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ABSTRACT The rapid and accurate identification of spider sex is the first step in spider image recognition.
The traditional artificial method used to identify the sex of mature spiders is mainly based on their genital
structures (male palps or female epigynum) and highly dependent on the professional background of the
identifiers. This article uses computer-based deep learning and transfer learning to identify the sex of
spider, explores the design and application of convolutional neural networks in deep learning for spider
sex recognition from images, and establishes a neural network model that displays excellent performance in
experiments. In addition to optimizing the network model, we select appropriate hyperparameters to improve
the accuracy of recognition and reduce the influence of human factors in the identification process. Through a
comparison of multiple sets of experiments based on existing sample data collected in the laboratory, we find
that the transfer learning method based on Xception can obtain better prediction accuracy than ResNet-152.
After data augmentation, the optimization of a combined activation function and the fine-tuning of frozen
layers, the prediction accuracy reaches 98.02%, and for an actual measurement of independent samples,
the recognition accuracy reaches 92.38%. Therefore, the proposed method can basically replace manual
identification and provide a reference for the artificial intelligence-based identification of spider species.
Additionally, the model results indicate that male and female dimorphism may exist beyond the non-genital
characteristics of spiders.

INDEX TERMS Deep learning, transfer learning, convolutional neural network, spider sex identification.

I. INTRODUCTION

There are nearly 50,000 species of spiders in the world and
more than 5,000 species of spiders in China [1]. The identi-
fication of spider species mainly depends on the character-
istics of the genitals (male palps or female epigynum); this
process is time consuming, laborious, subjective, and highly
dependent on spider classification experience. With the rapid
development of the microbiology field, the importance of tra-
ditional taxonomy has been highly challenged. For example,
there are few permanent taxonomy positions, and funding for
taxonomy research is limited [2]. However, while traditional
taxonomy faces many challenges, the rapid development of
modern technology has led to new opportunities for devel-
oping new taxonomic methods, such as deep learning [3];
such methods have provided a new basis for spider taxonomy
assessment [4]. In particular, the rapid development of deep
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learning in the past ten years has led to its use in image
recognition in various fields [5], but research on spider image
recognition has not yet been reported. The first step in spider
species classification is identifying spider sex from images;
this result directly determines the accuracy of subsequent
species recognition tasks. Traditional methods for the arti-
ficial identification of the sex of mature spiders are mainly
based on the genital structures (male palps or female epigy-
num) of the spiders [6]. In addition, the body color, pattern
and shape is sexually dimorphic in some spider groups [7].
With 142 species, 2000 of which are endemic to East Asia,
South Asia and Southeast Asia, Pseudopoda Jager is the
third largest genus in the family Sparassidae (World Spider
Catalog 2021) [8]. These spiders are highly diversified in
China, where 63 species have been reported. However,
according to the results of laboratory investigations, there
are at least 110 species in China. As a result, Pseudopoda
is an ideal candidate for studying spider image recogni-
tion. In addition, although Pseudopoda spiders are typically
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nocturnal, almost all species have similar body color (yellow
generally) and spot patterns (fovea and radial furrows dis-
tinctly marked). It is difficult to manually distinguish males
and females or identify species based on body coloration
and spot patterns. However, multiple studies have found that
the body color and spot patterns of spiders play important
roles in attracting the opposite sex and increasing the success
rate of courtship [9], [10]. Do body color and spot patterns
of spiders of the genus Pseudopoda have similar functions,
and can these features be identified by artificial intelligence?
To date, no studies have addressed this topic.

