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ABSTRACT The implementation of real-time price-based demand response program and integration of
renewable energy resources (RESs) improves efficiency and ensure stability of electric grid. This paper
proposes a novel intelligent optimization based demand-side management (DSM) framework for smart grid
integrated with RESs. In the intelligent DSM framework the artificial neural network (ANN) forecasts
energy usage behavior of consumers and real-time price-based demand response program (RTPDRP) of
electric utility company (EUC). The smart energy management controller of the proposed intelligent DSM
framework adapts forecasted energy usage behavior of consumers using forecasted RTPDRP to create oper-
ation schedule. The consumers implement the created schedule to minimize energy cost, peak load, carbon
emission subjected to improving user comfort and avoiding rebound peaks. Simulations are conducted using
our proposed hybrid genetic ant colony (HGAC) optimization algorithm to create schedule for three cases:
EUC without RESs, EUC with RESs, and EUC with both RESs and storage technologies. To endorse the
applicability and productivity of the proposed DSM framework based on HGAC optimization algorithmwith
five existing algorithms based frameworks. Simulation results show that the proposed DSM framework is
superior compared with the existing frameworks in terms of energy cost minimization, peak load mitigation,
carbon emission alleviation, and user discomfort minimization. The proposed HGAC optimization algorithm
reduced electricity cost, carbon emission, and peak load by 12.16%, 4.00%, and 19.44% in case I; by 26.8%,
20.71%, and 33.3% in case II; and by 24.4%, 16.44%, and 37.08% in case III, respectively, compared to
without scheduling.

INDEX TERMS Demand-sidemanagement, battery energy storage systems, photovoltaic, demand response,
scheduling, smart grid.

NOMENCLATURE
ANN Artificial neural network.
AMI Advanced metering infrastructure.
ACO Ant colony optimization.
BFO Bacterial foraging optimization.
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BPSO Binary PSO.
BILP Binary integer linear programming.
CP Convex programming.
DGs Distributed generations.
DSM Demand-side management.
DP Dynamic programming.
DR Demand response.
EDE Enhanced differential evolution.
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ESS Energy storage system.
ECC Energy consumption controller.
EUC Electric utility company.
EMC Energy management controller.
EVs Electric vehicles.
GA Genetic algorithm.
HGAC Hybrid genetic ant colony.
H2V Home to vehicle.
IBR Inclining block rate.
MOWDO Multi-objective WDO.
MOGA Multi-objective GA.
MPC Model predictive control.
MILP Mixed integer linear programming.
PV Photovoltaic.
PAR Peak to average ratio.
PSO Particle swarm optimization.
PEVs Plugin electric vehicles.
RES Renewable energy resources.
RTPDRP Real-time price-based demand response pro-

gram.
RTP Real-time pricing.
RDSM Robust DSM.
SGs Smart grids.
SMs Smart meters.
SPG Smart power grid.
TLBO Teaching learning based optimization.
TLGO Teaching learning genetic optimization.
V2G Vehicle to grid.
WDO Wind driven optimization.
Ak Actual value.
Apv Area of solar panel.
θ (t) Carbon emission.
ESch(t) Charging state.
ESdis(t) Discharging state.
ηESS Efficiency of the batteries.
0tω Energy consumption of rechargeable appli-

ances.
0tF Energy consumption of fixed appliances.
0ts Energy consumption of non-interruptible

appliances.
0tν Energy consumption of fixed appliances.
0tφ Energy consumption of elastic appliances.
ηpv Efficiency of solar panel.
Fk Forecast value.
bi Hidden layer.
φ(t) Imported electricity.
zj Input elements.
yi Input to the hidden nodes.
βj Linear weight between input and output

nodes.
LOT Length of operation time.
N Number of training samples.
A Number of all appliances.
F(t) Output vector.
xqc (t) ON/OFF status of appliances.

α Operation start time.
β Operation end time.
Temp Outside environment temperature.
ρqc Power rating of appliances.
δ(T ) Peak to average ratio.
Ppv Power generated by solar panel.
EP(t) Real time electricity price.
Q Set of fixed appliances.
Sr Set of non-interruptible appliances.
W Set of rechargeable appliances.
Irr Solar irradiance.
ψ1, ψ2 Shape factors.
λ1, λ2 Scale factors.
Schd(t) Scheduled load.
SE(t) Stored energy in ESS.
Eφ Total energy consumption.
Etotal(t) Total energy consumption.
Unschd(t) Unscheduled load.
Wi Weight factor.
wij Weight between the neurons of input layer

and hidden layer.

I. INTRODUCTION
Throughout, the world energy demand is rapidly increasing
with the drastic increase in population and modern technol-
ogy. Today, fossil fuels have a major contribution to elec-
tricity production. In the US, electricity production causes
26.9% carbon emission after transportation [1]. To reduce
the emission of gases that cause global warming, researchers
are working to replace the existing power plants that mostly
run on fossil fuels with renewable energy sources (RES).
However, the installation of large numbers of RES will cre-
ate instability in the power system or the waste of excess
amount of energy. To reduce the use of fossil fuels and govern
RES efficiently, renovation of traditional grids with smart
grids (SGs) is needed.

A smart grid is a smart electricity network that intelli-
gently accommodate consumers and electric EUCs compa-
nies (EUCs) that actively participate in electricity market.
The purpose is to ensure sustainable, cheaper, and secure
electricity supply to consumers subjected to power system
stability. The SG works alongside integrate many types of
equipment like smart home appliances, smart meters (SM),
energy storage systems (ESS), and RES. The SG uses modern
techniques to govern power generation plants, transmission
and distribution network. The SG have advanced moni-
toring infrastructure (AMI) to collect and distribute data
of energy demand, supply, and price between consumers
and EUCs. It builds two-way communication of provid-
ing information, such that consumers can reduce electricity
bills by using the minimum amount of energy according to
price information provided by AMI. In contrast, the EUCs
can achieve the best demand-side management (DSM) and
minimum generation cost by adjusting power generation
timing.
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Recently in literature, scientists introduced various DSM
strategies that help the consumer to consume minimum
energy either by integrating RES or operating their loads
during off-peak hours. In [2], authors considered the thermal
storage capacity of thermostatic devices and ESS integrated
photovoltaic (PV) panels. The authors proposed a heuristic
forward-backward algorithm to reduce the cost of the ther-
mal appliances and also suggested peak flattening scheme
to prevent the peak occurrence in the power system. In [3],
authors discussed the critical role of optimal energy algorithm
in order to enhance the performance of EUCs, energy saving
at consumer end and environmental benefits. Authors studied
electricity cost and user discomfort minimization by propos-
ing the genetic algorithm (GA) and solved these problems
in two stages i.e., the first stage optimization involves the
electricity cost reduction, while second stage optimization is
based on the first stage optimization, with no increase in the
cost of purchased electricity in [4].

