IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 30, 2021, accepted August 23, 2021, date of publication August 30, 2021, date of current version September 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3109216

Sustainable Marine Ecosystems: Deep Learning
for Water Quality Assessment and Forecasting

ANGEL FERNANDEZ GAMBIN"”, EDUARD ANGELATS", JESUS SORIANO GONZALEZ",

MARCO MIOZZO -, AND PAOLO DINI

Centre Tecnologic de Telecomunicacions de Catalunya (CTTC/CERCA), 08860 Castelldefels, Barcelona, Spain

Corresponding author: Angel Fernandez Gambin (angel.fernandez @cttc.es)

ABSTRACT An appropriate management of the available resources within oceans and coastal regions is
vital to guarantee their sustainable development and preservation, where water quality is a key element.
Leveraging on a combination of cross-disciplinary technologies including Remote Sensing (RS), Internet
of Things (IoT), Big Data, cloud computing, and Artificial Intelligence (Al) is essential to attain this aim.
In this paper, we review methodologies and technologies for water quality assessment that contribute to a
sustainable management of marine environments. Specifically, we focus on Deep Leaning (DL) strategies for
water quality estimation and forecasting. The analyzed literature is classified depending on the type of task,
scenario and architecture. Moreover, several applications including coastal management and aquaculture
are surveyed. Finally, we discuss open issues still to be addressed and potential research lines where
transfer learning, knowledge fusion, reinforcement learning, edge computing and decision-making policies
are expected to be the main involved agents.

INDEX TERMS Sustainable coastal management, sustainable aquaculture, remote sensing, artificial
intelligence, machine learning, water quality, blue economy.

I. INTRODUCTION

Marine habitats are of major importance and their ecological
sustainability is increasingly threatened by natural but
also cumulative and mainly anthropogenic pollutants from
land-based sources. Pollution can be localized, including
discharge from a shore-based industrial wastewater treatment
plant, a ship or other offshore structure (e.g., an oil platform),
or coming from many diffuse sources such as stormwater
runoffs or atmospheric depositions [1]. In any case, all these
elements can have devastating effects in coastal ecosystems,
where poor water quality puts these habitats at risk, directly
impacting on their communities who depend on them to
sustain and support economic livelihoods [2].

The proportion of the world’s population that lives in
coastal regions and other water bodies is over 40% and
increasing [3]. Changes in these delicate areas due to human
activities can endanger the aquatic organisms habitats and
threaten the long-term ecosystem sustainability. In this way,
water quality assessment has become one of the key pillars
to guarantee a sustainable society, where the concentration of
contaminants in water bodies needs to be taken under more
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precise control. Moreover, coastal zones are highly dynamic
and productive areas with high ecological and economical
value. Their management is of vital importance, having to
safeguard the social, economic and environmental functions
of the ecosystem. The monitoring and forecasting of coastal
ecosystems must involve multidisciplinary and multi-scale
observing systems [4]. Accordingly, the development of a
sustainable coastal ecosystem represents an urgent short-term
priority in order to preserve its integrity, functioning, and
natural resources.

Sustainable coastal management, despite increased bind-
ing legislation, scientific efforts, and investment, still presents
numerous implementation problems, including working with
incomplete data for the region under study, insufficient under-
standing of the scale at which coastal systems operate and
aggregating simultaneous monitoring of different activities.
Proposed solutions point to a need for more integrated
approaches supported by coordinated and multidisciplinary
processes [5]. Extensive research about coastal sustainability
issues has highlighted opportunities for Earth Observation
(EO) data and technologies to support coastal management
efforts, particularly in relation to environmental monitoring,
including Harmful Algal Blooms (HABs) detection, dis-
aster response supported by early warning systems, flood
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monitoring, maritime safety and security issues such as vessel
and oil spill detection, and sea-state forecasting [5].

Moreover, climate change is posing additional pressure
on coastal ecosystems due to variations in water bio-
geochemical and physico-chemical parameters (e.g., pH,
salinity) and leading to aquatic ecosystem degradation.
These delicate environments are very sensitive to changes
in climate. In recent years, they are suffering different
impacts including loss of habitat forming species (e.g., coral
reefs, seagrasses) [6], ocean productivity decline and changes
in the geographic distribution of marine organisms [7].
The increase of sea surface temperature and, thus, the ice
melting in polar regions are the main causes of these
effects, unleashing changes in marine currents and variation
in water characteristics that may exceed the ecosystems
tolerance for sustainability. In this sense, the assessment
of the environmental status of marine waters is essential
to understand how marine ecosystems respond to climate
change. However, this research is still far behind in com-
parison with terrestrial ecosystems, due to the dimension,
complexity and variability of seas and to the lack of long
time series of relevant variables [7]. Besides, while the
only true way to mitigate climate change is to reduce the
reliance on carbon-based sources of energy, research is
needed to assess where it may be possible to ameliorate the
climate effects through management of local stressors (e.g.,
reduction of nutrient pollution) or biological communities
(e.g., marine protected areas and kelp re-seeding to increase
resilience) [8].

The agri-food industry plays also a fundamental role in
here. During the last decades, seafood consumption has more
than doubled, from 9.9kg per capita in the 1960s to 20.2kg
on average [9]. Finfish, shellfish and algae farming is one of
the world’s fastest growing food sectors, providing the planet
with about half of all the fish we eat. This surge is due to
the nutritional importance of fish, together with technological
advances, which enable easier access to seafood products.
However, geographic demand is not aligned with geographic
production. In fact, aquaculture is heavily concentrated in
Asia, whereas United States and Europe are two of the top
three markets of seafood consumption. This trend indicates
a large opportunity for aquaculture expansion, that has to
be achieved preserving the marine resources. For instance,
the European Commission have suggested that 48% of the
European Maritime and Fisheries Funds will be used to fund
sustainable aquaculture and fisheries, which is one of the
main pillars of the European Blue Economy and the European
Green Deal to avoid over-exploitation and biodiversity
related problems of marine environments [10]. In this way,
the development of a sustainable blue economy, and so a
sustainable aquaculture, is a key priority of the European
Commission and the United Nations Sustainable Devel-
opment Goals (SDGs) (SDG 14 directly and other SDGs
indirectly).

Therefore, in order to achieve sustainable marine ecosys-
tems through an appropriate management of the available
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resources in coastal regions and aquaculture, water quality
assessment and forecasting are the cornerstone. Water quality
refers to the physical, chemical and biological content of
water and may vary geographically and seasonally affected
by many factors such as nutrient inputs, land mineral runoff,
contamination from farming practices or changes in the flow
regimes and hydrology [11]. Accomplishing this task in an
efficient and smart manner involves several cross-disciplinary
approaches. Recent advances in satellite technology, digital
mapping, ecological modeling, open data, and connectivity
mean that global-level water quality monitoring and planning
systems for coastal and aquacultures areas may now be
possible. In recent years, the European Commission pro-
moted and financed the Copernicus Marine Environment
Monitoring Service (CMEMS) and the European Marine
Observation and Data Network (EMODnet) to facilitate
the access to that information. Hence, a combination of

Remote Sensing (RS) techniques integrated with Internet of
Things (IoT), EO Big Data, cloud computing, and Artificial
Intelligence (AI) are a powerful tool chain to tackle all
the challenges present in marine ecosystems. They provide
real-time data collection, quantitative decision-making, intel-
ligent control, precise investment and personalized services,
allowing the aggregation and advanced data analytics that
leads to the ability of making smart decisions, preventing
natural and anthropogenic disasters that put sustainability
at risk [12].

In this way, data-driven intelligence methods are able
to transform the collected data into manageable valuable
information. Specially, Machine Learning (ML) is the
essential technology in this regard given its ability to
process data automatically and its unique characteristics
pertaining to classification, modeling and forecasting [13].
Nevertheless, the traditional ML has a strong dependency
on manually-extracted features, i.e., a human-expertise
intervention. Moreover, due to the high spatio-temporal
variability of the water quality parameters, with complex
nonlinear intrinsic characteristics, and the improvements
in data collection, a higher measurement frequency is
needed, and now possible thanks to the aforementioned
technologies. This translates into massive volumes of data
to be processed. In this regard, conventional ML algorithms
are not sufficient to provide a reasonable performance in
terms of accuracy, mainly due to their lack of scalability.
As a breakthrough in Al, the cutting-edge Deep Learning
(DL) has overcome these limitations. It improves the data
processing by automatically extracting highly nonlinear,
complex and hidden features via sequences of multiple
layers rather than requiring handcrafted optimal feature
representations for a particular type of data based on
domain knowledge [14]. Besides, it is actually designed
to work with large datasets. This provides advanced ana-
lytical tools for a better understanding of the enormous
amounts of information collected about marine waters,
and a powerful tool for coastal and marine planning and
management.
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A. PAPER CONTRIBUTIONS

The goal of this paper is to review methodologies and tech-
nologies for water quality assessment that contribute to a sus-
tainable management of marine environments. Specifically,
we focus on DL schemes for water quality estimation and
forecasting, presenting also different applications within
coastal areas and aquaculture sites. In this regard, the main
contributions of this work are:

o We stress the problematic situation that marine habitats
are facing due to mainly human activities, and the need
to go for a sustainable exploitation of these ecosystems
through an intelligent management, where water quality
is essential.

o We review techniques for assessment, estimation, and
forecasting of marine water quality on several scenarios,
focusing on coastal regions, estuaries and aquaculture
sites. Our survey leverages on an integrated use of RS,
in situ measurements and Al through deep learning
architectures.

« We discuss open research issues still to be addressed in
this topic and present future research lines to handle the
spotted challenges.

B. RELATED WORK DISCUSSION

Throughout the entire paper, related literature is reviewed
on each section to provide a better understanding of the
discussed subject. Moreover, some tables are supplied as
visual support in this regard. Apart from that, several surveys
and reviews are proposed as references to the reader for
further research on near-related matters. It should be noted
that in these cases, the addressed topics are not intended
to be the focus of the present article, and therefore, these
works do not represent an obstacle to the novelty of this
manuscript. For instance, the authors in [15] and [16]
discuss about how DL can be integrated with RS in other
matters rather than water quality, including image fusion and
scene classification. Besides, the authors in [17] and [18]
tackle water quality management by applying Al techniques.
However, they both focus on fresh waters such as rivers, lakes
and groundwaters. These topics are out of our scope, which
is only focused on marine ecosystems, coastal and ocean
waters. A cross-disciplinary review of DL for water resources
is presented in [19], where the goal is to provide scientists and
hydrologists with a technical overview, progress update, and
a source of inspiration about the relevance of DL to water.
Nonetheless, water quality is not tackled. Finally, the authors
in [12] and [20] elaborate on the possibilities that DL can offer
to aquaculture, where water quality is briefly mentioned and
not the main focus.