In recent years, with the continuous improvement of deep
learning technology, convolutional neural network (CNN)
models have made considerable progress in the field of
image recognition [11]-[14]. Each network has distinct
characteristics, the recognition accuracy of networks has
been continuously improved [15], and applications have
been continuously refined in various fields, such as face
recognition [16], medicine [17], [18], agriculture [19], [20]
and others, with good results. This approach provides
ideas and a research basis to study spider sex recogni-
tion. Since Alex Krizhevsky released AlexNet in 2012,
many types of deep learning networks have been invented,
such as VGGNet, GoogleNet, Inception, ResNet, etc. The
abstract reasoning ability of these networks has been contin-
uously improved [21]. Additionally, computing frameworks
are becoming increasingly mature. The currently popular
computing frameworks include TensorFlow, Caffe, Theano,
MXNet, Torch, and PyTorch [22], [23]. Among them, Ten-
sorFlow performs model training and testing based on large
standardized data sets such as ImageNet; the prediction
accuracy of TensorFlow is very high, and its generalization
ability is very strong. According to the information on the
official ImageNet website, the number of image samples
in the dataset has reached 14197122, spanning 21841 cat-
egories; these images are manually labeled, thus providing
sufficient samples to support learning and training in various
models [24], [25]. However, the resolution of the images
included in the standard database is low. In the process of
machine learning, a model can only learn primary features
from the training set, such as the outline or texture of an
object; therefore, the standard set is not specific enough to
meet the requirements in certain research areas. In terms
of spider sex recognition, it is relatively easy to determine
the shape of a spider’s genitals, but features such as the
back pattern are difficult to distinguish. Therefore, a learning
model that can extract primary features while also learning
minor features related to the target object is needed.

Transfer learning involves applying models trained with
large datasets from source fields to data from target
fields [26]. This approach is important for small-sample
machine learning and can effectively alleviate the various
problems caused by small sample sizes, such as overfit-
ting and weak generalization ability, among others. Transfer
learning in deep learning is widely used in small-sample
learning, and the results are typically good [19], [27]-[30].
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For example, Issam Dagher and Dany Barbara used networks
such as VGG, ResNet, and Inception for transfer learning to
solve problems related to face age estimation [31]. Li Miao
and Wang Jingxian ef al. applied a transfer learning method
for crop disease recognition [32]. Ashraf Darwish and Dalia
Ezzat et al. used transfer learning and integrated learning to
identify corn disease problems [33].

In this paper, we performed spider sex image recognition
based on 42 Chinese Pseudopoda species and a transferring
learning method. We mainly addressed two questions: 1. Can
image-based sex recognition be achieved for Pseudopoda spi-
ders, and if so, how can the recognition accuracy be improved
for small sample sets? 2. Do the non-genital features of
Pseudopoda spiders, such as the body color and spot patterns,
display sexual dimorphic trends and play important roles in
image-based sex recognition?

Il. SAMPLE MATERIALS, METHODS AND PROCEDURES
A. SPIDER MICRO GRAPHICS DATA SET

The spider samples used in this study were stored at the Cen-
ter for Behavioural Ecology and Evolution (CBEE; College
of Life Sciences, Hubei University, Wuhan, China). These
samples contain 3,133 habitus photos for 30 Pseudopoda
species (Table 1). We randomly took photos in dorsal view,
ventral view or both views for each spider. All photos were
taken with a Leica DFC450 digital camera attached to a
Leica M205C stereomicroscope, with 10-20 photographs

TABLE 1. Distribution of spider sample data.

Species Male  Female
P. anguilliformis 40 39
P. bibulba 42 42
P. bicruris 42 41
P. breviducta 42 42
P. cangschana 221 242
P. coenobium 42 0
P. confusa 40 40
P. contraria 0 40
P. daliensis 42 42
P, digitata 0 40
P. emei 42 42
P. gibberosa 40 40
P. interposita 42 42
P. kunmingensis 40 40
P. lushanensis 42 40
P. mediana 40 80
P. namkhan 42 56
P. nyingchiensis 42 0
P. peronata 0 40
P. physematosa 0 42
P. rivicola 42 42
P. robusta 40 40
P. roganda 40 40
P. saetosa 40 40
P. semiannulata 40 42
P. semilunata 42 42
P. sicyoidea 42 42
P. signata 40 42
P. sinapophysis 67 57
P. songi 266 256
Totals 1500 1633
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taken in different focal planes and combined using image
stacking software (Leica LAS). The captured TIFF files were
converted into JPEG format through Python, the file size
was drastically reduced while maintaining a resolution of
2560 x 1920, and a standard data set was established in JPEG
format. The image annotation result is shown in Figure 1.

FIGURE 1. Example of spider micro graphics. Pseudopoda contraria
Jager & Vedel, 2007: A. Overall photo of female spider, dorsal view;

B. Overall photo of female spider, ventral view; C. Photo of male spider,
dorsal view; D. Photo of male spider, ventral view.