Authors considered a case of residential consumers with
integrated ESS and PV to solve energy management problem
in [5]. Their proposed algorithm minimized electricity cost
and PAR by scheduling the operation time of different
appliances. In [6], authors engaged consumers of both res-
idential and commercial areas for solving power usage
scheduling problem. They proposed the particle swarm
optimization (PSO) algorithm to reduce peak to average
ratio (PAR) and electricity cost by integrating RES, and elec-
tric vehicles (EVs). The authors studied PAR, electricity cost
minimization, and also considered user comfort maximiza-
tion while solving power usage scheduling in [7]. They com-
bined real-time pricing (RTP) with inclining block rate (IBR)
tariff to limit high power consumption at times of low costs,
and also to improve PAR. Similarly, authors introduced artifi-
cial intelligence to the system design, which provides various
solution for energy consumption based on past experience
in [8]. For consumer suggestion, the user feedback link is also
added in this system. Thus providing personalized services
in energy saving. Likewise in [9], authors proposed about
improved version of automation system for building in order
to improve efficiency in commercial apartments. This system
will allow the consumer to monitor and control their energy
consumption and also to notice their energy saving potentials.

Though, literature discussed provides a good start for
understanding DSM in SG. However, the DSM problem is
a challenging problem due to the nonlinear behavior of con-
sumers, more volatile and intermittent RES, limited fossil-
fuel sources. Moreover, the focus of the existing literature is
on electricity cost minimization, PAR alleviation, and devices
delay reduction. Also, the use of intrinsic models is not
adequate for solving DSM problem to achieve objectives like
electricity cost, peak energy consumption, PAR, user dis-
comfort, and carbon foot print minimization simultaneously.
Because the intrinsic models’ performance is compromised
due to inherit limitation and incompetence to handle con-
flicting parameters. Thus, to cater this dilemma hybrid and
integrated models are the need of the day. In this regard,

a novel integrated DSM framework based on ANN and our
proposed hybrid genetic ant colony optimization (HGAC)
optimization algorithm is introduced for solving problems
accompaniedwith intrinsicmodels while cateringDSMprob-
lem. The novelty and main contributions of this work are
demonstrated as follows.

• The ANN forecaster is integrated with smart energy
management controller based HGAC optimization algo-
rithm in DSM framework to forecast exogenous signals
like load, temperature, solar irradiance, and RTPDRP.
The purpose is to perform efficient DSM via scheduling
energy usage profile of residential buildings under the
forecasted RTPDRP.

• An integrated distributed generations (DGs) system
of solar energy system, EVs, battery storage sys-
tem, and EUCs is developed to solve DSM problem
using RTPDRP.

• Consumers load and DGs like solar energy system, EVs,
battery storage system are made smart and controlable
to actively participate in DSM to minimize electricity
costs, PAR, carbon emission, and consumer discomfort,
simultaneously.

• A RTPDRP is introduced that broadcasts pricing signal
to the consumers to take part in load shifting, valley
filling, peak clipping, and load demand curve smoothing
to solve DSM problem.

• Consumers load is classified into shiftable appli-
ances, elastic appliances, uninterruptible appliances,
and rechargeable appliances, to show more flexibility
and actively participation in RTDRP to solve DSM
problem.

• The DSM problem is mathematically formulated as
minimization problem subject to practical power usage,
DGs, EUCs, and RTPDRP constraints for the purpose to
ensure energy cost savings, minimize carbon emissions,
alleviate PAR, and improve user comfort.

• A hybrid optimization HGAC algorithm is introduced to
solve the formulated DSM problem.

• Performance of the proposed optimization algorithm is
endorsed by comparing it to intrinsic optimization algo-
rithms like PSO [10], GA [11], wind driven optimization
(WDO) [12], and ant colony optimization (ACO) [13]
in terms of electricity cost, energy consumption, PAR,
waiting time, and carbon footprint.

• The simulation process is divided in three cases. First
case is conducted without the integration of RES and
ESS, second case the consumer is considered with inte-
grated RES which shows the importance of RES in
power system, third case, the consumer is considered
with integrated RES and ESS.

• Simulation results illustrates that proposed HGAC opti-
mization algorithm outperforms the intrinsic algorithms.

The remaining sections of this work are arranged as fol-
lows. The sections II discuss the related work. The proposed
system model is designed and briefly explained in section III,
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section IV presents proposed algorithm, section V presents
the simulation and results, and finally the paper is concluded
in section VI.

II. RELEVANT LITERATURE SURVEY
Recently, in literature various authors work on solving DSM
in SG. In this context, some recent related work to the theme
is discussed as follows.

In [14], the authors proposed a MILP based scheme that
reduced PAR by 48% with microgrid, and similarly, electric-
ity costs decreased by 45% without and 80% with microgrid
integration. The authors also developed a forecasting system
(EDE-ANN), that helps a user to communicate with the
microgrid and power grid in purchasing electricity required
by the consumer. But on the contrast, the authors did not
consider carbon emission from energy consumption. Authors
introduced DSM system, which curtail the electricity expense
via scheduling smart appliances in home [15]. The authors
used knapsack problems to formulate the constrained opti-
mization problem, and then solved by GA, binary PSO
(BPSO), WDO, bacterial foraging optimization (BFO), and
hybrid of GA-PSO (HGPO). The authors integrated RES and
ESS that reduced PAR and electricity bills by 21.55% and
19.94% respectively. In [16], the authors proposed PSO to
solve PSP for scheduling smart home appliances which in
turn reduced electricity bills and PAR. They also compared
PSO with GA and PSO has optimum results than GA in
terms of electricity bills, PAR, and maximum user comfort
but they ignored carbon emission. In [17], the authors pro-
posed a generic architecture for DSM and a combination of
time of use (ToU) tariff and use full form on first instance
IBR. They introduced ACO for scheduling home appliances
that reduced PAR and electricity bills efficiently. They also
minimized user discomfort but ignored carbon emission. The
authors introduced DSM framework to benefit the consumer
by searching out for a sufficient amount of solar energy [18].
They also developed two loops systems, one is model predic-
tive control (MPC) to control power flow if any uncertain dis-
turbance occurs while second is the optimal control method
that will schedule the power flow of the overall system over
the scheduling horizon.