The rest of the paper is organized as follows. In Section II,
we provide a general perspective on the mainstream DL
tools. Several water quality considerations are discussed in
Section III. An outline about sensing technologies for water
quality assessment is discussed in Section IV. Scenarios
of applications are reviewed in Section V. In Section VI,
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open issues and future research lines are addressed. Finally,
conclusions are provided in Section VII.

Il. DEEP LEARNING OVERVIEW

Machine Learning created new opportunities to unravel,
quantify, and understand data-intensive processes. ML is
defined as a scientific field that seeks to give machines
the ability to learn without being strictly programmed [12].
In recent years, Deep Learning has abruptly interrupted in
many fields like computer vision, speech recognition, and
natural language processing. Actually, DL is an old branch
of Al based on Artificial Neural Networks (ANNSs) that has
been renewed due to factors like algorithmic advancements,
high-performance computing, and Big Data [21]. The idea
of DL is simple: the machine is learning automatically
the features and decision making, versus a human-tailored
learning system.

Conventional ML approaches utilize a processing chain
that usually starts with human-coded feature extraction,
a feature optimization stage, and then processing on the
extracted features. These architectures are mostly ““shallow”’,
i.e., they usually had only one to two processing layers
between the input features and the output. Shallow learners,
including Support Vector Machines (SVMs), Gaussian Mix-
ture Models, Hidden Markov Models, Conditional Random
Fields, have been the backbone of traditional research efforts
for many years [21] and still they provide remarkable results
in many problems. In contrast, the strongest and potential
characteristic of DL architectures is the learning based
on multiple levels of representation, which can obtain a
rich variety of highly complex, nonlinear and hierarchical
hidden features automatically from raw inputs, and transform
the lower-level representation into a higher more abstract
one [20].

The goal of this section is to provide a general overview
about ML, to better understand DL concepts. It is not intended
to provide thorough details, but just general descriptions and
terminology to facilitate the reading of the paper. For more
details, we refer the reader to [14], [22]-[25].

ML is essentially a form of applied statistics with increased
emphasis on the use of computers to statistically estimate
complicated functions and a decreased emphasis on proving
confidence intervals around these functions [14]. A ML
algorithm is compound of a dataset, a model, a cost function
and an optimization algorithm, and is able to learn from
data [14]. A dataset is defined as a collection of inputs, which
are in turn collections of features that have been quantitatively
extracted from an event or object that we want the algorithm
to process. A model is defined as the goal of the algorithm
itself and is constructed by the learning process, i.e., the
training procedure. A cost function measures the model
performance for a given dataset. For example, in regression
problems, it quantifies the error between predicted and
expected values. Depending on the problem, it can be formed
in many different ways, and the purpose is to be either:
(i) minimized, finding the model parameters that provide the
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TABLE 1. Summary of ML categories.

Learning Supervised Unsupervised Hybrid Reinforcement
Problem type | Classification, regression | Clustering, association Clustering & Classification Reward-based
Data Labeled Unlabeled Both No predefined
Training External supervision No supervision Both No supervision
Approach Maps inputs to outputs Finds patterns Find patterns for labeling to ease mapping | Follows exploitation vs exploration

smallest possible returned value (usually called cost, loss
or error); (ii) maximized, finding the model parameters that
provide the highest possible returned value (reward). Finally,
an optimization algorithm refers to the learning procedure,
i.e., training the algorithm to find the optimal values for the
model parameters that minimize/maximize the cost function.
Most traditional ANNs schemes and thus DL algorithms,
are based on an optimization algorithm called stochastic
gradient descent. A recurrent problem in ML is that large
training datasets are necessary for good generalization, that
is, the algorithm performs well with every type of unseen
data, but these large datasets are also more computationally
expensive. At the same time, most of the used cost functions
in ML decompose as a sum over training inputs. This
translates into a prohibit computation time just to compute
a single step in the gradient descent when the dataset barely
grows [14]. Hence, the key point about the stochastic gradient
descent is that the gradient is obtained as an expectation,
and then it can be approximated using a reduced amount
of samples per time step. Although, it was consider slow or
unreliable, it has demonstrated remarkable results for ML and
DL algorithms. Actually, it may not be guaranteed to arrive at
even a local minimum in a reasonable time, but if often finds a
very low value of the cost function quickly enough to be very
useful [14]. A fast algorithm to perform the gradient descent,
and the workhorse of learning in ANNs and DL schemes,
is called the Backpropagation (BP) algorithm. It is probably
the most fundamental building block in a neural network.
It was first introduced in 1960s and almost 30 years later
popularized thanks to the work in [26]. The algorithm is used
to effectively train a neural network through a method called
chain rule. In simple terms, after each forward pass through
a network, backpropagation performs a backward pass while
adjusting the model’s parameters, known as weights and
biases.

By learning, the definition from [27] can be used:
“A computer program is said to learn from experience E
with respect to some class of tasks 7 and performance
measure P, if its performance at tasks 7, as measured
by P, improves with experience E”’. ML tasks are usually
described in terms of how the learning system should process
an input dataset. Many kinds of tasks can be solved with
ML, including classification, regression, association among
others. Regarding the performance measure, they are specific
to the carried out task, but the main idea is to understand
how well the algorithm is performing on data that it has not
seen before, i.e. real case scenario. This is why the input
data for a ML algorithm is divided between training and
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test datasets, and the latter is used to estimate the real case
scenario. The choice of a performance measure that exactly
corresponds to the desired behavior of the system is often
difficult. Depending on what kind of experience the ML
algorithms are allowed to have during the learning process,
i.e. what type of input dataset they are dealing with, four main
categories can be classified:

Supervised Learning: The training dataset is labeled, i.e., a
collection of samples tagged with a specific desired outcome
that the learning algorithm should come up with on its own.
There are two main areas where supervised learning is useful:
classification and regression. Classification problems ask the
algorithm to predict a discrete value, identifying the input
data as the member of a particular class or group. Regression
problems look at continuous data.

Unsupervised Learning: The training dataset is unlabeled,
i.e., a collection of samples without a specific desired
outcome. The learning algorithm then attempts to automat-
ically find patterns in the data by extracting useful features
and analyzing its structure. Several areas are identified:
clustering, Anomaly Detection (AD), association. Clustering
models look for training data that are similar to each other
and groups them together. AD models can be used to flag
outliers in a dataset. Finally, association models can predict
other attributes which are commonly associated at a certain
data point.

Hybrid or Semi-Supervised Learning: The training dataset
has both labeled and unlabeled data. This method is
particularly useful when extracting relevant features from the
data is difficult, and labeling examples is a time-intensive task
for experts.

Reinforcement Learning: There is no predefined dataset.
The algorithm is learning how to map situations to actions
within a certain environment on their own, so as to maximize
a numerical reward. In this way, it is not told which actions
to take, but instead must discover which actions yield the
most reward by trying them. In the most challenging cases,
actions may affect not only the immediate reward but also the
long-term one. The tradeoff between trial-and-error search
and delayed reward, also well known as “‘exploitation vs
exploration”, is the most important feature of reinforcement
learning [23]. Table 1 summarizes the aforementioned ML
categories.

Most of the reviewed papers in this survey are addressing
supervised learning, i.e., there exist a dataset, labeled usually
through in situ measurements, and performing regression
tasks. Besides, there are also some unsupervised cases
where for example anomaly detection is tackled. However,
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TABLE 2. Summary of presented DL architectures.

Architecture | Main Characteristics

MLP Feed-forward neural network, nonlinear activation functions, tabular data, fixed input length

RNN Recursive inference, LSTM & GRU cells, sequential data, variable input length, parameter sharing, good for time series

CNN Feed-forward neural network, convolutional kernels, image data, fixed input length, parameter sharing, spatial relationship, good for images
AE Feed-forward neural network, encoder & decoder blocks, combined with MLPs & CNNs & RNNs, good for dimensionality reduction
DBN Generative graphical model, RBMs kernels, good for images combined with CNN's

GAN Generative model, generator & discriminator, Nash equilibrium game theory, good for data generation

we believe reinforcement learning within marine environ-
ments is still an open research topic to be undertaken where
valuable applications can be developed. More about this will
be discussed in Section VI. Some examples of the most
common architectures in DL for the aforementioned cate-
gories are Multilayer Perceptrons (MLPs), Recurrent Neural
Networks (RNNs), Convolutional Neural Networks (CNNs),
RBMs, Deep Belief Networks (DBNs), Autoencoders (AEs)
and General Adversarial Networks (GANSs). In the following,
we briefly present them. A summary with key ideas for each
one of the architectures is provided in Table 2.

A. MULTILAYER PERCEPTRON

A feed-forward (the input signal goes only one way within
the network) ANN is used to generate a set of outputs from a
set of inputs through a set of extracted features. It is formed
by an input layer, a certain number of intermediate hidden
layers, and an output layer, and represents an efficient way
to learn linear and nonlinear relationships between input
and output pairs. Neural networks, when formed by many
stacked layers, can represent complex features in later layers
by using simpler representations formed by earlier layers in
the network [18]. Each layer within an ANN comprises at
least one neuron. An ANN is a network of these neurons
connected to each other with some weights where these
neurons run specific functions, called activation functions,
mapping its input to an output. Stacked on top of each other,
the series of functions runs over the input of the network and
translates the input to the output in the output layer. Typically,
each neuron within a layer runs the same activation function,
defining the layer type. The network type is determined by the
combination of used layers and how neurons are connected
to each other within and between layers [18]. An MLP is
the simplest feed-forward ANN, characterized by, at least,
three layers of nodes: an input, a hidden layer and an output,
and these layers are connected as a directed graph between
the input and output layers. Except for the input nodes, each
node is a neuron that uses a nonlinear activation function
to produce an output. MLP utilizes the BP for training, i.e.
to find the weights for each neuron within the network that
minimize a certain error objective function. It can distinguish
data that is not linearly separable [28].