In this study, the samples of 30 Pseudopoda species are
divided into a model training set, a validation set, and a test
set, and samples for the other 12 Pseudopoda species are used
as generalization test set A (Test set A is used in a supple-
mentary experiment to verify the reliability of the machine
learning model); this test set included 800 samples (Table 2).
In addition, to verify whether nongenital structural features,
such as the back color and pattern of spiders, display female
and male dimorphism, 328 pictures without any genital struc-
ture information are manually selected as generalization test
set B from set A. According to the general practice of model
training, after randomly shuffling the samples, the 30 species
sets are divided into training set and validation set at a ratio
of 3 to 1; additionally, 4/5 of the validation set is used for
model validation, and 1/5 is used as the model test set. The
final training set contains 2350 samples, the validation set
contains 626 samples, and the test set contains 157 samples.
The data in Table 1 and Table 2 show that the samples are
balanced [34], [35].

B. TRANSFER LEARNING METHOD

A transfer learning method for image recognition with Ten-
sorFlow is used, and the base model is trained based on
ImageNet. The model is designed with five flows: a data
augmentation flow, a data preprocessing flow, a general fea-
ture extraction flow, a domain feature extraction flow and a
label prediction flow (Figure 2). The general feature extrac-
tion flow adopts the structures and parameters of the basic
network, this part does not need to be trained, so there is
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TABLE 2. Data distribution for generalization test set A.

Species Male  Female
P. songi 40 68
P spl 40 12
P sp3 40 40
P. sp4 0 40
P sp5 0 40
P. sp6 40 40
P.sp7 40 40
P sp9 40 40
P spll 40 40
P spl5 0 40
P spl6 0 40
P spl9 40 40
Totals 320 480

no backward propagation. In the other hand, in the domain
feature extraction flow and label prediction flow such as
the spider field,the parameters of these layers need to be
retrained, so there are forward and backward propagation,
the parameters are adjusted through backward propagation.
Among them, the domain feature extraction flow and the label
prediction flow are redesigned compared to the traditional
flows. To retain the contributions of subtle features in the
domain feature extraction flow, the ReLLU activation function
is modified to an ELU function. In the label prediction flow,
the feature output of the convolutional layer is obtained by
global average pooling, and a dropout layer is added before
the fully connected layer to prevent overfitting; the dropout
rate is set to 0.2, that is, 20% of neurons are randomly
discarded [33], [36].

After several groups of experiments, Xception is finally
selected as the base model for transfer learning, and the model
architecture is shown in Figure 3 and Figure 4.

C. OPTIMIZATION AND PARAMETER SELECTION OF
LEARNING MODEL

1) BASIC MODEL SELECTION

Based on our sample size and data characteristics,
ResNet-152 and Xception are selected as the basic candidate
models for the transfer learning network, and one base model
is selected based on the final experimental results [37], [38].

2) DATA RESOLUTION SELECTION

The resolution of input samples has a considerable influence
on the prediction accuracy of a model. The default reso-
lution of Resnet-152 is 224 x 224, and that of Xception
is 299 x 299. The default resolution of the original model is
low. Thus, to study the impact of the resolution on the model
accuracy, this study designs three groups of experiments with
image resolutions of 299 x 299, 800 x 600 and 1600 x 1200.

3) DATA AUGMENTATION SELECTION

This study uses five augmentation methods, namely, random
flipping, random rotation, random crop- ping, random scaling
and random correction of contrast, and the related param-
eters are randomly designed according to the habits shown
in Table 3. In addition, two sets of experiments are performed
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FIGURE 3. Network architecture of the transfer learning model based on Xception.

TABLE 3. Parameter settings for data augmentation processing.

Method Parameter Value

RandomFlip Mode horizontal_and_vertical
RandomRotation ~ Factor 0.2

RandomZoom height_factor 0.8

RandomContrast ~ Factor (0.5,0.5)

RandomCrop width,height ~ Half of origin size

for the random cropping problem: random cropping and
removing random cropping [39].

4) SELECTION OF FROZEN LAYERS IN THE GENERAL
FEATURE EXTRACTION FLOW

The parameters of the general feature extraction flow are
obtained by ImageNet training, and they reflect the general
rule of the network model for sample feature extraction.
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The Xception network has 134 layers grouped into
14 blocks [38]; according to the characteristics of this net-
work, four sets of experiments are designed to compare the
effect of the depth of the general feature extraction flows in
the network on the accuracy of the model. In these experi-
ments, the first 66, 86, 96 and 126 network layers are frozen.

