s ∈

[
0, I (t)u

]
), while the rest

of the tasks are executed locally(i.e., I (t)u − b
(t)
u,s).

As mentioned above, we assume that a total of I (t)u comput-
ing tasks need to be executed by each end-user u at the time
slot t . Consider the reasonable allocation ofMEC server com-
puting resources, and the SDN controller needs to determine
the optimal size of offloaded data b(t)u,s for the end-user u. The
size of data offloaded by other users except u is denoted by
b(t)−u and the relative size of offloading data is

r (t)u =
b(t)u,s

b(t)−u
(1)

Here, we use a logarithmic function on the relative offload
r (t)u of the end-user u to capture the perceived satisfaction

(i.e., QoE) of the end-user u, which is denoted as

s(t)u
(
b(t)u,s′b

(t)
−u

)
= αu log

(
1+ βur (t)u

)
(2)

where parameters αu, βu ∈ R+ are adjustable parameters
which determine the slope of s(t)u in a personalized manner.
The offloading cost of end-user u according to the relative
size of offloading data r (t)u is denoted as

c(t)u
(
b(t)u,s, b

(t)
−u

)
= d (t)u p(t)s r

(t)
u (3)

where d (t)u ∈ R+ denotes dynamic behavior of end-user u
and p(t)s denotes the computing service price of MEC server
s. According to the mentioned above, the utility function of
each end-user u is denoted as

U (t)
u

(
b(t)u,s, b

(t)
−u, p

(t)
)
= s(t)u

(
b(t)u,s, b

(t)
−u

)
− c(t)u

(
b(t)u,s, b

(t)
−u

)
= αu log

(
1+ βur (t)u

)
− d (t)u p(t)s r

(t)
u

(4)

We need to define a parameter R(t)s in the MEC server
system to represent the reputation of theMEC server s, which
changes dynamically at each time slot. This parameter is
used to update the probability that the user selects a specific
server. We consider the following aspects.

First of all, MEC servers provide some discount f (t)s to
encourage end-users to give preference to select a specific
MEC server. Those discounts are indicated as a percentage
of the original price announced by the MEC servers. In addi-
tion, the MEC server needs to consider the computation cost
c(t)s [$/bit] of the MEC server when processing computing
tasks it receives.

Secondly, If the MEC servers can well meet the computing
needs of end-users, those servers will win a good reputation
among end-users. Specifically, we define the penetration rate
of the MEC server as the total size of computing data pro-
cessed by the MEC server that accounts for the total size of
computing data processed in the SDN-driven MEC system.

Furthermore, we define a parameter to show the current
congestion level of the server, which is denoted by CONGs.
We assume that the maximum size of offloading each MEC
server can handle that is characterized by Bmaxs . Therefore,
the congestion level can be expressed as the percentage of
the size of offloaded data by the end-user to the maximum
capacity of the MEC server.

Following all the above analysis, the reputation score of
MEC server R(t)s could be denoted as

R(t)s = w1

∑
k 6=s

[(
1−f (t)k

)]
p(t)k

K(
1− f (t)s

)
p(t)s

+ w2
1

(1+ CONGs)
3

+w3

∑
t∈{1,...,T }

∑
u∈U b

(t)
u,s∑

s∈S
∑

t∈{1,...,T }
∑

u∈U b
(t)
u,s

(5)

The total revenue of each MEC server s is determined by
the service price p(t)s , the corresponding discount f (t)s , and the
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TABLE 1. List of notations.

size of offloading data b(t)u,s, which is denoted as

REV (t)
s

(
b(t), p(t)

)
=

(
1− f (t)s

)
p(t)s

∑
u∈U

b(t)u,s (6)

Moreover, we should also consider the computing cost of
the server, which is denoted as

C (t)
s

(
b(t)
)
= c(t)s

∑
u∈U

b(t)u,s (7)

According to the above analysis, the total profit of each
MEC server s is denoted as

P(t)s
(
b(t), p(t)

)
= REV (t)

s

(
b(t), p(t)

)
− C (t)

s

(
b(t)
)

=

(
1− f (t)s

)
p(t)s

∑
u∈U

b(t)u,s − c
(t)
s

∑
u∈U

b(t)u,s (8)

B. PROBLEM FORMULATION
Through the PPO-based MEC server selection algorithm,
each end-user is given the selection of the MEC server. From
the end-user’s perspective, the objective of each end-user is
to maximize its utility by offloading the optimal data size
to the selected MEC server. Similarly, each MEC server
aims to maximize its profit by executing the offloaded tasks.
Therefore, a two-step optimization is formulated as

b(t)∗ = argmaxb(t)u,s U
(t)
u

(
b(t)u,s, b

(t)
−u, p

(t)
)

(9)

p(t)∗ = argmaxp(t) P
(t)
s

(
b(t), p(t)

)
(10)

From the above equations, the optimal price p(t)∗ and
the optimal size of offloading data b(t)∗ are interdependent.
We apply DRL and Game theory to solve the two-step
optimization problem, described in detail in the following
sections.