B. RECURRENT NEURAL NETWORK
RNNs are a type of neural network that contain loops,
i.e., working recursively, allowing information to be stored
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within the network and devised for handling temporal and
predictive problems. The difference of a recurrent layer from
a regular fully connected hidden layer is that neurons within
a recurrent layer could also be connected to each other, i.e.
the output of a neuron is connected both to the neuron(s)
within the next layer and to the next neuron within the same
layer [18]. Long Short-Term Memory (LSTM) networks
are a particular kind of RNN, with strong capabilities in
learning long-term dependencies. The neurons in the hidden
layers of an LSTM are Memory Cells (MCs). A MC has
the ability to store or forget information about past network
states by using structures called gates, which consist of a
cascade of a neuron with sigmoidal activation function and
a pointwise multiplication block. Thanks to this architecture,
the output of each memory cell possibly depends on the
entire sequence of past states, making LSTMs suitable for
processing time series with long time dependencies [29]. Gate
Recurrent Unit (GRU) is a similar method to LSTM units
but simpler to compute and implement [30], while keeping
the same efficacy. Although this does not mean GRU always
performs better than LSTM. A typical GRU cell is composed
by two gates: reset and update gate. The reset gate is used
to decide how much past information to forget. The update
gate acts similar to the forget and input gate of an LSTM.
It decides what information to throw away and what new
information to add. It thus helps the model to determine
how much of the past information (from previous time steps)
needs to be passed along to the future. More details can be
found in [31].

C. CONVOLUTIONAL NEURAL NETWORK

CNNs are feed-forward deep neural networks differing from
fully connected multilayer networks for the presence of one
or more convolutional layers. At each convolutional layer,
a number of kernels is defined. Each of them has a number
of weights, which are convolved with the input in a way
that the same set of weights, i.e., the same kernel, is applied
to all the input data, moving the convolution operation
across the input span. Note that, as the same weights are
reused (shared weights), and each kernel operates on a
small portion of the input signal, it follows that the network
connectivity structure is sparse. This leads to advantages such
as a considerably reduced computational complexity with
respect to fully connected feed-forward neural networks [28].
Frequent layers in CNN architectures are Rectified Linear
Unit (ReLU), used as activation layer to recognize nonlinear
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correlations, and Max Pooling, which reduces the input size
while keeping the positional knowledge intact. CNNs are
good architectures for DL tasks with images or image-like
objects as inputs, with important breakthroughs in the fields
of object detection, super-resolution, image classification,
and computer vision [18].

D. AUTOENCODER

An autoencoder is a network designed to learn useful features
from unsupervised data. One of the first applications of AEs
was dimensionality reduction, which is required in many RS
applications. By reducing the size of the adjacent layers,
the AE is forced to learn a compact representation of the
data. An AE can be divided into two parts: encoder and
decoder. Each part can be regarded as several hidden layers
between an input and an output layer. The encoder reduces
the dimension of the input high-dimensional sample data
to output the low-dimensional encoded data. This output is
then taken as the decoder input. The output result, which
has the same dimension as the input high-dimensional data
of the encoder, is obtained through the dimension-raising
operation of the decoder. BP algorithm is used to update
the weight of the hidden layer to make the AE output as
close as possible to the input. This condition is also used
as a criterion to evaluate AE performance [32]. Note that
previous DL architectures, e.g. RNNs and CNNSs, can be used
as autoencoders to build more complex models for specific
applications. Some examples can be found in [33] and [34].

E. DEEP BELIEF NETWORK

A Deep Belief Network is a type of generative graphical
model, the join between probability and graph theory.
Classic DBN contains several RBMs and ends with a
backpropagation layer. RBMs are stochastic ANNs: as
opposed to assigning discrete values, the model assigns
probabilities based on the Boltzmann distribution. Moreover,
they are shallow, i.e., each RBM includes just a visible
layer and a hidden layer. Each layer contains a certain
number of neurons. Connections are found between RBMs
but none between units within layers. That is, there is no
intra-layer communication, which is the restriction that the
name implies. To build a DBN, the upper hidden layer of a
RBM serves as the next RBM visible layer input. During the
training, the DBN is trained layer by layer, and the weights of
each layer are fixed layer by layer to obtain the approximate
weight. Finally, the BP algorithm is used to fine-tune the
weight optimization and attain the final DBN model [32].
DBNs are used to recognize, cluster and generate images,
video sequences and motion-capture data.

F. GENERAL ADVERSARIAL NETWORK

General Adversarial Networks are a powerful class of
generative models introduced in 2014 [24]. The main idea
of GAN comes from the Nash equilibrium in game theory,
inspired by the two-player zero-sum game, in which the
total gains of two players are zero. They use two neural
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networks, pitting one against the other, to generate new,
synthetic instances of data that can pass for real data. GANs
often comprise a generator and a discriminator that learn
simultaneously. The generator tries to capture the potential
distribution of real samples, and generates new data samples.
The discriminator is often a binary classifier, discriminating
real samples from the generated samples as accurately as
possible. Both the generator and the discriminator can adopt
the structure of deep neural networks. The GAN optimization
process is a minimax game with the goal to reach Nash
equilibrium. [35]. They are widely used in image, video and
voice generation.

Ill. WATER QUALITY CONSIDERATIONS

Water quality evaluation is the process of determining the
chemical, physical and biological characteristics of water
bodies and identifying the possible contamination sources
that degrade the quality of water, including waste dis-
charges, pesticides, heavy metals, nutrients, microorganisms,
and sediments [36]. In the following, we highlight the
most relevant water parameters used to estimate water
quality.

A. CHLOROPHYLL-a

Chlorophyll-a (Chl-a) is a specific form of chlorophyll
used in oxygenic photosynthesis, and is found in plants,
algae and cyanobacteria. Chl-a is the major indicator of
trophic state because it acts as a link between nutrient
concentration, particularly phosphorus, and algal production.
While mainly reflecting green, Chl-a absorbs most energy
from wavelengths of violet-blue and orange-red light, whose
reflectance causes chlorophyll to appear green. Algal blooms,
defined as high concentrations of phytoplankton (algae), are
directly related to Chl-a concentration since it is an essential
point in photosynthesis [36]. HABs are problematic algal
blooms that cause associated environmental impacts and
even toxicity in some cases. HABs have been a significant
world-wide research topic over three decades, and they still
continue to be of major concern, not only due to their
considerable environmental and societal impact but also a
recent significant increase in frequency reported around the
world [37]. Many factors have been cited as causes of
HABs, but are generally caused by favorable environmental
conditions, including increasing nutrient levels, light avail-
ability, water column stratification and/or changes in water
temperature [37].

B. COLORED DISSOLVED ORGANIC MATTERS

Colored Dissolved Organic Matter (CDOM) consists of
naturally occurring, water-soluble, biogenic, heterogeneous
organic substances that are yellow to brown, which exist
in both fresh and saline waters. These compounds can
color the water yellowish brown in high concentrations,
and together with Chl-a and other sediments dominate
the water color. CDOM absorbency spectrum overlaps
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the chlorophyll absorption, thus the increase in CDOM
concentration mainly affects the reflectance values in the
blue and green regions. This effect can complicate the use
of Chl-a retrieval algorithms and phytoplankton production
models [36].

C. TURBIDITY

Turbidity is the amount of particulate matter that is suspended
in water. Turbidity measures the scattering effect that
suspended solids have on light: the higher the intensity of
scattered light, the higher the turbidity. Materials that cause
water to be turbid include clay, silt, finely divided organic
and inorganic matter, soluble colored organic compounds,
plankton, microscopic organisms and others [38].

D. WATER TEMPERATURE

Water temperature regulates physical, chemical, and biologi-
cal processes in water and air-water interactions. It influences
the solubility, and thus availability of various chemical
constituents in water. Most importantly, this parameter affects
dissolved oxygen concentrations, thus oxygen solubility
decreases with increasing water temperature. Moreover, since
metabolism of aquatic organisms is directly related to water
temperature, this parameter affects the ability of living
organisms to resist certain pollutants.

E. SALINITY

Salinity is the dissolved salt content in a water body. Salinity
together with temperature are important factors to identify
the density of seawater, and in turn, density is a critical
component driving the currents in the oceans. The role of
ocean currents in moderating the climate is crucial, and thus,
salinity is also critical to determine the global water balance,
productivity forecast models, as well as evaporation rates.
For example, when the salinity is relatively low, the mixed
layer will be more stable, and the nutrient pump may be
partially inhibited, possibly leading to reduced productivity
or a delay in the onset of spring and autumn phytoplankton
blooms [36].

F. DISSOLVED OXYGEN

Dissolved oxygen is a crucial water quality parameter that
influences the living conditions of all aquatic organisms
that require oxygen. The level of dissolved oxygen in water
bodies can be affected by anthropogenic activities and natural
occurrences. Rapidly moving water, such as in mountain
streams or large rivers, tends to contain a lot of dissolved
oxygen. Bacteria in water can consume oxygen as organic
matter decays. Thus, excess organic material can cause an
oxygen-deficient situation, driving hard living conditions for
aquatic life [38].

G. SUSPENDED SEDIMENTS

Suspended sediments is the amount of soil moving along
within a water stream. It is highly dependent on the
speed of the water flow, as fast-flowing water can pick up
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and suspend more soil. An excess of sediment can harm
the water quality of a stream [38]. The more suspended
particles, the more difficult for light to travel through the
water and therefore, the higher the water’s turbidity. The
complex nature of suspended substances in water changes
the reflectance of the water body and causes variation in
color. Hence, interpretation of remotely sensed data just
based on the water color is not adequate and accurate.
Turbidity and suspended matters are considered as important
variables due to their linkage with incoming sunlight that in
turn affects photosynthesis for growth of macrophytes and
plankton [36].

H. pH

pH is a measure of the relative amount of free hydrogen and
hydroxyl ions in water. Water that has more free hydrogen
ions is acidic, whereas water that has more free hydroxyl
ions is basic. The values of pH range from 0 to 14. Values
less than 7 indicate acidity, whereas greater indicate a base.
The presence of chemicals in the water, affects its pH,
which in turn can harm the living organisms. For example,
an even mildly acidulous seawater environment can harm
shell cultivation [38].