5) ACTIVATION FUNCTION OPTIMIZATION

The activation function affects the output results of each layer
and has a direct impact on the merit of the final prediction
results. Some reports have indicated that ELU and ReL.U
activation functions perform well in various machine learning
domains [38], but ELU provides a wider excitation boundary
than ReLU. The Xception network model uses a ReL.U acti-
vation function, and in this paper, four sets of experiments
involving the activation function in domain feature extraction
are performed: 1) ReL.U is used as the default, 2) only the

VOLUME 9, 2021



Q. Chen et al.: Research on Spider Sex Recognition From Images Based on Deep Learning

IEEE Access

RelLU

ELU

SeparableConv 728 ,3x3

SeparableConv 728 ,3x3

RelLU

SeparableConv 728 ,3x3

ELU

SeparableConv 1024 ,3x3

RelLU

I
MaxPooling 3x3, stride=2x2

|

SeparableConv 1536 ,3x3

ELU

SeparableConv 2048 ,3x3

ELU

|
GlobalAveragePooling

SeparableConv 728 ,3x3

A B

2048 - dimensional vectors
Optional fully - connected layer(s)

Logistic regression

FIGURE 4. Detail of some layers of the transfer learning model and the corresponding flows: A. Repeated steps in the
Xception model; B. The activation function is changed to ELU in Block 13; C. The activation function is changed to ELU in

Block 14.

TABLE 4. Evaluation values for the basic training models in selection experiments.

Experiments V1 V2 V3 V5 \( \'4 V8
ResNet-152  0.9823 1 09747 09983  0.3401 0.0068 0.0236  0.3334
Xception 0.9802 0.9826 0.9739 09738 0.1211 0.0667 0.0001 0.0544

Block 14 activation function is modified to an ELU func-
tion, 3) the Block 13 and Block 14 activation functions are
modified to ELU functions, and 4) the activation function in
Block 14 is removed [40].

D. GENERALIZED PRACTICAL TEST EXPERIMENTS

To verify the network model and assess the female and male
dimorphism of the nongenital characteristics of spiders, two
sets of experiments are performed. With optimally trained
network models, prediction experiments based on generaliza-
tion test set A and generalization test set B are performed.

E. MODEL EVALUATION STANDARD

The model is assessed based on 8 metrics, named V1, V2, V3,

V4, V5, V6, V7 and V8, which are defined as follows.
quantity of correctly identified

accuracy = - (1)
quantity of total

V1 = Max(validation accuracy over 200 epochs)
2)
V2 = Max(training accuracy over 200 epochs)  (3)

_ top 20 of validation accuracy
V3= Mean( over 200 epochs “)
training accuracy corresponding
V4 = Mean( tothe top 20 of the validation >

accuracy over 200 epochs
&)
validation loss corresponding
V5= Mean( tothe top 20 of the validation ) 6)
accuracy over 200 epochs
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training loss corresponding
V6 = Mean( to the top 20 of the validation ) @)
accuracy over 200 epochs

V7 =Abs(V3 — V4) (®)
V8 = Abs(V5 — V6) )

V1 reflects the highest accuracy that the model can achieve
for the validation set during the whole training process,
V2 reflects the highest accuracy achieved for the training set,
and the difference between V1 and V2 reflects the degree
of fitting of the model. V3 and V4 reflect the stability
of the model prediction accuracy, V5 and V6 reflect the
cross-entropy loss of the model, and V7 and V8 provide
intuitive feedback regarding the fit of the model [41].

IIl. RESULTS

A. BASE MODEL SELECTION

In the base model selection experiments, 200 training epochs
were considered for the two groups of experiments, and the
evaluation metrics V1-V8 are shown in Table 4. Additionally,
the accuracy and loss value curves are plotted in Figure 5.
The data show that the values of V1, V2, V3, V4, V5, V7,
and V8 for ResNet-152 are generally higher than those for
Xception; notably, only V6 is lower for ResNet-152 than
for Xception. Overall, the accuracy of ResNet-152 is higher,
but ResNet-152 appears to be overfitting the results. Based
on Figure 5, the loss distribution of the validation set is
not smooth enough and has a tendency to be overestimated.
Thus, based on previous deep network model research [15],
in this study, the Xception network is used as the base neural
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TABLE 5. Evaluation values of the sample input resolution selection experiments.