IV. PPO-BASED DYNAMIC COMPUTATION OFFLOADING
ALGORITHM
A. MARKOV DECISION PROCESS FORMULATION
In our proposal, the process of offloading decision is for-
mulated as a Markov decision process (MDP), and we
consider the standard RL framework [41], in which the
agent interacts with the environment. In general, a MDP
can be described as a quintuple M =<S,A,R,P, γ >.
State, action, and reward at each time slot t are denoted
as st ∈ S, at ∈ A, and rt ∈ R, respectively. The dynam-
ics of the environment are represented by the state transi-
tion probability pass′ = Pr

{
st+1 = s′ | st = s, at = a

}
and

expected reward Ra
(
s, s′

)
= E {rt+1 | st = s, at = a}, where

∀s, s′ ∈ S, a ∈ A. We introduce how we define state space,
action space, and reward as follows.
• State space: We take the probability of selecting the
MEC server in each time slot as the current state. In the
initial state, the end-users have the same probability of
selecting each MEC server, determined by the number
of MEC servers. Since the state space, action space, and
reward are too simple, no longer denoted by notations
here.

• Action space: The behavior of selecting MEC server
as the action space of the DRL algorithm. Therefore,
the size of the action space also depends on the number
of MEC servers.

• Reward: The MEC server selected by the end-user will
be compared with the MEC server with the highest
reputation score. If the end-user chooses theMEC server
with the highest reputation score, rewards will be given.
Otherwise, it will be punished.

B. MEC SERVER SELECT ALGORITHM BASED ON PPO
To optimize offloading policy by policy gradient DRL algo-
rithms, we parameterize the computation offloading policy
θu of user u as πθu . The policy gradient algorithms aim at
finding a set of optimal parameters θ∗u , which maximizes the
expectation of cumulative rewards. Therefore, the optimiza-
tion objective of the policy gradient is

θ∗u = argmax
θu

Lu
(
πθu
)

= argmax
θu

Eθu
(
Vπθu (s)

)
= argmax

θu
Eθu

(
Qπθu (s, a)

)
(11)

where

Vπθu (s) = Eπθu
[
Rtu | S

t
u = su

]
(12)

Qπθu (s, a) = Eπθu
[
Rtu | S

t
u = su,Atu = au

]
(13)

Rtu =
T∑
t=0

γ ∗ r tu (14)

In the above equation, the set of all users’ policies is
denoted by 5 =

{
πθu
}
u∈U , state-value function is denoted

by Vπθu (s), action-value function is denoted by Qπθu (s, a),
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cumulative rewards of user u at time slot t is denoted by Rtu
and γ ∈ [0, 1] is discount factor.
According to the [41] and [42], the policy gradient could

be calculated as

∇θuL
(
πθu
)
= Eπθu

[
∇θu logπθu Q

πθu (s, a)
]

= Eπθu
[
∇θu logπθu A

πθu (s, a)
]

≈ Eπθu
[
fu∇θu logπθu A

πθu (s, a)
]

(15)

where fu =
πθu
πθ̂u

, Aπθu (s, a) = Qπθu (s, a) − Vπθu (s) is the

advantage function for action and state, θ̂u represents the
parameter of policy for sampling. We adapt the proximal
policy optimization [43] to accelerate the convergence, which
clips the policy gradient as

∇θuL
(
πθu
)
≈ Eπθ̂u

[
∇θu logπθu C(s, a)

]
(16)

where

C(s, a) = min
[
fuAπθu (s, a), η (fu)Aπθu (s, a)

]
(17)

η(x) =


1+ ε, x > 1+ ε
x, 1− ε ≤ x ≤ 1+ ε
1− ε, x < 1− ε

(18)

where the parameter ε is set to 0.2 in our proposal.
In this model, we design an actor and critic network for

each end-user.We design the actor network for approximating
the policy and the critic network for approximating the value
function, which is denoted by πθu and Vωu , where θu and ωu
represent the parameters of actor network and critic network,
respectively.