In [19], the authors introduced the multi-objective
WDO (MOWDO) and multi-objective GA (MOGA)
for energy optimization in SG considering demand
response (DR) program and high penetration of RES. Their
objectives were operation cost, pollution emission, and
availability optimization. The authors in [20], assumed
that consumer is provided with a smart meter which has
an energy consumption controller (ECC) unit. This ECC
units are via LAN connected with neighbors for sharing
power utilizing information. Their objectives were reduc-
tion in PAR and electricity bills. They used ECC units to
transfer the maximum of the peak load to off-peak hours
and this minimizes the consumption cost by 21% and
PAR by 24%. In [21], the authors represented a behavior-
driven price-based MPC model which control different home

appliances, and nodal pricing method for controlling differ-
ent costs. They tested these two methods on 15,000 build-
ings and reduced generation costs by 21% and PAR by
17%. However, they ignored carbon emission and user
discomfort.

In [22], the authors developed a Nash-game-theory-based
optimization model to minimize cost, PAR, and user discom-
fort. This optimization model reduced the cost in the summer
season by 9.17% and in the winter season by 9.68%. Simi-
larly, PAR is minimized in the summer season by 1.76, and
in the winter season reduced by 1.81. However, the authors
ignored carbon emission.The authors in [23] modeled a HEM
controller based on BFOA, WDO, GA, BPSO, and GA +
BPSO (GBPSO) for minimizing electricity consumption and
PAR. The GBPSO is the hybrid of GA and BPSO and has
better results for both cost and PAR, while GA reduced
PAR by 34% and BPSO reduced cost by 36%. Despite these
objectives, they did not consider carbon emission and user
comfort. The authors in [24], introduced the binary integer
linear programming (BILP) algorithm and compared their
results with the mixed integer linear programming (MILP)
technique. Their objective was to reduce cost, and reduced
it by 35%. However, they did not use any RES. In [25],
the authors formulated the BILP technique for scheduling
smart home appliances to minimize electricity consumption
cost and linearize the load profile curve. They used plugin
electric vehicles (PEVs), ESS, and RES for putting less
load on the grid. However, they did not consider consumer
satisfaction. In [26], the authors considered a smart home
with PV, ESS, and PEV to minimize the home economy.
They introduced convex programming (CP) for controlling
the essential parameters of ESS, so that the consumer does
not depend on EUCs during the on-peak time slots. They
considered bi-directional power flow modes like home to
vehicle (H2V) and vehicle to grid (V2H) that participate in
DSM. The V2H mode has a 2.6% lower electric cost than
unidirectional power flow mode H2V. In [27], the authors
presented a bi-level optimization method including upper
capacity and lower operation optimizations. They compared
their results with the system having no storage system. Their
proposed technique significantly reduced the overall cost, and
shifted most of the load to off-peak hours, and also increased
the use of RES.

In [28], the authors proposed robust DSM (RDSM) frame-
work, which has two parts. The first is load scheduling to
minimize the cost, and the second part composed of dynamic
programming (DP) for power management to enhance cost
reduction using RES. They compared their results with
column-and-constraint generation and RDSM has the best
results for both cost and PAR. The authors in [29], [30], devel-
oped an energy management controller (EMC) for DSM.
Energy consumption, cost, and PAR are reduced by using
fuzzy logic and heuristic optimization techniques, which
are BAT, FP, and HFBA algorithms. In the results, BAT
has reduced cost by 9.0877% while the FP and HFBA
by 9.0459% and 8.6154%, respectively. Similarly, HFBA
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has reduced PAR by 25.45%, while the FP and BAT by
9.4907% and 23.91%, respectively. However, they did not
consider carbon emission in their system. The authors in [31]
introduced DSM and GA-DSM and compared their results.
GA-DSM has a more reliable result of reducing the overall
load than DSM by reducing 21.91%. However, the authors
ignored electricity cost, carbon emission, and user comfort.
In [32], the authors introduced a hybrid teaching learning
genetic optimization (TLGO) by combining GA and teaching
learning based optimization (TLBO) to schedule the residen-
tial loads. They focused on user discomfort and electricity
cost. According to TLGO,GA, and TLBO electricity cost was
reduced by 33%, 31%, and 31.5%, respectively. Similarly,
GA, TLBO, and TLGO minimized the user discomfort by
2.37, 2.14, and 1.83, respectively. However, they did not
consider PAR and carbon emission. The authors in [33],
reduced the pressure on EUCs and users by using DSM. They
also used SBA and BFO to facilitate the HEMS in scheduling
home appliances. ToU is introduced to find out the cost in effi-
cient way. Their results show that cost and PAR are efficiently
reduced. In [34], the authors introduced HEMS with a sched-
uler to schedule the home appliances. They aimed to reduce
the electricity cost and maximize user comfort. The HEMS
helped by combining GA with RTP and IBR to regulate the
instability of the system. The simulation results show that
this scheme has better results for both consumers and suppli-
ers. In [35], the authors modeled DSM as a multi-objective
optimization problem to reduce PAR and increase consumer
satisfaction. They proposed a distributed energy scheduling
algorithm to achieve the desired objective. A multiobjective
immune algorithm is adopted for Pareto optimal solution of
multimicrogrid design [36]. The objectives of this work are
utility maximization for the microgrids, utility maximization
for the power grid, and maximize a sum of the stored energy
levels within the multimicrogrid network. Similarly, a multi-
objective cooperative approach for the energy management
of multimicrogrid is developed in [37]. Results show that
the developed model is effective in terms greenhouse gas
emission, voltage drop, and losses as compared to benchmark
schemes. A collaborative framework is developed for solv-
ing energy dispatch problem of multi-stakeholder multiple
microgrids [38].

The above models discussed are valuable asset of stat-
of-the-art works and capable to solve DSM problem in
SG. However, every model has their inherit limitation
and suitable for the specified constraints, objectives, and
assumptions. Thus, state-of-the-art work is concluded with
following findings: (i) there is no model exist which is per-
fect in all aspects, (ii) there are some parameters, which
are conflicting in nature due which tradeoff exist, increas-
ing one will results a decrease in the other and vice
versa. In this context, a system model is proposed based
on ANN and novel algorithm namely hybrid genetic ant
colony (HGAC) optimization algorithm for solving prob-
lems accompanied with intrinsic models while catering DSM
problem.