Experiments V1 V2 V3 V5 V6 V7 V8

299 %299 0.8611 0.8502 0.8515 0.8272 0.3990 0.3736 0.0244 0.0253

800 %600 0.9557 0.9243 0.9458 0.9000 0.1585 0.2364 0.0458 0.0779
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FIGURE 6. Curves of the model accuracy and loss values based on selection experiments with different sample input

resolutions.

network model, and subsequent experiments and conclusions
are based on Xception.

B. DATA RESOLUTION SELECTION

With a single Nvidia Tesla V100 GPU and a 32 GB video
memory card, the resolution of 1920 x 1600 in the exper-
iments directly led to memory overflow, and the learning
model could not be trained. Therefore, the corresponding
group of experiments was abandoned. The remaining two
groups of experiments were performed, and V1-V8 val-
ues were calculated; the results are shown in Table 5.
The accuracy and loss value curves are plotted in Figure 6.
The figures show that the duration and parameter fits for
training at a resolution of 800 x 600 were greater than those
at a resolution of 299 x 299; however, the fine features of the
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original images were much better preserved, thereby improv-
ing the accuracy of the model. In the term of V3 values, for
images with an 800 x 600 resolution, the model can reach
0.9458; for a 299 x 299 resolution, the V3 value of the
model reaches only 0.8515. Thus, the prediction accuracy of
the former is improved by 11.07%, and the model that uses
images with an 800 x 600 resolution has obvious advantages,
especially considering the results in Figure 6.

C. DATA AUGMENTATION SELECTION

In this case, the V1-V8 values for the two groups of exper-
iments were obtained. The experimental results are shown
in Table 6, the curves of accuracy and loss values are shown
in Figure 5. In the case of no random cropping, the pre-
diction accuracy for the validation set can reach 0.96 after
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TABLE 6. Evaluation values of the randomly cropping for data augmentation experiments.

Experiments V1 V2 V3 \Z: V5 V6 V7 V8
With random cropping 0.9557 0.9243 0.9458 09000 0.1585 0.2364 0.0458  0.0779
Without random cropping ~ 0.9786  0.9894 09736  0.9812  0.1001  0.0506 0.0076  0.0501
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FIGURE 7. Curves of the model accuracy and loss values based on random cropping in the data augmentation experiments.

TABLE 7. Evaluation values from the selection experiments based on general feature extraction with frozen layers.

Experiments Vi V2 V3 V4 V5 Vo6 \% V8

66 frozen layers 0.9786  0.9923  0.9769 09838 0.1122  0.0428  0.0069  0.0694
86 frozen layers 0.9786 09881 0.9739 09790 0.1225 0.0566  0.0051  0.0659
96 frozen layers 0.9802 09826 0.9739 09738 0.1211  0.0667 0.0001  0.0544
126 frozen layers  0.9405  0.9098  0.9283  0.8982 0.2491 0.2593 0.0301  0.0102

104 epochs of training, and with random cropping, the accu-
racy reaches 0.93 after 200 epochs of training. Based on both
Table 6 and Figure 7, the prediction accuracy of the model
is greatly reduced after adding random cropping, possibly
because spiders are small, and some subtle features that play
an important role in sex discrimination may be cropped. Thus,
the random cropping of data led to the loss of these subtle
features. Consequently, the random cropping augmentation
method is not considered further.

D. SELECTION OF FROZEN LAYERS IN THE GENERAL
FEATURE EXTRACTION FLOW

The four groups of models in the experimental design were
trained for 200 epochs, and the V1-V8 values were obtained,
as shown in Table 7. The accuracy and loss value curves are
plotted in Figure 8. The experimental results indicate that
the accuracy for the training set is generally higher than that
for the validation set after 125 epochs of training when the
number of frozen layers is 66; additionally, an overfitting phe-
nomenon appears. The prediction accuracy is lower overall
and the cross-entropy loss slowly decreases when the number
of frozen layers is set to 126 layers. The results for 86 and
96 frozen layers are similar, but the V1 value in the latter case
is slightly higher and V7 is smaller; thus, model performance
is best when 96 layers are frozen. Subsequently, 96 frozen
layers were used in all other experiments involving the spider
sex recognition model.
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E. ACTIVATION FUNCTION OPTIMIZATION