We define the loss function for updating the critic network
Vωu as

Ju (ωu) = Eπωu
[
−Vωu (s)+ Eπωu

[
r + Vωu

(
s′
)]]2 (19)

During the training process, the estimated gradient about
ωu is calculated as

∇ωu Ĵu =
1
D

D−1∑
k=0

[
Vωu (s)− Y

k
u

] dVωu (s)
dωu

(20)

where

Y ku = Rku − γ
D−kRu(D)+ γD−kVωu (D) (21)

And D is the size of a mini-batch for updating. Similarly,
the estimated gradient about θu is calculated as

∇θu L̂u =
1
D

D−1∑
t=0

∇θu logπθu C
(
st , at

)
(22)

We updateπθu bymini-batch stochastic gradient ascent and
update Vωu by mini-batch stochastic gradient descent.

θu ← θu + lu,2∇θu L̂u (23)

ωu ← ωu − lu,1∇ωu Ĵu (24)

where lu,2 is the learning rate of actor network and lu,1 is the
learning rate of critic network.

The pseudocode of the MEC server select algorithm based
on PPO is given in Algorithm 1.

Algorithm 1 MEC Server Select Algorithm Based on PPO
1: for each user u ∈ U do
2: Initialize γ, lu,1, lu,2, ωu, and θu
3: end for
4: for each time slot t ∈ T do
5: for each user u ∈ U do
6: Run policy π tθu for time slot t , collect st , at , rt
7: Estimate advantages Atπθu (st , at )
8: π toldθu

← π tθu
9: end for
10: if t%D == 0 then
11: for each user u ∈ U do
12: Calculate ∇ωu Ĵu and ∇θu L̂u via (20) and (22)
13: Update θu and ωu via (23) and (24)
14: end for
15: end if
16: end for

C. DECENTRALIZED COMPUTATION OFFLOADING GAME
In this section, we formulate a strategy game for solving the
two-step optimization problem to obtain the optimal size of
offloading data and the optimal price. As a robust frame-
work for computation offloading problems, game theory can
analyze the interaction between game players acting in their
interests, thereby optimizing offloading strategy so that no
end-user has the purpose to deviate unilaterally.

1) GAME FORMULATION

Let b(t)−u =
(
b(t)1 , . . . , b

(t)
u−1, b

(t)
u+1, . . . , b

(t)
U

)
be the size of

offloading data by all other users except end-user u, where
t ∈ T , T = (1, . . . , t, . . . ,T ) denotes the corresponding
set of time slots. Given other end-users’ offloading decision
b(t)−u, end-user u would like to make appropriate decision
b(t)u,s to maximize QoE (capture by personal utility) while
considering the given constraints, i.e.,

max
b(t)u,s

U (t)
u

(
b(t)u,s, b

(t)
−u, p

(t)
)

(25)

s.t. 0 ≤ b(t)u,s ≤ I
(t)
u (26)

We then formulate the problem above as a strategy game
G =

[
U ,
{
A(t)u

}
,
{
U (t)
u

}]
to solve the optimal size of offload-

ing data b(t)u,s, where U denotes the corresponding set of the
end-users participant in the game G, A(t)u denotes the strategy
space of end-user u as well as U (t)

u denotes utility function
of end-user u. The strategy game G is a non-cooperative
game, our objective aims to design an algorithm to achieve the
Nash equilibrium [44] of the non-cooperative game G, and
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the definition of Nash equilibrium is given in the following
details.
Definition 1: (Nash equilibrium) If each end-user u ∈ U

satisfies

U (t)
u

(
b(t)∗u,s , b

(t)∗
−u

)
≥ U (t)

u

(
b(t)u,s, b

(t)∗
−u

)
,∀b(t)u,s ∈ A

(t)
u (27)

The set of computation offloading strategy b(t)∗u =[
b(t)∗1,s , . . . , b

(t)∗
u,s , . . . , b

(t)∗
U ,s

]
,∀t ∈ T , u ∈ U , s ∈ S is the

Nash equilibrium point of game G =
[
U ,
{
A(t)u

}
,
{
U (t)
u

}]
.

We then study the existence of Nash equilibrium of the
strategy game G =

[
U ,
{
A(t)u

}
,
{
U (t)
u

}]
. And to proceed,

we introduce an important concept as follows, which is called
Best Response [44].
Definition 2: (Best Response) At time slot t, given other

end-users’ strategies b(t)−u, end-user u’s strategy b
(t)∗
u is the

Best Response, if

Uu
(
b(t)∗u , b(t)−u

)
≥ Uu

(
b(t)u , b

(t)
−u

)
(28)

We analyze the existence of Nash equilibrium, and the
proof of the existence of Nash equilibrium is given in
APPENDIX.