I. ELECTRICAL CONDUCTIVITY

Conductivity is a measure of the ability of water to carry
an electrical current. It is highly dependent on the amount
of dissolved solids (such as salt) in the water. The more
salt, the higher the conductance, e.g., marine waters has high
electrical conductivity.

IV. SENSING TECHNOLOGIES

In this section, we provide a general outline about sens-
ing techniques, including in situ and remote sensing, for
acquiring and deriving water quality parameters. Moreover,
in subsection IV-C, we review several methods based on
the integration of RS, in situ measurements and data-driven
computer processing (e.g., DL algorithms) for water quality
assessment.

A. IN SITU SENSORS

In situ methods allow for measuring variables directly in
the environmental medium in continuous or semi-continuous
time intervals. Here, we present them depending on the
type of device and the relevant water parameters that can
be monitored. They have been used for years to measure
physical-based parameters, such as oxygen, pH, conductivity,
depth, and temperature in marine waters. Arrays of sensors
are typically used in automated systems, either deployed
from a ship or on a mooring. In situ sampling offers
high-resolution and reliable measurements. Low-cost and
commercially available sensors can predict total suspended
solids concentrations based on high-frequency time series
of turbidity, conductivity, and other water-level data. Spec-
trometers and water quality probes containing fluorescent
detectors can be used to measure down-welling spectral
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irradiance, surface-water levels of dissolved nutrients, Chl-a,
fluorescence, and turbidity at transects, while a towed body
probe can be used in underway sampling. Surface light
sensors can also be used to monitor profile-based ambient
fluctuations [39].

The most common and widely available solute for
chemical sensors is pH and nitrate. Traditionally, hydro-
chemistry monitoring has been conducted through automatic
water-samplers, yet these are costly due to the need for
regular sample collection and laboratory analysis, and such
methods are limited by performance and reagent wastes.
For other solutes, wet analytical chemistry remains the
most viable method. There are also deployable optical
sensors, such as fluorimeters, that are capable of measuring
photosynthetic pigments and organic matters like Chl-a.
Conventionally, the pH value is measured by measuring
the potential difference between the working pH probe and
the reference electrode. There is a direct correlation between
the voltage output of the electrode and the pH value of the
water sample [39].

Electrochemical sensors and biosensors are also poten-
tially viable methods for water quality monitoring. Commer-
cially available instruments use conductometric electrodes to
measure salinity, sulfur, and potentiometer methods to detect
oxygen and nitrous oxide. Micro-electro mechanical systems
conjugated with microelectrode array sensors have been
developed for phosphate detection and showed precise in situ
measurements with a small amount of samples. However,
due to the configuration of the array sensors, it may be
fragile under high-flow or turbulent waters. The microfluidic
devices can be integrated with electrochemical and optical
sensors for monitoring heavy metals, nutrients, or pathogens.
These devices require a small volume of samples, better
processing control, reduced waste generation, and system
compactness. Both electrochemical sensors and biosensors
are highly specific, sensitive, and can work in a variety of
matrices, but the industrial production and long-term deploy-
ment are often complicated by calibration and validation
difficulties. Biosensors are not widely used in environment
sensing, but have some potential regarding drinking water
purification in water treatment plants for the detection of live
organisms [39].

In spite of in situ sensing widespread use, there are many
disadvantages that stem from manual handling and instru-
mentation required to collect the samples. Probes and plug-in
devices are expensive and bulky. Also, in situ sampling
is usually undertaken on vessels that require substantial
costs in time, human efforts and financial support. Preci-
sion calibration equipment, e.g., stable reagents, supporting
infrastructure such as flow systems, and interval-frequency
consistency are among the major issues that affect in situ
monitoring. Moreover, it is difficult to maintain calibration
parameters during long-term deployments [39].

As a result of advances in several Information and Com-
munications Technologies (ICT) technologies such as digital
systems and micro-controllers, Wireless Sensor Networks
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(WSN5s) have emerged as a powerful technology to automat-
ically collect data in high volumes, thanks to the deployment
of a large number of self-organized sensors within the areas
of interest. Moreover, IoT has been developed in parallel
to WSNs and provides interconnectivity and communication
among the different agents, including people and objects such
as sensors, actuators and computers, within the monitored
system. The aims of intelligently identifying, monitoring,
locating, tracking and controlling things are achieved by
IoT [40]. In this way, the combination of both poses a perfect
candidate to be used for sensing and monitoring purposes in
marine environments. Some examples are provided next. The
prototype and proof of concept of a distributed monitoring
system of dissolved oxygen, pH and temperature is presented
in [41] for water quality monitoring in an aquaculture pond.
As a future work, the authors suggest the use of Al within
the sensor network to implement an early-warning system
based on real time events detection. A similar idea is proposed
in [42] where a narrow band IoT system is used to monitor
temperature, pH and dissolved oxygen within an aquaculture
pond in Changzhou, China. Results show that the system
provides real-time and accurate data transmission, which can
meet the actual production needs and provide strong data
and technical support for further water quality regulation
and aquaculture production management. A broader concept
is discussed in [43] where an aquaculture monitoring
framework is devised including carbon outflow control,
water quality check, environmental and power monitoring,
and a web surveillance platform. A reconfigurable system
based on a Field Programmable Gate Array (FPGA) design
board and Zigbee wireless communication is presented
in [40]. Analogous concept using Raspberry Pi technology is
proposed in [44]. An IoT Waspmote microcontroller board is
used in [45] to build a smart water quality monitoring system
for Fiji islands. Moreover, a multiparameter oceanographic
sensor package measuring pH, dissolved oxygen, salinity,
temperature, and water depth module is depicted in [46].
Finally, authors in [47] propose the Arduino platform as the
core controller.

B. REMOTE SENSING

With advances in space and computer sciences over recent
decades, RS techniques have become useful tools to monitor
and manage the water quality, by covering large scale
regions and water bodies in a more effective and efficient
manner. Moreover, the collected data is digital and, therefore,
easily readable in computer processing. RS has been used
since the 1970’s and continue to be widely used in water
quality assessment nowadays [36]. A useful classification
of various RS observing sensors, located in satellites
and airborne systems, commonly used in water quality
assessments is presented in [36], along with their spectral
properties including spatial resolution, spectral bands, and
revisit interval. Also, a microwave radiometers categorization
is proposed. The key point here is that the observing
sensors of different types [1], [36] and located in different
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platforms, measure the amount of radiation reflected by the
water surface. Thanks to that, the spectral characteristics
of water and its included pollutants can be achieved,
since they are function of hydrogeological, biological and
chemical properties of the water. Hence, water quality can be
assessed.

Sun’s energy is either reflected (e.g., from the water’s
surface), as it is for visible wavelengths, or absorbed and then
re-emitted, as it is for thermal infrared wavelengths. Remote
sensing systems which measure energy that is naturally
available are defined as passive sensors. In RS, passive
sensors measure sea-surface salinity, sea-surface tempera-
ture and water-leaving radiance using microwave/infrared
radiometers and optical sensors [48]. Active sensors, on the
other hand, provide their own energy source for illumination.
The sensor emits radiation which is directed toward the
target to be investigated. The radiation reflected from that
target is detected and measured by the sensor. Advantages
for active sensors include the ability to obtain measurements
anytime, regardless of day time or season. Active sensors can
be used for examining wavelengths that are not sufficiently
provided by the sun, such as microwaves, or to better
control the way a target is illuminated. However, active
systems require the generation of a fairly large amount
of energy to adequately illuminate targets. In RS, active
sensors measure sea-surface height (altimeter), sea-surface
roughness (Synthetic-Aperture Radar (SAR)), sea-surface
wind (scatterometer and SAR) [48].

A typical example is Ocean Color RS, which is related with
the intensity and spectral distribution of visible light reflected
out of the water to the biological and biogeochemical
processes that influence the optical properties of the water
column. For the last few decades, satellite data have been used
to estimate large-scale patterns of phytoplankton biomass
and productivity across the global ocean from daily to inter-
annual timescales [49]. Moreover, ocean color measurements
are increasingly being used for environmental monitoring
of HABs, critical coastal habitats (e.g. seagrasses, kelps),
eutrophication processes, oil spills, and a variety of hazards in
the coastal zone that will be discussed throughout this paper.
Regarding ocean color, two types of water are distinguished
depending on its components and concentration [50]. Case-I
waters are those whose optical properties are determined
mainly by phytoplankton (Chl-a concentration as principal
pigment) and other bio-genic components, while other water
elements such as CDOM and mineral particles are not that
relevant. In contrast, case-II waters are water bodies where
excessive CDOM and suspended matter such as mineral
particles are often present, which do not co-vary with
bio-genic particles such as phytoplankton. Case-I waters
typically include oligotrophic, open oceans and seas. Case-II
waters often include turbid coastal waters and inland waters
such as lakes. Thus, case-II waters are associated to coastal
zones, where the earth-water interaction is important and the
runoff of continental matter propitiates a more heterogeneous
and complex aquatic environment where yellow substances

121352

and sediments contributions to water color have to be taken
in account.

Remote sensing data can be obtained from multiple sources
depending on the platform on which the observing sensors
are located, such as satellite, sub-orbital (e.g., an aircraft,
a balloon or a drone), and ground-based platforms. Satellites
provide unique Earth observation capabilities because the
cost and complexity of working with satellite data is often
reduced given the significant infrastructure already imple-
mented by space agencies and downstream data providers.
This is often not the case for other platforms (e.g., sub-
orbital). For example, flight operations are generally limited
in duration and spatial coverage, and their application is
usually limited to dedicated field campaigns of significant
events. Further, sub-orbital data acquisition can be a far
more complex proposition for users in terms of dealing with
operating costs and complexities in scheduling, weather, and
flight logistics, as well as crucial data processing, calibration,
and validation activities. Similarly, there are also significant
costs associated with installation, operation, and maintenance
of ground-based platforms [1].

C. WATER QUALITY ASSESSMENT

In this subsection, we review several works that estimate
water quality by combining RS, in situ measurements and
DL. Moreover, we provide different examples focused on
the retrieval of water constituents that define water quality,
analyzing as well different issues present in remote sensing,
such as gap-filling or atmospheric correction. A summary of
the main reviewed works can be found in Table 3.