III. PROPOSED ARCHITECTURE OF DEMAND SIDE
MANAGEMENT SYSTEM
In this section, the proposed system model of smart power
grid (SPG) comprises ANN based forecaster, different types
of loads in smart home, DGs, EMC for controlling and
monitoring all the activities as shown in Figure 1. To get a
securedmanagement or delivery of energy, it is important that
all the communication messages to be delivered in a secure
manner via wireless communication infrastructure between
smart appliances and EMC as shown in Figure 2.

The proposed system model is an integrated model of
household energy demand model, energy supply model con-
sisting of RES and power grid, and load scheduling model to
meet the energy requirements of the consumers. First, ANN
forecaster is trained using historical load and DR data to
forecast RTPDRP and power usage pattern of consumers.
The ANN in this work is adopted due to its capability to
handle nonlinear behavior of consumers. TheANN forecaster
is data driven. The dataset used in this work is taken from
midwest independent system operator federal energy regu-
latory commission [39]. The dataset have hourly load and
price data having key features like temperature, dew point,
and humidity. The dataset is for a period of one year from
September 2008 to September 2009. The dataset is divided
into training set (80%) and testing set (20%). The ANN three
layer structure is defined in this work: input layer, hidden
layer, and output layer. The ANN is feed-forward network
where neurons of each layer are connected to the neurons of
succeeding layer via synaptic weights, as shown in Figure 3.
The historical dataset is given as input to ANN to create
mapping of input and output vector, which is mathematically
modeled as:

F =
n∑
i=1

Wif (yi)+
m∑
j=1

βjzj, (1)

where

f (yi) =
1

1+ exp(−yi)

F(t) is output vector shows forecast results, Wi is weight
factor between input and output nodes, βj is the linear
weight between input and output nodes, zj represents input
elements, and yi is the input to the hidden nodes. The
Levenberg–Marquardt optimization algorithm and sigmoidal
transfer function are used for training of the ANN. The yi is
computed as follows:

yi =
3∑
j=1

wijzj + bi, (2)

where wij is the weight between the neurons of input layer
and hidden layer, and bi is the bias added at the hidden
layer. The learning process will be stopped when the max-
imum number of epochs are reached or error function is
minimized to the predefined tolerance. The error function is
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FIGURE 1. Proposed system model for demand side management.

defined as follows:

E =
1
N

N∑
k=1

(Ak − Fk)2, (3)

where Ak and Fk are the actual and forecasted outputs of the
network at kth pattern, respectively, and N is the number of
training samples employed. The forecasted values based on
ANN closely follow the target values, which indicates that
error is low and the results obtained are accurate. For more
explanation regarding ANN forecast engine design interested
readers are referred to [40].

We have divided a day in equal and constant duration
of time by using quasi static model. Let us consider that
each time slot t is subset of T the observed time T =
{t ∈ T | t1, t2, t3}. Each time slot t is equal to 1 hour
so that each appliance has enough time to operate and fin-
ish the running activity. It is further considered that A is
the number of all appliances enclosed in set S, and all the
appliances of a consumer are represented as S = {s ∈ S |
s1, s2, s3, . . . , sA}. Therefore, the energy consumption by an
appliance in 24 hours is given as:

Es1 = E1,s1 + E2,s1 + E3,s1 + . . .+ ET̄ ,s1 . (4)

To calculate consumers energy consumption of appliances
Eφ is given as:

Eφ =
Ṫ∑
t=1

T̃
A∑
a=1

(E(t, aa)). (5)

FIGURE 2. The interaction of EMC to smart appliance for demand side
management.

In the following section, we placed all the consumer appli-
ances in different categories on the basis of their character-
istics, i.e., power rating, weather conditions and consumer’s
preferences.

A. FIXED APPLIANCES
These appliances cannot be managed and their demand can
be satisfied on-demand independent of cost rising factor.
For example lights, fans etc. Consider that C is the number
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FIGURE 3. ANN feed-forward forecaster with single input layer, two hidden layers, and an output layer forecasting RTPDRP and power usage pattern.

of all fixed appliances placed in a set Q = {q ∈ Q |
q1, q2, q3, . . . , qC }. The power rating of each appliance in
a given time slot is represented as ρqc . The total power
consumption by these appliances is given as:

0tν =

T∑
t=1

∑
qc∈Q

(ρqc (t)xqc (t)). (6)

where xqc (t) is the ON/OFF state of a fixed appliance and
its value depends on the random probability. The power con-
sumed by the fixed appliances must obey the following the
constraint:

0minν ≤ 0tν ≤ 0
max
ν ∀t ∈ T . (7)

Constraint (7) ensures that the energy consumption of fixed
appliances must be within the lower 0minν and upper 0maxν

limit defined for energy consumption by the controller.

B. SHIFTABLE APPLIANCES
The shiftable appliances are alternatively named as schedula-
ble appliances. The time of operation and power consumption
of such type appliances can be managed to achieve mini-
mum electricity cost and PAR. There are different types of
schedulable appliances represented by set S. Based on their
characteristics, we divided them into three categories that are
discussed below.

1) ELASTIC APPLIANCES
The time of operation and power consumption pattern of
these appliances can be managed by the consumer according
to their comfort zone. These appliances are also known as
thermodynamically controlled appliances. Let us consider a
set L containingM total numbers of elastic appliances, where
1 ≤ m ≤ M . The power rating is denoted as ρLm and each
appliances is represented as Lm ∈ LM . Each appliance has
two parameters for operation, i.e., start time αLm and end

time βLm . The total power consumption is symbolized by 0tφ
and given as:

0tφ =

T∑
t=1

∑
Lm∈LM

λLm (ρLm (t)xLm (t)). (8)

where λLm and xLm (t) represents weather dependent factor
and state of an appliance in a particular time slot t .

2) NON-INTERRUPTIBLE APPLIANCES
The operation time of such appliances is changeable, but
once its operation is started then it cannot be interrupted
until the completion of the task. Consider we have Sr set of
non-interruptible appliances having ρSr power rating of each
appliance, and R ranges between 1 ≤ r ≤ R. Each appliance
has a start time αSr , stop time βSr and length of operation
τSr that is specified by the consumer. As the appliance start
operation its energy consumption will be considered ρSr oth-
erwise it will be zero. The total power consumption of such
appliances is given as:

0ts =

T∑
t=1

∑
Sr∈SR

ρSr (t)xSr (t)). (9)

where xSr (t) is the ON/OFF state of the each non-interruptible
appliance in the current time slot t .