2) PPO-BASED DYNAMIC COMPUTATION OFFLOADING
ALGORITHM
According to (27) and (28), all the end-users play the best
response strategies towards each other at the Nash equilib-
rium. We design a low complexity PPO-based dynamic com-
putation offloading algorithm to achieve theNash equilibrium
of the strategy game G, and the pseudocode of the PDCO
algorithm is given in Algorithm 2.

Algorithm 2 PPO-based dynamic computation offloading
algorithm (PDCO)
1: for each user u ∈ U do
2: Initialize probability and p(t)s .
3: end for
4: for each time slot t ∈ T do
5: for each user u ∈ U do
6: Each user u choose one server s via Algorithm 1.
7: Record b(t)u,s, b

(t)
−u, and selection for each user u.

8: end for
9: while not converged do
10: Calculate r (t)u , s(t)u , R(t)s , REV (t)

s , and P(t)s via (1), (2),
(6), (7), and (8), respectively.

11: Input b(t)u,s, b
(t)
−u, p

(t), and calculated b(t) via (9).
12: Input b(t)u , p(t)s , and calculated p(t) via (10).
13: Judge whether it converges to NE point via (27).
14: end while
15: Update policy parameter θu via Algorithm 1.
16: end for

We analyze the time complexity and convergence of our
proposed PDCO algorithm in the following. During the

FIGURE 3. The probabilities of users in different approaches.

FIGURE 4. The size of data processed by each server in different
approaches.

execution of the PDCO algorithm, each end-user update
policy based on actor network πθu and critic network Vωu ,
so the computational complexity is only based on a fully
connected deep neural network. According to [45], the time
complexity can be described as O

(∑F
f=1 εf · εf−1

)
, where

εf denotes the number of neural units in the fully connected
layer f . The convergence of our proposed PDCO algorithm
is mainly determined by the convergence of the Nash equi-
librium of the strategy game. As mention above, we provide
detailed proof of the existence of the Nash equilibrium in
APPENDIX.

V. PERFORMANCE EVALUATION
We provide some numerical results to explain the superi-
ority of the PDCO algorithm compared to other RL-based
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FIGURE 5. The reputation score of each server in different approaches.

FIGURE 6. The number of user per server in different approaches.

approaches in this section. All algorithms and the corre-
sponding simulation are implemented based on Python and
executed on a desktop computer with Intel Core i7-8700
6 cores CPU and 32GB RAM.

A. SIMULATION SETTINGS
To prove the superiority of the PPO-based DRL frame-
work, we conduct several detailed simulations in the MEC
environment. We use different RL (or DRL) algorithms
as baseline approaches to compare the decision-making
process of MEC server selection. Specifically, we com-
pare our proposed approach with the stochastic learning
automata approach [46] used in [18], the policy gradient
approach, the Deep Q-Network approach, and the Actor-
Critic approach. Detailed data and charts are given in the
following. Unless otherwise stated, the simulation parameters
are summarized in Table 2.

However, it should be noted that this paper and the corre-
sponding simulation results focus on the process of offloading
decisions rather than the actual process of offloading and
computing itself. To simplify the model, we assume that
communication between end-users and MEC servers does
not interfere with each other. Moreover, we do not deal with
the transmission power control problem, assuming that the
user transmits at a fixed power. Different from some exist-
ing studies [32], [47], [48], the impact of delay and energy
consumption on offloading decisions is not considered.

B. SIMULATION RESULT
First of all, we study the convergence of the end-users
selection probability for each server based on different
DRL-based approaches. In this simulation, we set the number

TABLE 2. Simulation parameters.

of end-users to 100 and the number of MEC servers
to 5. We consider that the maximum size of offload-
ing data that each end-user needs to execute is the same
(i.e., I (t)u = 1000 bit).
As shown in Figure 3, given a total number of episodes to

200, our proposed PDCO algorithm converges to Nash equi-
librium in approximately 25 episodes, which is significantly
better than other approaches in terms of convergence time and
stability. The stochastic learning automata approach [46] pro-
posed in [18] converges to Nash equilibrium in approximately
1100 episodes in the simulation with 2000 episodes. Since
the DQN algorithm is a value-based DRL algorithm, the state
transition probability is not involved. It should be noted that
since various DRL-based approaches have more tremendous
advantages than stochastic learning automata, the results of
stochastic learning automata will no longer be shown in the
following experimental results.
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FIGURE 7. The service price of each server in different approaches.

FIGURE 8. The profit of each server in different approaches.