Ocean color measured from satellites provides daily
global, synoptic views of spectral water-leaving reflectances
that can be used to generate estimates of marine Inherent
Optical Properties (IOP). These reflectances, namely the
ratio of spectral upwelled radiances to spectral downwelled
irradiances, describe the light exiting a water mass that
defines its color. IOPs are the spectral absorption and
scattering characteristics of ocean water and its dissolved and
particulate constituents. Because of their dependence on the
concentration and composition of marine water constituents,
IOPs can be used to describe the contents of the upper ocean
mixed layer, i.e. satellite ocean color data is used because its
variability is primarily driven by biological processes related
and correlated in complex, nonlinear relationships with the
physical processes of the upper ocean. This information is
critical to further our scientific understanding of biogeochem-
ical oceanic processes, such as organic carbon production and
export, phytoplankton dynamics, and responses to climatic
disturbances [72]. Despite the current widespread availability
of ocean color observations, mapping of ocean color is
spatio-temporally limited and challenged by inconsistent
information due to mainly cloud covers, particularly in polar
regions [73]. These regions are usually covered by dense
clouds throughout the year, limiting the valid range of satellite
observations. As such, many gaps appear in the collected
data for these areas. As a result, the demand for continuous
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TABLE 3. Summary of water quality assessment works.

Task Application DL architecture Ref.
‘Water params retrieval Gap filling Deep ANN [51], [52]-[54]
‘Water params retrieval Ocean color RS Deep ANN [55], [56]
‘Water params retrieval Atmospheric correction Deep ANN [571, [58]
‘Water params retrieval RTM inversion Deep Gaussian Processes [59]
Water params retrieval Chl-a estimation Deep ANN [60]
Water params retrieval | Chl-a, turbidity, suspended solids estimation Deep ANN [61], [62]
‘Water params retrieval Chl-a estimation Mixture Density Network [63]
Coastal management Chl-a estimation Deep ANN [64], [65]
Coastal management Seagrass conservation Deep Capsule network [66]
Coastal management Shellfish reef conservation CNN [67]
Coastal management Coral reef conservation Deep ANN [68]
Coastal management Coral reef conservation CNN [69]
Coastal management Oil spill detection CNN [701], [71]
Coastal management Ocean color RS CNN & AE 48]

ocean color data on various spatial and temporal scales
in the polar regions has increased. ML early studies, and
later some DL ones, have attempted to reconstruct these
data gaps. These approaches are more reliable, cost-effective
and flexible than conventional parametric models because
of its ability to handle non-linear relationships and complex
interactions, which are often present in ecological data. The
use of ANNSs to fill gaps in satellite-derived ocean color data
is introduced in [51], linking satellite with in situ physical
observations. An ANN transfer function is trained using
a two-year dataset from the Joint Polar Satellite System
Visible Infrared Imaging Radiometer Suite, where daily Chl-a
fields are used interpolated with the 9km resolution provided
by NASA. Moreover, temperature and salinity profiles are
obtained from the International Pacific Research Center at
Hawaii. The study demonstrates that employing ANNs can
provide an accurate, computationally cheap method for filling
gaps in satellite observation fields and time series.

An early work dealing with ocean color remote sensing
in coastal waters within the Yellow Sea is presented in [55].
The authors propose three ANN-based algorithms to retrieve
the concentration of water constituents, including Chl-a,
suspended matter and CDOM from remotely sensed data.
Remote sensing analysis with neural networks is reviewed
in [56]. The authors present an overview of the main concepts
underlying ANNSs, as well as main tasks that involve ANNs in
RS. Another retrieval algorithm of ocean color remote sens-
ing products from atmospheric-corrected Sentinel-3 Ocean
and Land Colour Instrument (OLCI) is introduced in [58].
The algorithm consists of several specialized ANNs with
task-optimized architectures (OLCI Neural Network Swarm).
The products contain concentrations of water constituents,
inherent and apparent optical properties and a sea color index.
The algorithm makes use of a comprehensive fuzzy logic
classification scheme. These two studies, as most ocean color
remote sensing algorithms, retrieve the water constituent
information by first performing atmospheric correction,
then deriving the results from the achieved remote sensing
reflectances. However, atmospheric correction models are
still a challenging task in coastal waters due to their specific
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complexities such as absorbing aerosols. Actually, the authors
of these papers claim that with better atmospheric correction
models, their proposed algoithms could be improved. In order
to overcome this, the authors in [57] propose an ANN-
based reflectance model used to estimate ocean bidirectional
reflectance. The results show that their algorithm could
expedite the retrieval process and improve efficiency for use
in global satellite observations.

Since spaceborne instruments can only measure the
properties of electromagnetic waves emitted or scattered
by the Earth, a prior knowledge is needed to understand
where these waves originate from, how they interact with the
environment, and how they propagate towards the sensor.
Radiative Transfer Modeling (RTM) is developed to do
s0, assuming that everything is known about the radiation
sources. This is the so-called direct problem. However, RS
is an inverse problem, i.e., how to derive the environment
properties, given the value of the electromagnetic mea-
surements gathered in space. Currently, the most widely
adopted techniques are based on statistical models, mostly
nonlinear and non-parametric ML algorithms, applied to
invert RTM simulations. The complexity of RTMs, highly
nonlinear, and typically hierarchical, makes that very often
shallow models cannot capture complex feature relations for
inversion. This motivates the use of deeper architectures.
In [59], the authors introduce the use of deep Gaussian
Processes for bio-geo-physical model inversion, providing an
efficient solution that scales well to big datasets. Their results
show empirical evidence of performance for the estimation of
surface temperature, Chl-a, inorganic suspended matter, and
CDOM data acquired by the Sentinel-3 OLCI sensor.

Another example of coastal water parameters estimation
can be found in [60]. In this case, RS data from MultiSpectral
Imager (MSI) on board Sentinel-2 is used for retrieving
Chl-a and suspended sediments along the Adriatic and
Tyrrhenian coasts in Italy. The proposed algorithm is an
MLP feed-forward ANN. This study confirms the potential
of Sentinel-2 MSI products for coastal water monitoring,
but it also highlights key issues to be further tackled such
as the atmospheric correction impact, the need of reliable
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TABLE 4. Summary of water quality forecasting works.

Task Application DL architecture Ref.
Time series analysis HAB Deep ANN [81]
Time series analysis Early warning system Deep ANN [38]
Time series analysis Chl-a concentration Multi-wavelet ANN [82], [83]
Time series analysis Sea surface temperature RNN [89]
‘Water params forecasting HAB CNN & LSTM RNN [371, [74], [75]
‘Water params forecasting HAB DBN [76], [77]
Water params forecasting HAB Deep ANN [78], [791, [80]
Water params forecasting | Aquaculture - Dissolved oxygen LSTM RNN [90], [91]
Water params forecasting | Aquaculture - Dissolved oxygen LSTM RNN & sparse AE [92]
Water params forecasting | Aquaculture - Dissolved oxygen Deep ANN [93]
Water params forecasting | Aquaculture - pH & water temp Deep bi-directional SRU [94]
Water params forecasting | Aquaculture - pH, water temp... LSTM RNN [95], [96], [97]
Water params forecasting Sea surface temperature LSTM RNN [98], [99]
Water params forecasting Sea surface temperature GRU RNN [100]
Water params forecasting Sea surface temperature GRU AE [101]
Water params forecasting Sea surface temperature GRU CNN [102]
Water params forecasting Sea surface temperature LSTM & CNN [103]
Water params forecasting Sea surface temperature MLP & LSTM [104]
Water params forecasting Sea surface temperature CNN [105]
Anomaly detection Coral reef protection deep ANN [106]
Anomaly detection Coastal management deep ANNs & Extreme Learning Machine (ELM) [107]
Anomaly detection Coastal management Wavelet ANN [108]

in situ measurements, and possible bathymetry effects near
the shores. The study in [61] evaluates the potential of
remote sensing using ML techniques for improving water
quality estimation over the coastal waters of Hong Kong.
Concentrations of suspended solids, Chl-a, and turbidity
were estimated using an ANN. Random Forest (RF),
Cubist regression, and Support Vector Regression (SVR)
models were used as benchmarks. Satellite and in situ
reflectance data are compared, where ANN-based methods
provide best results. Similar approach is presented in [62]
where the authors attempt to estimate Chl-a and suspended
particulate matter concentrations, in coastal environments on
the west coast of South Korea using Geostationary Ocean
Color Imager (GOCI) satellite data. Finally, retrievals of
near-surface Chl-a concentration are achieved in [63] through
the Mixture Density Network technique.

Most of the surveyed works in this subsection make
use of RS as the primary tool to obtain water parameter
values, but nonetheless they combine it usually with in situ
measurements to provide better performance, reinforcing the
key idea that an integrated system is the best approach. More-
over, simple DL architectures, i.e. MLPs and ANNs with
reduced number of hidden layers, are the most common
strategy to solve the aforementioned problems. Besides, there
is extensive literature dealing with these challenges where
conventional ML approaches are used satisfactorily. This is
mainly due to the reduced datasets available at the time of
those studies, which makes the use of DL useless or even
impracticable. Nevertheless, with the massive increase in data
collection, we believe more works will appear in these years
exploiting the benefits of DL in this regard. Finally, we refer
the reader to [15] and [16] for further research on how DL
can be integrated with RS in other matters rather than water
quality assessment, e.g., image fusion, scene classification,
object detection and land classification among others.
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V. SCENARIOS OF APPLICATION

In this section, we have selected common use cases of
sustainable marine ecosystems where DL plays a key
role, and namely algal blooms, ecosystem preservation,
oil spill and climate change issues including sea surface
temperature and aquaculture. A summary of the reviewed
works dealing with water quality assessment/estimation
can be found in Table 3. Moreover, literature related to
water quality forecasting is summarized in Table 4. As for
this last item, a large volume of related research can be
found. For example, the authors in [17] have conducted
a comprehensive survey about ANN-based water quality
prediction considering feed-forward, recurrent, and hybrid
architectures. However, they mainly focus on fresh waters
such as rivers, lakes, groundwater, and streams. Besides,
another extensive review about DL techniques for hydrology
and water resources is presented in [18]. They primarily
focus on fresh water resources management, providing also
insights about water quality for human consumption and
urban environments. Floods, land and soil, groundwaters and
weather forecasting are also tackled. These topics are out of
our scope, but these two previous references can help the
reader to delve deeper into topics related to this article. In our
study, we focus only on marine ecosystems, coastal and ocean
waters.