3) RECHARGEABLE APPLIANCES
These are portable appliances and the power utilization of
these appliances during charging is in decreasing order. Con-
sider set W containing R numbers of these appliances. The
power rating of each appliance can be represented as ρWr . For
all the appliances, the consumer has defined the start time and
stop time as:

0tω =

T∑
t=1

∑
Wr∈WR

(λWR (t)ρWr (t)xWr (t)). (10)
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where xWr (t) is the state of an appliance and λWR represents
the weight for power consumption that is high at the start
of charging time t . Total power consumption by F shiftable
appliances of a consumer is formulated below.

0tF = 0
t
φ + 0

t
s + 0

t
ω. (11)

The power consumed by the shiftable appliancesmust obey
the following the constraint.

0min ≤ 0tF ≤ 0
max (12)

Constraint (11) ensures that the energy consumption of
shiftable appliances 0tF must be within the lower 0minv and
upper 0maxv limit defined for energy consumption by the
controller.

C. SOLAR ENERGY SOURCE
Naturally available RES include solar energy, fuel cell energy,
wind energy, biogas energy, tidal energy, etc. Among RES,
solar energy is free (small operation and maintenance cost),
abundant, and available in access of all consumers. In this
study, solar energy source is equipped with houses and power
grids. The goal is to minimize electricity cost, alleviate PAR,
and mitigate carbon emission by effectively utilization of
solar energy. The output power of solar energy system is
determined by the following equation as [14]:

Ppv(t) = ηpv × Apv × Irr(t)× (1− 0.005(Temp(t)− 25))

(13)

where Ppv is the power generated by solar panels on hourly
basis, terms ηpv and Apv represent the efficiency and area
of the solar panel, respectively. Outside environment tem-
perature and solar irradiance are denoted by Temp and Irr
respectively for the specific time of interval, 0.005 is the
temperature correction factor.

The distribution of solar irradiation for an hour usually
observe with a bi-modal distribution, which is a linear blend
function of two uni-modal distributions. The uni-modal dis-
tribution is modeled using Weibull probability density func-
tion which is illustrated in Eq. (14)

F (Irr (t)) = ω
(
ψ1
λ1

)(
Irr (t)
λ1

)(ψ1−1)e−( Irrλ1 )ψ1

+ (1− ω)
(
ψ2
λ2

)(
Irr (t)
λ2

)(ψ2−1)e−( Irrλ2 )ψ2
,

0 < Irr (t) <∞λ1 (14)

where ω is weighted factor, ψ1, ψ2 are the shape factors and
λ1, λ2 are the scale factors.

D. BATTERIES STORAGE SYSTEM
This study considers batteries as an ESS. The batteries are
equipped with solar energy system used to store solar energy
when energy is surplus or off-peak hours, or battery charging
level is below than lower cutoff. We have considered that

the smart home is provided with a 3 kWh storage capacity.
It has different constraint for charging such as minimum and
maximum charging represented by ESSmin and ESSmax . Also,
it has a specific limit of discharging to keep it safe and value
of discharging is taken 90%. The storing energy equation is
modeled as [14]:

SE(t) = SE(t − 1)+ k.ηESS .ESch(t)− k.
ESdis(t)
ηESS

, (15)

subject to:

ESch(t) ≤ ESmax , (16)

ESch(t) < ESupt , (17)

ESdis(t) ≥ ESmin. (18)

where ESch(t) is the charging state, ESdis(t) is the discharging
state and ES shows the energy stored at interval time t , ηESS

indicates the efficiency of the batteries at interval time t .

E. DESIRED OBJECTIVES FUNCTION
This section describes the desired objectives function, which
is modeled in Eq. (19). The objective function is dependent
on the minimum energy cost, PAR, and the constraints given
in Eqs. (20) to (26). The objective function is given below:

min
T∑
t=1

(ζ (t)+ δ(t)+ θ(t)) (19)

Subject to :

E(t) = Ppν(t) (20)

0tν(t)+ 0
t
F (t) = (E(t)+ ESS(t)+ φ(t))

(21)
n∑

a=1

η = LOT (a) (22)

n∑
a=1

α ≤ η ≤ β (23)

φt ≤ KI (24)

0 < ESSmin < ESSmax , ∀t ∈ T , (25)

0 < Irr(t) < KC , ∀t ∈ T . (26)

F. ELECTRICITY COST
In this section, we determined per unit energy price that
changes in each time interval t .We used RTP tariff to estimate
energy cost. Hourly energy cost is calculated by:

ζ (t) = (0ν(t)+ 0F (t))× EP(t). (27)

where 0tν and 0
t
sh represent the energy consumption of fixed

and shiftable appliances, respectively. Per day electricity cost
can be calculated as:

ζ (T ) =
T∑
t=1

(0tν(T )+ 0
t
F (T ))× EP(t). (28)
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Eq. (29) expresses the imported electricity from RES and
ESS.

φ(t) = (0ns(t)+ 0sh(t))− (E(t)+ ESS.αess(t)).

φ(t) =

{
φ(t), if φ(t) ≥ 0
0, otherwise

(29)

The total amount of imported energy is expressed in
Eq. (32)

φ(T ) =
T∑
t=1

φ(t) (30)

δ(t) = φ(t) × EP(t) (31)

δ(T ) =
T∑
t=1

(φ(t) × EP(t)) (32)

G. PAR
It is the ratio of themaximum load of consumer at time t to the
mean load consumed during the schedule time. PAR shows
the direct relationship between the consumers peak energy
consumption and the EUCs peak power plants. To minimize
PAR, it will be beneficial for EUCs to operate less number of
peak power plants and consumers will get continuous power
supply. Eq. (33) calculates PAR for N numbers of consumers.

δ(T ) =
max(Etotal(t))

1
T

∑N
n=1

(∑N
t=1 Etotal(t, n)

) (33)

H. CARBON EMISSION
Eq. (34) shows the carbon emitted from electricity consump-
tion [43]. Where EPavg, η, γ and m denotes the mean amount
of bill per month for consumed energy, price per kWh that
is equal 0.20 dollars, electricity emission factor equivalent
of 1.37 and number of months in a year respectively.