The four groups of experiments involved training for
200 epochs, and the V1-V8 values were obtained, as shown
in Table 8. The accuracy and loss value curves are
in Figure 9. Good prediction accuracy for the four groups of
experiments. The V1 value of the default ReLU experiment
reached 0.9786, and the V3 value reached 0.9736. In the
experiment in which the activation function of Block 14 was
modified to an ELU function, the V1 value reached 0.9802,
and the V3 value reached 0.9739. In the group experiment
which the activation functions of Block 13 and Block 14 mod-
ified to ELU functions, the V1 value reached 0.9618, and
the V3 value reached 0.9521. In the experiment in which the
activation function of Block 14 was removed, the V1 value
reached 0.9791, and the V3 value reached 0.9747.
The accuracies achieved for the training set and the val-
idation set in these four experiments were compared.
In the group experiment with the ReLU activation func-
tion, the accuracy of the training set was higher than that
for validation set after 200 epochs of training, and over-
fitting occurred. In contrast, in the experiment with the
ReLU activation function combined with the ELU function,
the accuracy for the training set was similar to that for
the validation set after 200 epochs of training; additionally,
an overfitting state was not reached, indicating the model
can continue learning after 200 epochs. This potentially
increase in ability may increase model accuracy. Based on
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FIGURE 8. Curves of the model accuracy and loss values for the experiments involving general feature extraction with

frozen layers.

TABLE 8. Evaluation values for the activation function optimization experiments.

Experiments V1 V2 V3 \Z: V5 V6 V7 V8

ReLU 0.9786 0.9894 0.9736 09812 0.1001 0.0506 0.0076  0.0501
Block14 ELU 0.9802 09826 09739 09738 0.1211 0.0667 0.0001  0.0544
Block13-14 ELU 0.9618 0.9455 09521 09298 0.1669 0.1833 0.0224 0.0164
Without an activation function in Block 14  0.9791  0.9753  0.9747 0.9669 0.1225 0.0901 0.0078  0.0324

a comparison of the second and third experiments, the second
experiment displayed a faster gradient decrease and higher
accuracy than the third experiment. Finally, based on a com-
parison of the second and fourth experiments, the V1 value
of the second was higher than that of the fourth. In summary,
the second group of experiments corresponded to the best
experimental results when the ReLU function was changed
to an ELU function in the Block 14 of Xception.

F. GENERALIZED PRACTICAL TEST EXPERIMENTS

After the experiment and optimization process, the final num-
ber of parameters in the deep neural network was 20,865,578,
of which 10,020,434 need to be learned during training in this
study. The model structure is shown in Table 9. According to
the results, after 179 epochs, the prediction accuracy reaches
a maximum value of 0.9802; the corresponding model and
parameters are used in predictions based on the real test set A
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TABLE 9. Learning model structure and parameters.

Output Shape Param #
[(None, 600, 800, 3)] 0
(None, 600, 800, 3) 0
(None, 600, 800, 3) 0
(None, 600, 800, 3) 0

Layer (type)

input_2 (InputLayer)

sequential (Sequential)
tf.math.truediv (TFOpLambda)
tf.math.subtract (TFOpLambda)

xception (Functional) (None, 19, 25, 2048) 20861480
global_average_pooling2d(GlobalPooling2D)  (None, 2048) 0

dropout (Dropout) (None, 2048) 0

dense (Dense) (None, 2) 4098

and real test set B. For test set A, 61 samples were incorrectly
predicted, and the prediction accuracy reached 92.38%. For
test set B, 19 samples were incorrectly predicted, and the pre-
diction accuracy reached 94.21%. Based on the results of the
two sets of generalization experiments, machine learning can
be effectively used in spider sex image recognition tasks, and
the existence of male and female dimorphism phenomenon in
relation to nongenital features is tentatively verified.
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FIGURE 9. Curves of the model accuracy and loss values for the activation function optimization experiments.

IV. DISCUSSION

In this study, 42 Chinese Pseudopoda species belonging to the
Sparassidae family were considered in spider sex recognition
based on convolutional neural networks, and through model
tests, data augmentation and model optimization, the predic-
tion accuracy for the validation set reached 98.02%; addi-
tionally, the generalization accuracy for independent samples
reached 92.38%. Thus, the proposed method can replace
manual identification and provide a reference for future spi-
der species image recognition problems.