A. ALGAL BLOOMS

Harmful algal blooms are a global problem that is increasing
worldwide in frequency and location. One way to mitigate
their impacts on people’s health and livelihoods is to develop
early-warning systems. Models to predict and manage
HABs typically make use of complex multi-model structures
incorporating satellite imagery and frequent monitoring data
with different levels of detail into hydrodynamic models.
An example can be found in [37], where a detection and
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prediction system for spatio-temporal HAB events and using
remote sensing data is proposed. They combine CNNs,
LSTM components together with RF and SVM classification
methods. Results provide high accuracy for detection and
prediction in the proposed case study within the coastal
waters of Florida. However, these sophisticated methods
cannot be applicable when limited data are available. In these
cases, empirical statistical models can be simpler alternatives
but successful for HAB forecasting. In [74], an LSTM
RNN is presented as a way to predict the occurrence time
of Margalefidinium polykrikoides blooms in South Sea of
Korea. Satellite data is used to extract sea surface temperature
and photosynthetically available radiation, factors known to
be related to HABs occurrence. Another example can be
found in [75] where the authors present an early-warning
system for the prediction of two types of HABs, fish kill
and toxic bloom occurrences, in Bolinao-Anda, Philippines,
using only in situ data. Results show that the most important
predictive variable was a decrease in dissolved oxygen.
Fish kills were more likely during higher salinity and
temperature levels, whereas the toxic blooms occurred more
at relatively lower salinity and higher chlorophyll conditions.
A five-layered DBM to predict algal blooms based on
phytoplankton density is presented in [76]. Their architecture
is a generative model, i.e., a DBN that stacks several RBMs.
This case study is conducted in coastal waters of East China
using in situ data and a traditional ANN as a benchmark
for comparison. Results show that the DL model yields
better generalization and greater accuracy in predicting algal
bloom:s.

In [77], the authors analyze related factors of the HABs
disasters. Based on the forecasting ability of Autoregressive
Integrated Moving Average (ARIMA) model and the pow-
erful expression ability of DBN on nonlinear relationships,
an hybrid model that combines both is proposed for HAB
forecasting. The corresponding ARIMA model is built for
each environmental factor in different coastal areas to
describe the temporal correlation and spatial heterogene-
ity. The DBN serves to capture the complex nonlinear
relationship between the environmental factors and the
HAB biomass. Furthermore, Particle Swarm Optimization
(PSO) is introduced to speed up the training phase. Finally,
ship monitoring data collected in East China coastal areas
is used as the experimental dataset. ANNs and Genetic
Programming are used in [78] for the selection of input
variables to predict dynamics of algal blooms in coastal
waters of Hong Kong. The authors found that Chl-a is
the most significant variable in predicting algal blooms,
and in contrast to several previous studies, they claim that
the use of algal biomass data alone as the input is good
enough to perform forecasting, which might reduce the
dependency on expensive equipment in algal bloom warning
systems. A similar idea is developed in [79], where ANNs
and SVMs are implemented, and improved by introducing
different hybrid learning algorithms, to accurately forecast
algal growth and eutrophication in Tolo Harbour, Hong Kong.
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Results reveal that the used methods could ensure robustness
to learn complicated relationships between algal dynamics
and different coastal environmental variables. The authors
in [80] leverage on chemical analytical toxin data from
coastal waters of Maine, USA to propose a high-resolution
forecasting of paralytic shellfish toxin accumulation. In this
regard, an ANN is used to provide weekly site-specific
toxicity forecasts. The algorithm was trained on images
constructed from a chemical fingerprint at each site including
toxic compound data series, representing also past conditions.
Results show good performance under several configurations.
Besides, time horizon tests indicate a decline in accuracy
beyond three-week forecast time.

ANNs and SVMs are used in [64] to develop an optimal
Chl-a estimation model for coastal waters from Landsat-8
Operational Land Imager satellite images in the middle of the
South Sea of Korea. This study provides practical information
about effective monitoring systems for coastal algal blooms.
An interesting approach is presented in [65] where spatial
anisotropy caused by strong coastal-inland environmental
gradients is investigated. A directional geographically spatial
proximity ANN-based architecture is proposed to address
the nonlinear effects of spatial anisotropy. A Chl-a dataset
from Zhejiang coastal areas of China in the spring over
2015-2017 are used to evaluate the model. Insightful results
allow a better understanding of the main drivers of HABs
in the area. Moreover, the impacts of river discharges
and ocean currents on Chl-a patterns could be charac-
terized. These findings are quite conductive to formulate
algae bloom mitigation strategies for managing coastal
ecosystems.

The authors in [81] characterize and forecast the spatial and
temporal variations of three sea water features, i.e., Chl-a,
a photosynthesis index called fluorescence line height, and
sea surface temperature to detect algal blooms, in the
Arabian Gulf, and based on Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite data. They explore
Seasonal ARIMA, ANNSs, and linear regression. Moreover,
they cover different types of water varying in depth and
turbidity. Linear regression and ANNs are found to be the
best at predicting Chl-a in all types of water (turbid and
shallow). Meanwhile, the seasonal ARIMA model provides
the best prediction of the two other considered water features.
Prediction of future values for water quality variables,
based on under-water sensors data, is performed in [38].
Several ML algorithms and the effect of including values
from a varying number of past days are evaluated. As an
interesting future work, they plan to integrate their water
quality prediction scheme within an intelligent alert system
to release early warnings based on predicted hydrological
parameters.

Ensemble modeling is a suitable technique to decrease the
bias and variance within predictions. Forecasts of different
individual models are combined to achieve the desired
output. In [82], two techniques including Bates-Granger and
least square methods are applied to minimize the error of
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the forecasting models, which are based on multi-wavelet
ANNs. A wavelet system is a set of building blocks to
construct a certain signal or function. It has become a trendy
analytical tool due to its ability to simultaneously elucidate
both spectral and temporal information within the signal,
providing valuable insights about the physical data structure.
In this sense, it provides a time-frequency representation of
a signal within many different time periods. This property
overcomes the basic shortcoming of Fourier analysis, i.e., the
Fourier spectrum contains only globally averaged data. The
models are aimed to predict up to three days in advance
the Chl-a concentration as well as water salinity within the
coastal waters of Hilo Bay, Hawaii utilizing in situ data.
To do so, previous daily time series up to three lags are
decomposed via different wavelet functions to be applied as
input parameters for the ANN. Results are promising, and as
expected, while increasing the time horizon, the reliability
and accuracy of the models decrease. Similar approach is
presented in [83], where the discrete wavelet transform
is combined with an ANN to forecast one month ahead
Chl-a levels from in situ data collected within the
South San Francisco Bay, USA. Moreover, multi linear
regression and genetic algorithm SVR models are also
investigated. Decomposed time series thanks to the wavelet
transform are used as input data. The authors suggested as
further research to improve the model by considering other
input variables, e.g., PO4 or NO3, and to predict Chl-a in the
second, third, or following months.

B. ECOSYSTEM PRESERVATION

Vegetated (marshes, mangroves, seagrasses, etc) and
animal-derived (shellfish reefs, corals, etc) habitats are key
components in coastal systems. They provide ecosystem
services, including essential nursery habitat, food and shelter
for fish and marine organism, carbon sequestration, sea
bottom stabilization, improved water quality, and shoreline
protection. However, these landscapes are at risk from the
combined stress of climatic disasters, such as typhoons
and rainfalls, and direct human-driven changes, such as
the release of pollutants, making effective management and
conservation increasingly crucial [67]. Capsule ANNs were
proposed in [84] to address several limitations that CNNs
present, such as the invariance caused by pooling and the
inability to understand spatial relationships between features.
The primary model comprises only one convolution layer and
one fully-connected capsule layer [85]. The authors in [66]
present a deep Capsule network for classification of seagrass
in high-resolution multispectral satellite images within
Florida coastal waters. The proposed model outperforms
CNN and SVM. Moreover, they propose an interesting deep
transfer learning scheme with the goal of detecting seagrass
at any location in the world. Same idea is pursued in [86].
In this case, they detect seagrasses from in situ underwater
images collected within shallow coastal waters of Western
Australia. They present a faster Region-based CNN (R-CNN)
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model to do so. R-CNNs are a pioneering approach that
applies deep models to object detection, by first selecting
several proposed regions from an image and label them.
Then, they use a CNN to perform forward computation to
extract features from each proposed area and predict their
categories. The main performance bottleneck of an R-CNN
model is the need to independently extract features for
each proposed region. As these regions have a high degree
of overlap, independent feature extraction results in high
computation time. Fast R-CNN improves on the R-CNN by
only performing CNN forward computation on the image as
a whole [87]. Other examples focusing on automatic species
detection based on DL classification of underwater images
are [67] where the authors detect and delineate oyster reefs,
and [68], [69] where annotation of marine coral species is
performed.