θ(t) =
EPavg

η × γ × m
(34)

I. USER COMFORT
In this paper, UC is related with electricity cost and waiting
time of an appliance over scheduled horizon. Actually UC
can be determined in terms of waiting time, it means that how
long a user will have to wait for turning on the given appli-
ance. To get lower electricity cost, the user has to operate their
appliances according to schedule created by the proposed
technique. We can calculate UC by the following equation:

Delay =

∑
| Unschd(t)− Schd(t) |∑

(Schd(t))
(35)

IV. PROPOSED HGAC OPTIMIZATION ALGORITHM FOR
DSM
The HGAC optimization algorithm is obtained by cascading
GA [41] and ACO [42] techniques. The developed HGAC
optimization algorithm is devised by take complete steps of
ACO technique, and the crossover and mutation steps of GA.
The above stated techniques from the class of meta-heuristic

TABLE 1. HGAC optimization algorithm parameters.

techniques are chosen due to ACO Superior performance in
aspects of electricity cost reduction and user comfort max-
imization, and in contrast, the GA is effective in aspects of
PAR alleviation. Thus, key operators of ACO and GA are
fused in HGAC optimization algorithm to schedule power
usage of consumers to achieve electricity cost reduction, PAR
alleviation, and user discomfort minimization. The HGAC
optimization algorithm comprises of three stages: (a) com-
plete steps of ACO algorithm, (b) crossover, and (c) mutation.
The complete working of HGAC optimization algorithm is
depicted in Figure 4. The parameters of the HGAC optimiza-
tion algorithm are listed in Table 3. The superior performance
of the HGAC optimization technique is because of: (a) deep
layers structure, and (b) large controling parameters than
the benchmark techniques. The state solid reasons (a) and
(b) make HGAC optimization algorithm capable simultane-
ously achieve the desired objectives. However, due to reasons
(a) and (b), it has more time complexity than existing tech-
niques due to tradeoff int their behavior. The evaluation of
the proposed and existing algorithms in terms of convergence
rate, computational time, and complexity are listed in Table 2.

V. SIMULATION AND RESULTS
This section shows the simulation and results of our presented
HEMS. We considered three cases: EUCs without RES and
ESS, EUCs with RES, and EUCs with RES and ESS, to eval-
uate the behavior of proposed and existing algorithms (PSO,
GA, WDO, ACO, and HGAC). Furthermore, the parameters
of the proposed and existing algorithms are kept same sub-
jected to fair comparison as listed in Table 3.
In the first case, we have taken the results considering

EUCs without RES and ESS. Similarly, in the 2nd case EUCs
with only RES is considered and in the third case EUCs with
both the RES and ESS are integrated in terms of electricity
cost reduction, PAR minimization, carbon emission reduc-
tion and UC maximization. The comparison of these three
cases are illustrated in sections I, II and III. For simulations,
we used MATLAB 2018a installed on Intel(R) Core(TM)
m3-7Y30 CPU@ 1.60GHz and 8GB RAM. In our proposed
model, we considered a consumer having 6 smart appliances
that are connected with EMC via Wi-Fi. The EMC create
schedule for each appliance according to electricity tariff.
We designed a forecasting model for solar energy prediction
to ensure more efficient energy management. The exogenous
signals like load, temperature, solar irradiance, and RTPDR
are forecasted using ANN, which are shown in Figures 5, 6, 7,
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FIGURE 4. HGAC optimization algorithm for DSM using RTPDR.

TABLE 2. Proposed HGAC optimization algorithm and existing algorithms evaluation in terms of convergence rate, computational time, and complexity.

and 8, respectively [20]. The load pattern depicted in Figure 5
is the energy consumption profile of a smart home having
three types load: elastic, non-interruptible, and rechargeable,
which is forecasted using ANN. It is obvious that forecasted

load closely follow the target load curve reveals the prediction
is accurate. Figures 6 and 7 are the forecasted temperature and
solar irradiance profile of METEONORM 6.1 of Islamabad
region of Pakistan used for the generation of electricity. The
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TABLE 3. Proposed and existing algorithms parameters.

RTP signal shown in Figure 8 is defined by utility operator
for DSM. The PV, the generated energy depends on the area
of the solar panels, the conversion efficiency of the panels,
solar irradiance, and ambient temperature.

We considered 90% of renewable energy for consump-
tion during scheduling time horizon. The remaining 10% is
assumed to provide the difference between the predicted and
the target generation. Furthermore, the 30% of the predicted
renewable energy is utilized for the charging of ESS when its
charging level is between 10-90%. Figures 9 and 10 illustrate
the charging level of ESS and predicted renewable energy,
profile of RE after 10% uncertainty and after charging the
ESS, respectively.

A. CASE 1
In this case, we considered a consumer using electricity of
EUCs without RES and ESS integration. We scheduled the
user load by using the heuristic algorithms that are proposed
in our scheme, and compared the results with unscheduled
load in terms of electricity cost, PAR and carbon emission.
That are discussed in details in the subsequent sections.

FIGURE 5. Residential consumers load profile.

FIGURE 6. Forecasted ambient temperature.

1) ELECTRICITY COST

Figure 11 illustrates cost of electricity consumed by load with
and without scheduling for first case considered. In case of
unscheduled load, the maximum cost is 70 cents in time slots
9-10, PSO scheduled load has electricity cost of 65 cents in
time slot 19, 21, and 23, for GA the maximum cost is 50 cents
at 9 time slot. Similarly, the WDO maximum cost of energy
consumed is 54 cents in time slot 9, the ACO has 48 cents
cost in time slot 9, while the proposed HGAC the maximum
cost is 53 cents in hours 19, 21, and 23. By summing up per
day electricity cost of unscheduled and scheduled loads of
PSO, GA, WDO, ACO and HGAC is 777, 680, 729, 734,
701 and 690 cents respectively. From the results, it is shown
that PSO has the reduction of 11.55%, in case of GA cost is
reduced by 6.27%, WDO based load has reduced the overall
cost by 5.51%, in case of ACO cost is reduced by 9.78%,
while of the proposed HGAC the electricity cost 12.16%
reduction. So it is clear that our proposed algorithm has effi-
ciently scheduled the overall load as compared to the existing
algorithms.
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FIGURE 7. Solar irradiance.

FIGURE 8. Real-time price based demand response program.

2) PAR
Figure 12 shows the PAR of unscheduled and scheduled loads
when RES and ESS are not integrated with EUCs. From
the results, it is clear that HGAC optimization algorithm has
maximum reduction of 19.44%, while in case of PSO, GA,
WDO andACO the reduction in PAR is 5.55%, 8.33%, 2.74%
and 13.8%, respectively. These algorithms are supposed to
minimize the overall load but the PSO shifted more load to
low price hours which creates rebound peaks. These new
peaks in turn create instability in the power system and as a
result EUCs imposes penalty on the consumers. Though the
ACO and HGAC algorithms uniformly distribute the overall
power demand of load, and results low PAR.