Deep learning models are generally classified into sev-
eral categories, and popular models include VGG, ResNet,
GooglLeNet, and Inception, among others. According to
Alfredo Canziani et al., ResNet-152, Inception-V3, and
Inception-V4 are highly suitable as base models for image
recognition with transfer learning. Xception is based on
the improved Inception-V3 network, and it outperforms
Inception-V3 and Inception-V4 in some aspects. Our results
show that the Xception model is slightly better than
ResNet-152 in spider sex recognition from images, which
may be related to the characteristics of the samples. The
results of this study confirm that deep learning problems
with small samples can be effectively solved using transfer
learning. For small-sample training sets, transfer learning can
take advantage of the existing knowledge obtained through
training with large general datasets, and the unique abilities
of the model can be applied in new domains. For example,
this approach was applied for sex recognition from images of
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spiders of the genus Pseudopoda in this study and could be
applied in future studies of spider species identification from
images.

Data augmentation is achieved by randomly transform-
ing the existing samples using certain rules; this process is
analogous to the randomness of taking pictures in a natural
environment and increases the number of samples in the study
set. This approach can prevent the occurrence of overfitting
due to the effects of a small training set and thus improve
the generalization ability of the network. Currently, the com-
mon data augmentation methods include random flipping,
random rotation, random cropping, random scaling, bound-
ary enhancement, random deletion, randomly blending, and
random contrast correction. It has been confirmed that data
augmentation directly affects the learning ability and training
accuracy of models. In this study, in addition to four com-
mon data augmentation methods (random flipping, random
rotation, random scaling and random contrast correction),
we focus on the effects of random cropping and varying the
resolution of input images on model performance in spider
sex recognition, which requires a fine scale. In addition to
genitalia and other features, the dorsal pattern, color, mor-
phology, etc. of spiders is also related to sex, and random
cropping leads to the loss of important features.

Data preprocessing techniques also influence whether
model learning can be successful, as reflected by excel-
lent learning ability and high training accuracy. For exam-
ple, in this study, the photos are uniformly processed into
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JPEG format, which greatly reduces the capacity of the
images, thus reducing the hardware demands of the network
model; considering the existing hardware capabilities, a high
resolution needs to be used as much as possible to retain
subtle features of a sample in addition to the general outline
or textural features of an object, thus improving the prediction
accuracy of the model.

In this study, the number of frozen layers of the gen-
eral feature extraction flow is experimented, and the results
show that the number of frozen layers of the general feature
extraction flow for transfer learning is neither more nor less,
and it is necessary to combine specific target samples and
experiment to find the appropriate number of frozen layers.
The activation function of domain feature extraction flow is
redesigned, ReLU and ELU activations are combined, and
Dropout layer is added in label prediction flow to prevent
model overfitting, etc. All these optimizations can have a
great impact on the prediction ability of the model. However,
in some experiments, the accuracy achieved for the validation
set may be higher than that for the training set, possibly
due to the randomness of sample segmentation, small sample
sizes and the dropout of some neurons. Moreover, removing
the activation function from Block 14 does not improve the
accuracy of the model, potentially due to the use of transfer
learning and a small sample set.

In addition, the manual identification of spider sex relies
mainly on the genital structures of mature spiders (male palps
or female epigynum). However, we found that the studied
computer was able to identify the sex of spiders when it was
not possible to do so manually based on pictures, and the
generalization accuracy was as high as 94.21%. This result
suggests that nongenital features such as the body color and
the spot patterns of Pseudopoda spiders, may be dimorphic at
the genus level. This phenomenon is currently unrecognizable
by humans. Although male and female dimorphism in body
morphology is typical in some specific taxa, such as Nephila
species in the family Araneidae (the female is almost five
times larger than the male), it has rarely been reported in
nocturnal spiders such as Sparassidae and Lycosidae. How-
ever, it must be noted that the sample size in this study was
relatively small, and the generalization test set contained only
328 images of 12 species; therefore, this conclusion needs to
be further confirmed by expanding the sample. In addition,
how the computer specifically identifies spiders based on
their body color and dorsal pattern for sex recognition needs
to be further confirmed using deep neural network interpre-
tation, and this result is only a preliminary conclusion.

In conclusion, this study proposes a deep learning—transfer
learning model based on Xception, and the training model can
be used to solve sex recognition problems for spiders after
optimization. This approach provides a reference for future
studies of spider species recognition from images.
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