C. OIL SPILLS

Sea oil pollution is considered a major threat to oceanic
and coastal ecosystems. Accidents at offshore oil drilling
platforms or oil pipeline networks can provoke severe oil
spills. Yet, illegal discharges of ballast and tank cleaning
oily residues from oil tankers and ships are the main sources
of relative pollution events [70]. The detection of oil slicks
and early warning of the corresponding authorities is vital
to attenuate the environmental disaster. Remote sensing has
a crucial role towards this objective. In this regard, SAR
sensors are commonly used for this objective due to their
capability for operating efficiently regardless of the weather
and illumination conditions. In particular, SAR sensors can
be successfully used to measure sea surface roughness.
In fact, sea surfaces covered with oil films appear dark in
SAR images because the capillary waves and short gravity
waves, that contribute to the sea surface roughness, are
damped by the surface tension of oil films [71]. However,
black spots, probably related to oil spills, can be clearly
captured by SAR sensors. Yet their discrimination from
look-alikes poses a challenging objective. A variety of
different methods have been proposed to automatically detect
and classify these dark spots. The authors in [70] propose
semantic segmentation with deep CNNs as an efficient
approach. Moreover, a publicly available SAR image dataset
is introduced, aiming to provide a benchmark for future
oil spill detection methods. Similar approach is presented
in [71] where a CNN architecture is used to detect oil
spills within the Bohai Bay of China. Further research
on this topic, that extremely affect the water quality, can
be obtained from this review [88]. Finally, the authors
in [48] review two DL frameworks that carry out ocean
remote-sensing-image classifications. Both combine CNN
layers and AEs among the main features. Moreover, several
ocean applications are discussed, ranging from oil spill,
coastal inundation, green algae, ship detection and coral
reef mapping. This can be a good additional reference to
the reader for further investigation in the aforementioned
use cases.
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D. SEA SURFACE TEMPERATURE

Changes in ocean temperature over time have important
implications for marine ecosystems and global climate
change. Sea surface temperature provides significant predic-
tive information, supplying basis for revealing the spatial
distribution of biological environmental factors, and as an
indicator to monitor marine disasters. However, due to large
variations in heat flux, radiation, and diurnal wind near
the sea surface, its prediction has always been a highly
uncertain issue [102]. In the following, we present some
data-driven models tackling this. The temporal dependence of
marine temperature variation at multiple depths is analyzed
in [98], where the authors perform time-series prediction
based on LSTM. The data used is from the Global Ocean
Argo Grid Data Set, that provides annual, monthly and
yearly average ocean temperature covering multiple seas,
including the Coral Sea, the Equatorial Pacific Region,
and the South China Sea, and salinity data. The proposed
scheme is able to outperform other conventional benchmarks
with a reduced input sequence length. The authors in [99]
adopt an LSTM for predicting sea surface temperature
over the China Seas for 12-month lead time. Considering
the sub-regional feature differences within the study area,
they use self-organizing feature maps to classify the data
first, and then use the classification results as additional
inputs for the DL network. Moreover, ensemble modeling
is applied with nine selected models differing in structure
and initial parameters to overcome the high variance in
the output. Results show that introducing appropriate class
labels as auxiliary information can improve the prediction
accuracy, but however lacks the capability to predict extreme
events. Therefore, as further research, specific area features
including, the Indian Ocean Dipole and monsoons shall be
considered.

Medium and long-term sea surface temperature prediction
models are designed in [100] based on GRU from data
collected in the Bohai Sea. This sea is characterized by a
large annual temperature difference, and several time scales
(monthly and quarterly) are used to verify the practicability
and stability of the model. The dataset is from the Optimum
Interpolation USA global grid, that combines EO from differ-
ent platforms, including satellites, ships and buoys. Regard-
less of whether monthly or quarterly data, the proposed
scheme outperforms the LSTM case in terms of stability and
accuracy when the prediction horizon increases. A similar
scheme is proposed in [101], where a GRU encoder-decoder
is used to capture the dynamics on sea surface temperature
over the Bohai and South China Seas. As in the previous
work, the proposed model outperforms a fully connected
LSTM network and SVR on different prediction scales (daily,
weekly, and monthly), especially in long-scale and long-term
predictions. In addition, relationships between historical and
future data are explored, finding that each future daily mean
sea surface temperature within the Bohai Sea most strongly
correlated with past historical values. Another example
of using GRU in combination with CNN can be found
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in [102]. A complex DL architecture is designed in [103]
to predict sea surface temperature on multiple scales over
data collected in Yellow and Bohai Seas in China. The model
is compound by three blocks: (i) a wavelet transformation
plus the addition of Gaussian noise to enhance the robustness
of the model for data transformation; (ii) an LSTM and
a convolutional layer for feature extraction; (iii) and a
fully connected layer for the prediction output. MLP and
LSTM, together with a suite of ML models, including linear
regression and decision tree are tested in [104] to estimate
sea surface temperatures. The authors in [105] develop a DL
framework for sea surface temperature forecasting associated
with a tropical instability wave within the eastern equatorial
Pacific Ocean. A spatio-temporal model based on RNN
for forecasting time series of spatial processes is proposed
in [89]. The model learns these dependencies through
a structured latent dynamical component, and a decoder
predicts the observations from the latent representations. It is
evaluated on a geo-spatial dataset from the Pacific sea surface
temperature and with the goal to predict future temperatures
at different spatial locations.

E. AQUACULTURE

Aquaculture is a complex and interactive process that
depends on many factors such as water resource, animal,
human as well as capital investment. There is a wide variety
of aquatic organisms in aquaculture, including fish, shrimp,
crab, scallop, coral, jellyfish, aquatic macro-invertebrate and
phytoplankton. Good water quality is the essential existence
condition for these organisms, affecting directly their growth
and diet safety. The measured data influenced by complex
environmental agents are usually nonlinear and various,
which make it difficult to design accurately control systems.
Traditionally, cameras, underwater robots and water quality
sensors are mainly used to monitor the entire production
process. However, the underwater image data are low quality
due to luminosity change, turbidity, complex background and
fast-moving aquatic animals.

In this regard, traditional ML has not entirely satisfied the
actual requirements. A lot of research has been done in this
topic, also focusing on the possibilities that DL can offer. Two
main surveys about DL aquaculture are presented next. The
authors in [12] classify DL aquaculture research including
live fish identification, species classification, behavioral
analysis, feeding decisions, size or biomass estimation, and
water quality evaluation. Technical details, including data,
algorithms, and performance, are also analyzed. Main conclu-
sions are that DL offers important breakthroughs in the imple-
mentation of smart fish farming. In particular, the authors
claim that DL is expected to expand into new application
areas such as fish disease diagnosis; data will become
increasingly important; and composite models considering
spatio-temporal sequences will represent the main research
direction. Another review is presented in [20]. In this case,
classification is done by aquatic products, including fish,
shrimp, scallop, coral, jellyfish, aquatic macro-invertebrates,
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phytoplankton and water quality. Regarding water quality
estimation, they classify research into three groups based on
the used water parameter, i.e., dissolved oxygen, Chl-a and
sea temperature. Moreover, advantages and limitations of DL
in aquaculture are discussed together with future research
directions and challenges. We refer the reader to these two
reviews for further details regarding different aquaculture
applications where DL is utilized.

Since aquaculture in marine environments is always open
to its surroundings, the changes in water quality parameters
are usually nonlinear, dynamic, and complex. Due to this,
traditional forecasting methods have lots of problems, such as
low accuracy, poor generalization, and high-time complexity.
Next, different cases where DL is proposed as a way
to solve this complex problem are presented. An hybrid
model based on Principal Component Analysis (PCA) and
LSTM is proposed in [90] to forecast the dissolved oxygen
content in an aquaculture pond located in China. The
key impact factors are extracted by PCA, including water
temperature, solar radiation, wind speed, wind direction, soil
temperature and soil moisture. Experimental results show that
the proposed scheme outperforms the evaluated benchmarks,
i.e., a Backpropagation ANN (BPNN), PSO BPNN, ELM and
least squares SVM. A similar approach is proposed in [91]
where a kernel PCA and an RNN are used to forecast the
trend of dissolved oxygen from data collected in Australia.
Moreover, an ANN-based model is proposed in [109] to
predict the spatio-temporal distribution of dissolved oxygen
and hypoxia condition in Chesapeake Bay, the largest estuary
in US. Different from other empirical models, the approach is
able to simulate three-dimensional variations of water quality
variables without in situ data, but only using external forcings
including nutrient loading, river flow, air temperature, solar
radiation, and wind speed, as model inputs. A sparse AE
and an LSTM combined architecture is presented in [92]
to predict the dissolved oxygen content in the following
3, 6, and 72 hours in their experimental case study.
This paper verifies that using a sparse AE as a feature
extraction pre-training network can enhance the prediction
accuracy of LSTM. Moreover, the authors highlight possible
improvements: (i) to explore a multivariate output that only
trains the model once, so as to realize a better comprehensive
prediction of the water body; and (ii) to analyze the effect
of using a deeper sparse AE, that may provide better latent
features.

A deep ANN is designed in [93] to forecast water quality
based on the trend of dissolved oxygen from data collected
in Baffle Creek, Australia. High accuracy performances are
shown for predicting 90 and 120 min ahead of the last
observed data in the wet season, overcoming results from
traditional ML schemes. More papers dealing with dissolved
oxygen prediction can be found in [12]. Another example
of water quality prediction is presented in [94] for pH,
water temperature and dissolved oxygen. The authors build
a new raw dataset collected in time series from the marine
aquaculture base in Xincun Town, China. Their framework is
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a deep Bi-directional Stacked Simple Recurrent Unit (SRU)
learning network, able to achieve higher accuracy than the
RNN and LSTM approaches. An LSTM-based model is used
in [95] to forecast pH and water temperature from data
collected in the mariculture base at Xincun Town, China
by deploying sensor devices in a cage. Pearson’s correlation
coefficient is used to obtain the correlation priors between
pH, water temperature, and other water quality parameters to
be used in the prediction model. The authors in [96] introduce
an architecture composed of an LSTM forecasting model
and an IoT system to monitor real time salinity, temperature,
pH, and dissolved oxygen water quality from different
aquaculture ponds. Since the data is recorded daily, they can
build sequential time series that are fed into the forecasting
scheme. Results show that the approach could be applied in
a real scenario, and provides valuable information regarding
shrimp/fish raising. Moreover, the authors claim that further
research on more sophisticated models should be taken
into account, considering multivariate LSTM. An analogous
concept is introduced in [97] where pH and water temperature
are predicted. Again, the Pearson’s correlation coefficient is
employed to extract correlation among the water parameters.
This information is used for the Simple Recurrent Unit
RNN-based model they propose.

VI. OPEN CHALLENGES

In this section, we discuss the main outcomes found within
the reviewed literature and state open challenges. We first
present our concluding remarks on the new possibilities
offered by DL in water quality assessment and forecasting
for sustainable marine ecosystems and discuss the key open
issues of this technology. Finally, we list a set of identified
new research opportunities to encourage work on those
directions.

A. CONCLUDING REMARKS AND LESSON LEARNED

It is undeniable that DL is a remarkable breakthrough
and in combination with other technologies such as cloud
computing, Big Data and IoT is revolutionizing many aspects
of problem solving in different fields. Among the main
advantages, we highlight the automatic feature extraction,
in contrast with manually selecting features, which is a
laborious, heuristic approach, and the final outcome is
highly dependent on previous expertise. Moreover, it provides
high accuracy and strong stability for target recognition
in complex environments, with the ability of obtaining
meaningful features automatically using a general-purpose
learning procedure. Although DL requires in general more
computing power and longer training time than traditional
ML strategies, the trained DL models are highly efficient
at performing test tasks [12]. This comes from one of the
most significant drawbacks of DL, which is the need for large
input data. Besides, DL schemes are excessively reliant on
sample data and have low interpretability, that translates into
gained experience only from a specific dataset. Moreover,
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when faced with unbalanced training data, most models will
tend to ignore some important features.