According to the actual situation, the more favorable the
price of MEC computing service, the more attractive it is
to end-users. Thereby server 1 accumulates most end-users.
We notice that compared with other MEC servers, server
1 has the least cost and the greatest discount, set in Table 2.
We count the total size of offloading data processed by each
server in each time slot in the same simulation parameters.
We find that our proposed PDCO algorithm also has good
performance than other approaches. The DQN approach and
the Actor-Critic approach do not converge well to the Nash
equilibrium. The specific results are shown in Figure 4.

Subsequently, we observe the reputation score Rs of each
server among different algorithms. As known from previous
analysis, the MEC server’s reputation Rs depends on the
relative price, congestion level, and penetration rate.Rs essen-
tially controls the probability that each end-user offloads its
data. To this end, we calculate the reputation of the server and
the number of users of the server at each time slot (represented
by the percentage of the number of end-users accommodated
by each MEC server to the total number of end-users). The
specific results are shown in Figure 5 and Figure 6.

Then, we collect statistics on the pricing of computing
services based on Game theory. We find that in different
DRL-based approaches, the computing price of server 1 has
almost stabilized, but the computing prices of other servers
are fluctuating. The specific results are shown in Figure 7.

Finally, we compare the profit of MEC servers in different
DRL-based approaches. As shown in Figure 8, we find that
the trend of this parameter is similar to the total size of data
processed by each server. As with the previous comparison
results, we find that our proposed PDCO algorithm achieves
Nash equilibrium faster than other DRL-based approaches.

VI. CONCLUSION
This paper studies and jointly optimizes the selection ofMEC
servers, the size of offloading data, and the price of the
computing service. The flexibility and programmability pro-
vided by SDN technology make the actual implementation of
the proposed framework possible. In particular, the proximal
policy optimization DRL algorithm used in the MEC server
select algorithm shows the power capacity and potential of
DRL in some specific scenarios. The optimal size of offload-
ing data and the optimal pricing of the computing service
are formulated as a two-step optimization problem, which
is solved by achieving the Nash equilibrium of the strategy
game. By comparing different RL-based approaches in the
specific MEC environment, a series of detailed simulation
results demonstrate the performance and advantages of the
PPO algorithm used in our proposal.

It should be noted that we assume that communication
between end-users and servers does not interfere with each
other. We do not deal with the transmission power control
problem that we believe that the user transmits at a fixed
power in our current work. In the next step, we will extend the
existing research model and include communication interfer-
ence and transmission power control as part of the joint opti-
mization problem. In addition, as theMEC server is the public
resource, end-users should consider the risk of the MEC
server when selecting and using it. Our future work will focus
on studying users’ decision-making problems when facing
threats of public resources, which is based on the tragedy of
the commons [49] and prospect theory [50]. Finally, it should
be pointed out that challenges arise due to ultra-low latency
and energy efficiency requirements for some applications.
In some existing work [51], the issues of latency and energy
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have been directly considered part of optimization problems,
and those factors are also taken into account in our future
work.

APPENDIX
We provide a detailed proof of the existence of the Nash
equilibrium in this section. According to [18] and [44],
the necessary and sufficient conditions of the existence of the
Nash equilibrium are as follows.

1) the strategy space A(t)u ,∀u ∈ U , t ∈ T should be non-
empty, convex, and compact subset of an Euclidean
space RU .

2) the utility function U (t)
u

(
b(t)u,s, b

(t)
−u, p

(t)
)
is continuous

in b(t)u and quasi-concave in b(t)u,s.
We have the following analysis.

1) The strategy space A(t)u denotes the size of offloading
data that end-users can offload to MEC servers. Thus,
by its range 0 ≤ A(t)u ≤ I (t)u we can know that
the strategy space is non-empty, convex, and compact
subset of an Euclidean space RU .

2) According to (4), the utility function U (t)
u

(
b(t)u,s, b

(t)
−u,

p(t)
)
is continuous in b(t)u .

3) We derive the second derivative of the utility func-
tion (4), which is given as follows.

∂2U (t)
u

(
b(t)u,s

)
∂b(t)2u,s

= −
αuβ

2
u

B(t)2−u
·

1[
βu +

βub
(t)
u,s

B(t)−u

]2 < 0

According to
∂2U (t)

u

(
b(t)u,s

)
∂b(t)2u,s

< 0, we know that the

utility function (4) is concave in b(t)u,s, which is also
quasi-concave in b(t)u,s.

From the analysis above, we can verify the existence of
Nash equilibrium of the strategy game
G =

[
U ,
{
A(t)u

}
,
{
U (t)
u

}]
.
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