3) CARBON EMISSION
Figure 13 shows the carbon emission of unscheduled and
scheduled loads without the integration of RES and ESS.
The maximum carbon emitted in case unscheduled load is
150 pounds in time slot 21, the PSO has 142 pounds in
time slot 21, GA has 147 pounds carbon emission in time
slot 21, in case of WDO it is 138 in hour 21, the ACO has
147 pounds hour 21, while the proposed HGAC optimization

FIGURE 9. Battery charging level.

FIGURE 10. Estimation of RES for optimal utilization.

algorithm the maximum carbon emission is 144 pounds in
hour 21. Results illustrate that the proposed algorithms have
significantly reduced the carbon emission as compared to
ACO, GA, and unscheduled case. In case of PSO, reduction
occurred by 5.4%, in case of GA it is 2.08%, in case of WDO
it is 8.05%, ACO scheduled load has reduced carbon emission
by 5.4%, while in case of the proposed HGAC algorithm
it is 4.00%. It is clear that our proposed algorithm has the
maximum reduction of carbon emission as compared to ACO,
GA, and unscheduled case, and low reduction than PSO and
WDO.

4) USER COMFORT
The proposed HGAC optimization algorithm created sched-
ule is compared with existing algorithms created schedule
for the purpose to evaluate UC in aspects of waiting or
delay time that posed to the consumers. The UC in terms of
waiting or delay time evaluation of created schedule using the
proposed HGAC algorithm compared to existing algorithms
are depicted in Figure 14. The complete discussion with solid
reasoning is as given below. In GA created schedule average
delays of 0, 0.8, 1.2, 0, 0 and 1 hour are faced by water
heater, refrigerator, clothes dryer, lights, washing machines,
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FIGURE 11. Cost reduction in case 1.

FIGURE 12. PAR reduction in case 1.

and electric vehicles, respectively, as depicted in Figure 14.
Similarly, ACO created schedule average delays of 0, 0.8,
1.2, 1.4, 0 and 1 hour are faced by water heater, refrigerator,
clothes dryer, lights, washing machines, and electric vehicles,
respectively. The proposed HGAC optimization algorithm
created schedule has average delays of 1, 1.4, 1.2, 1, 0 and
1 hour are faced by water heater, refrigerator, clothes dryer,
lights, washing machines, and electric vehicles, respectively.
The delay of HGAC optimization algorithm is high for some
appliances due to the existence of tradeoff in nature.

B. CASE 2
In this case, the consumers are considered only with inte-
grated RES.We scheduled the user load by using the heuristic
algorithms that are proposed in our scheme, and compared the
results with unscheduled load in terms of electricity cost, PAR
and carbon emission. The results in terms of each objectives
are discussed in the subsequent sections.

1) ELECTRICITY COST
Figure 15 illustrates the electricity costs of unscheduled
and scheduled load when only RES are integrated with
EUCs. Results show that the proposed HGAC optimization

FIGURE 13. CO2 emission in case 1.

FIGURE 14. UC in case 1.

algorithm compared to existing algorithms (PSO, GA,
WDO, ACO) have significantly minimized the overall cost.
In Figure 15 themaximum electricity cost in case of unsched-
uled load is 92 cents in hour 9, the PSO it is 41 cents in
hour 2, in case of GA the maximum cost is 51 cents in hour 9,
similarly the WDO it is 49 cents at 21 and 23 time slots,
the ACO it is 38 cents at 7 time slot, while in the case HGAC it
is 33 cents at time slot 2. The overall per day electricity costs
by unscheduled load, PSO, GA, WDO, ACO, and HGAC
scheduled loads are 684, 532, 593, 610, 547, and 501 cents,
respectively. From the results, it is clear that our proposed
algorithm HGAC has significantly reduced the overall elec-
tricity cost by 26.8%, while the PSO, GA, WDO and ACO
the overall reduction in cost is 20.02%, 13.3%, 10.8% and
22.22%,, respectively. This show that our proposed HGAC
heuristic algorithm has efficiently reduced the electricity bills
as compared to existing algorithms.

2) PAR
Figures 16 shows the PAR of the unscheduled and scheduled
loads with integrated RES. From the results, it is clear that the
proposed heuristic algorithms have reduced the overall load
on the gird. In case of PSO, reduction is 12.5%, the GA it
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FIGURE 15. Cost reduction in case 2.

FIGURE 16. PAR reduction in case 2.

is 20.83%, WDO has reduced PAR by 4.1%, similarly, ACO
has 29.16% reduction, while HGAC has reduced it by 33.3%.
WDO has shifted most of the load to off-peak hours results
rebound peaks due to which the EUCs impose a penalty
on the consumer. However, rest of the algorithms distribute
their load over scheduling time horizon uniformly to achieve
desired outputs.

3) CARBON EMISSION
Figure 17 illustrates carbon emission unscheduled and sched-
uled loads using proposed heuristic algorithms when RES is
integrated with EUCs. In case of unscheduled load, the max-
imum carbon emission is 150 pounds in hour 19, similarly
in case of PSO the maximum carbon emission in time slot
21 is 115 pounds, the GA, it is 135 pounds in time slot
21, WDO based scheduled load has maximum carbon emis-
sion of 132 pounds in time slot 19. In case of ACO, it is
122 pounds in time slot 19, while HGAC has 120 pounds car-
bon emission in time slot 19. Results shows that the proposed
algorithms have significantly reduced the carbon emission
as compared with carbon emitted by unscheduled load. Per
day carbon emitted by unscheduled, PSO, GA, WDO, ACO
and HGAC based loads is 2604, 2024, 2256, 2320, 2082 and

FIGURE 17. Carbon emission in case 2.

FIGURE 18. UC in case 2.

1908 pounds, respectively. The percentile reductions by PSO,
GA, WDO, ACO and HGAC are 23.28%, 13.35%, 10.92%,
20.06% and 20.71%, respectively. It shows that our proposed
hybrid has more reduction in carbon emission as compared
to GA, WDO, ACO, and unscheduled case while low carbon
reduction compared to PSO.

4) USER COMFORT
The proposed HGAC algorithm created schedule is com-
pared with existing algorithms created schedule for the pur-
pose to evaluate UC in terms of waiting or delay time that
posed to the consumers. The UC in terms of waiting or
delay time evaluation of created schedule using the proposed
HGAC algorithm compared to existing algorithms are shown
in Figure 18. The complete discussion is given as follows.
In GA created schedule average delays of 0, 1.4, 0.8, 0, 2, and
1.5 hour are faced by water heater, refrigerator, clothes dryer,
lights, washing machines, and electric vehicles, respectively,
as depicted in Figure 18. Similarly, ACO created schedule
average delays of 0, 2.3, 1.2, 0.8, 1 and 1 hour are faced
by water heater, refrigerator, clothes dryer, lights, washing
machines, and electric vehicles, respectively. The proposed
HGAC optimization algorithm created schedule has average
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FIGURE 19. Cost reduction in case 3.

FIGURE 20. PAR reduction in case 3.

delays of 0, 2.3, 1.2, 2, 2.4, and 1 hour are faced by water
heater, refrigerator, clothes dryer, lights, washing machines,
and electric vehicles, respectively. The delay of HGAC opti-
mization algorithm is high for some appliances due to the
existence of tradeoff in nature.

C. CASE 3
In this case, we have integrated RES along with ESS with
EUCs. We scheduled the user load by using the heuristic
algorithms that are proposed in our scheme, and compared
the results with unscheduled load in terms of electricity
consumption bills, PAR and carbon emission. The complete
discussion is given as follows.

1) ELECTRICITY COST
The electricity cost with integrated RES and ESS is repre-
sented in Figure 19. In case of unscheduled load, the maxi-
mum cost is 59 cents in time slots 1, 7, 8 similarly the PSO it
is 42 cents in hour 2, 3, GA based consumption has 39 cents
maximum electricity cost in hour 7, 8, WDO based load has
increased maximum electricity cost to 48 cents in hour 21,
22, 23, and 24, the ACOmaximum electricity cost is 38 cents
in hour 21, while the HGAC it is 38 cents in hour 21. The

FIGURE 21. Carbon emission reduction in case 3.

overall electricity costs per day of unscheduled, PSO, GA,
WDO, ACO and HGAC based consumption’s are 665, 501,
583, 570, 556, 542 cents, respectively. It is clear that our
proposed algorithms have reduced the cost over the entire
scheduled horizon as compared to unscheduled load. PSO
has reduced the cost by 18.61%, the GA based consumption
cost in reduction is 12.33%, WDO has reduced the electricity
cost by 14.05%, similarly the ACO it is 16.39%, while HGAC
has 24.40% reduction. From the results it is obvious that our
proposed algorithm HGAC has efficient load management
strategy that has significantly reduced the cost as compared
to the existing heuristic algorithms.

2) PAR
Figure 20 illustrates the PAR of unscheduled and scheduled
loads with RES and ESS. It shows that our proposed algo-
rithm HGAC has 37.08% reduction in PAR. The PSO, GA,
WDO and ACO the reductions in PAR are 29.16%, 25.03%,
20.83%, and 31.25%, respectively. It shows that the PSO and
WDO shifts most load from high to low price hours that
creates rebound peaks. Due to these new peaks the whole
operation time of peak plants will be disturbed and also
the EUCs will impose a penalty on the consumer. However,
ACO and HGAC distribute load uniformly over the entire
scheduled time horizon to achieve desired objectives. Thus,
HGAC outperforms existing algorithms in terms of PAR.

3) CARBON EMISSION
The carbon emission of unscheduled and scheduled loads
with REs and ESS are presented in Figure 21. The maximum
carbon emitted by unscheduled electricity consumption is
142 pounds in time slots 19, 21 and 23, the PSO, the max-
imum carbon emission is 115 pounds in hour 19, GA based
consumption has 125 pounds carbon emission in hours 19 and
21, WDO based consumption has emitted 125 pounds in hour
19, 21, the ACO it is 122 pounds in hour 21 and the HGAC
it is 121 pounds in hour 21. Moreover, per day carbon emis-
sions the unscheduled load, PSO, GA, WDO, ACO, HGAC
based consumption are 2529, 1908, 2219, 2171, 2115, and
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FIGURE 22. UC in case 3.

2064 pounds, respectively. From the results it is clear that
maximum reduction of 21.93% has occurred in the case PSO.
While the GA, WDO, ACO and HGAC is 10.96%, 11.05%,
14.62% and 16.44%, respectively. It is clear that HGAC has
more reduction in carbon emission as compared with GA and
ACO algorithms.

4) USER COMFORT
To curtail the electricity bills and PAR, we have shifted the
loads to off-peak hours, where electricity per unit charge is
at minimum price and also load decreases on the grids. Due
to this shifting consumers appliances face average delay or
waiting time which directly affects the UC. We considered
UC as the average delay of the appliance; if the average
delay of an appliance is high it corresponds to reduced UC.
This means that UC and average delay of an appliance are
inversely proportional to each other. PAR reduction does not
affect the UC, however, electricity cost affects UC and there
is a tradeoff between them. To reduce the electricity bills
the average delay of the appliances will increase and as a
result, the UC will decrease. Therefore, the consumer has
to compromise on his comfort to reduce the electricity bills.
Figure 22 represents the average delay of BPSO, GA, WDO,
ACO, and HGAC algorithms, respectively. Results show that
BPSO has less average delay for lights but large average
delay for washing machine as compared to other heuristic
algorithms. Moreover, our proposed algorithm HGAC has
significantly decreased the average delay of all the appliances
as compared to the parent algorithms GA and ACO. As a
result HGAC has increased the UC efficiently as compared
with all the other algorithms.

VI. CONCLUSION
The implementation of real-time price-based demand
response program and integration of renewable energy
resources (RESs) improves efficiency and ensure power
system stability of electric grid. This paper introduces a
DSM framework in SG integrated with RES to adapts energy
usage behavior of consumers in response of RTPDRP to

create operation schedule. Then, the HGAC optimization
algorithm is developed, which is a hybrid of ACO and
GA. The HGAC optimization algorithm solve the complete
scheduling problem for three cases: EUCs without RESs,
EUCs with RESs, and EUCs with both RESs and storage
technologies. The consumers using the created schedule for
three cases minimize energy cost, peak load, carbon emission
subjected to improving user comfort and avoiding rebound
peaks. To validate the HGAC optimization algorithm based
DSM framework simulations are conducted and the proposed
model is compared with existing frameworks like ACO, PSO,
GA, and WDO algorithms. Simulation results and discussion
reveals that the proposed HGAC optimization algorithm
reduced electricity cost, carbon emission, and peak load by
12.16%, 4.00%, and 19.44% in case I; by 26.8%, 20.71%,
and 33.3% in case II; and by 24.4%, 16.44%, and 37.08%
in case III, respectively, compared to without scheduling.
In the future, we will devise a decentralized framework of
multimicrogrids, where environment friendly energy will be
provided to consumers on demand. The energy allocation
will be formulated as Stackelberg game and adapt back-
ward induction to optimize the profit of bmicrogrids and
consumers.
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