B. FUTURE RESEARCH DIRECTIONS

1) DECISION MAKING & REINFORCEMENT LEARNING

The use of DL tools simultaneously expand the reach and
speed of decision-making, while also stripping away layers
of context that would possibly be relevant to a human
decision-making process. Few DL works within marine
environments and water quality include decision-making
components, which presents an opportunity for a new
research line [18]. The vast majority of reviewed papers in
this survey focus on forecasting of certain water parameters
given the problem suitability for DL. As future research,
efforts between agencies, research institutions and regional
governments can be promoted to develop better coordinated
models that will yield actionable and reliable information,
based even on real-time data, to constitute the future of
decision-making systems [18]. The key point is not only
providing the evaluation and forecasting of water quality
for a certain coastal area or marine ecosystem, but also
going beyond that by proposing significant actions based on
these evaluations that can have a real impact in the system
sustainability. In this way, we believe reinforcement learning
in conjunction with deep architectures are the perfect match,
inferring some intelligence to the system, empowering it with
the ability to make early smart decisions and autonomous
foresighted control. This is opening a research spot to be
tackled. So far, not many efforts within marine environments
dealing with this can be found.

2) DATA ACQUISITION & TRANSFER LEARNING

Regarding sensing technologies, the integration of IoT and
WSNss together with DL opens new possibilities in the way
to automatically collect data in large amounts concerning
in situ sensing. Due to these technological advances, data
is usually collected from different sources and combining
several sensors, thus the integration of these data mainly
in space and time is also an open challenge. This is not
only affecting in situ measurements, but also remote sensing,
and finally their own combination. Great efforts have to
be done in this way to extract the optimal profit from the
measured data. This is especially important in RS, where the
introduction of DL arise many challenges to be addressed.
First, limited datasets. Despite the technological advances
that have facilitate the data collection in huge volumes,
RS still suffers in general from a lack of labeled training
data, which is in contrast with the DL prime requirement of
large datasets. RS training data is expensive in terms of time,
effort and investment, because as usual it requires some expert
interpretation to label. The involved dataset sizes are not the
only cause, but also the conceptual difficulty in labeling.
Besides the challenge of working with a limited training
dataset, problems are often under constrained, leading to the
possibility of models thought to be of high quality, which
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perform well in training and even test datasets, but deviate
strongly in real-world situations and data outside their valid
domain [110].

In this regard, Transfer learning can be a potential solution.
Conventional ML and DL algorithms, so far, have been
traditionally designed to work in isolation. These algorithms
are trained to solve specific tasks, thus the models have to
be rebuilt from scratch once the feature-space distribution
changes. Transfer learning is the idea of overcoming the
isolated learning paradigm and utilizing knowledge acquired
for one task to solve related ones. If the learning crosses
domains, it may be possible to utilize lower to mid-level
features learned from one domain into the other. Specially,
it is a popular approach in DL due to the requirement of
large datasets, and could solve the common problem in RS
of limited available data. Some examples of transfer learning
across domains within RS can be found in [21].

3) DATA MANAGEMENT

Having the opportunity to build on a widely accepted dataset
would provide researchers the possibility to improve the
accuracy of their models by taking advantage of previous
works created using the same dataset. However, the lack
of available open datasets makes difficult the comparison
among new DL approaches. Again, efforts between the
different marine environment stakeholders need to be done to
build open data repositories. Moreover, while conventional
DL computer vision applications deal with three-channels
images, i.e. red, green and blue, as input data, satellite
images extend to multiple spectral bands well beyond
the visible range, which often induce different statistical
properties to those of natural images. This includes spatial
dependence and interdependence of variables, violating
the important assumption of identically, independently dis-
tributed data. Additionally, and as we mentioned before,
integrating multi-sensor data is not trivial since different
sensors exhibit diverse imaging geometries, spatial and
temporal resolution, physical meaning, content and statistics.
Sequences of multi-sensor satellite observations also come
with several noise sources, uncertainty levels, missing
data and often systematic gaps, due to the presence of
clouds or snow, distortions in acquisition, storage and
transmission [110].

In addition, spectral, spatial and temporal dimensionality
raise computational challenges. Data volume is increasing
every day. Currently, the biggest meteorological agencies
have to process terabytes per day in near real time, often
at very high precision. Furthermore, a moderate-resolution
(around 1 km) global field has sizes of approximately
40, 000 x 20, 000 pixels, i.e. three orders of magnitude more
than in computer vision works [110]. Ocean color observation
through RS rely on very complex and highly nonlinear
models. If the input data is not adequately understood,
the attained outputs can be very inaccurate. Besides, these
applications involve scientific end users, who need to
understand how the DL systems work. However, a DL system
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is usually a large and complex structure, seen as a black
box that is hard to understand what is happening inside.
Visualization tools capable of showing what the DL network
is learning is an open area of research and would be a great
benefit [21].

4) KNOWLEDGE FUSION

In addition to optimal prediction, and to achieve models
that maximally learn from data, a more challenging task is
taking into account physical and biological knowledge. One
promising uncharted approach is the integration of physical
modeling with DL, i.e. theory-driven with data-driven
modeling. In fact, both are complementary, with physical
approaches in principle being directly interpretable and
offering the potential of extrapolation beyond observed
conditions, whereas data-driven strategies are highly flexible
in adapting to data and finding hidden patterns. More
information can be found in [110]. This is the concept
of knowledge fusion, where information discovered from
different areas of expertise can complement and reinforce
each other in order to derive more meaningful insights.
DL techniques are considered as good candidates for
this [111]. The authors in [112] elaborate on this paradigm,
by studying the applicability and limitations of different
knowledge fusion techniques. The task of data fusion is
to identify the true values of data items among multiple
observed values drawn from different sources of varying (and
unknown) reliability. In this sense, a timely data fusion and
analysis, to enable efficient, reliable, and accurate decision
making and management of ubiquitous environments is a
great challenge. The authors in [113] review the current
research on data fusion for IoT with a particular focus
on mathematical tools, such as Al, probabilistic methods
and theory of belief. Opportunities and challenges are also
discussed, including emerging areas that intrinsically benefit
from data fusion as DL, autonomous vehicles and smart
cities.

As we review in Section IV-C, several studies have shown
strong potential for the application of EO together with RS
for deriving water quality estimates over long temporal and
spatial scales, but the reliable application of these methods is
complicated by the diversity of water types, sensor configu-
rations, and inherent limitations of the used approaches [5].
In this regard, the success of ocean color observation schemes
can be limited by the effectiveness of the atmospheric
correction applied to the data. Atmospheric correction over
coastal waters often exhibits large inaccuracies. In addition
to the low reflectance of water reached at the satellite sensor,
less than 20% in certain spectrum regions, atmospheric
correction in coastal areas is challenged by site-specific
effects (e.g. specular reflection of sun-glint, land adjacency,
very high turbidity, bottom reflectance) [1], [114]. Multiple
sources of noise and the difficulty on their assessment have
led some authors to choose partially corrected images, rather
than full atmospheric corrected data [115]. This arises the
importance of improving the understanding of the limitations
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posed by ineffective atmospheric correction. Several methods
over coastal waters have been addressed, but there is no
single model that works well under the different atmospheric,
solar, geographic and water scenarios. Given the amount
of involved data and its complex interactions, atmospheric
correction over coastal waters is still an open issue to be
tackled where DL can be a promising solution [5].

5) AQUACULTURE

The use of DL in aquaculture will continue to expand,
including potential applications such as fish disease diag-
nosis, aquatic product quality control and traceability [12].
Moreover, aquaculture is expected to benefit greatly from
deep reinforcement learning, mainly regarding unmanned
underwater vehicles, aquatic robots (i.e. picking robot,
conveyance robot, sorting robot) and water parameter opti-
mization [20]. Currently, there are few articles dealing with
it. In addition, smart aquaculture literature appear as a
collection of loosely coupled applications with little relation
among them. The current research is focused on applying
DL to extract superficial knowledge in order to solve a
specific problem. However, data from different applications
may be correlated and affect each other. For instance, bad
water quality conditions can affect fish diseases or behavior.
Yet, such correlations have been mostly overlooked in the
existing studies. In this sense, the aforementioned concept
of knowledge fusion is also applicable here. Specifically,
multi-modal deep learning [116], which learn features from
multiple sources, is expected to provide great improvements
within aquaculture.

To this respect, several aquaculture monitoring platforms
have been introduced in the market, e.g., AquaConnect,
AquaX Online, JellyX, AquaCloud.ai, providing advices
for efficient management of aquacultures by processing
mainly in situ data, and designed for specific purposes,
e.g., to calculate the growth of shrimp and predict the
most profitable harvest periods, or to estimate the abun-
dance of jellyfish and classify their risk of proliferation.
Moreover, many European funded research projects have
been/are devoted to sustainable management of aquaculture
sites based on sensors data. Examples are: NewTechAqua,
centered around epidemiological models within aquacultures
and Blue-Cloud, which combines distributed marine data
resources, computing platforms, and analytical services to
find suitable areas for aquacultures. Gain and iFishIENCi
are, instead, more on improving the efficiency of aquaculture
production by smart feeding algorithms. Finally, CERES
investigates the influence of climate change into fish
and shellfish resources using remote sensors. Setting the
technological basis on these projects and products, a further
research goal could be to study, not only the effects of climate
change tackled in some of them, but also the intra- and
extra-system phenomena in aquaculture to better understand
under which conditions the marine environment is resilient
and can coexist with environmental changes produced by
aquacultures. Extra-system phenomena include exogenous

VOLUME 9, 2021



A. Fernandez Gambin et al.: Sustainable Marine Ecosystems: DL for Water Quality Assessment and Forecasting

IEEE Access

events (e.g., storms), interaction with other systems (e.g.,
agricultural systems), extreme biological occurrences (e.g.,
phytoplankton blooms) or other anthropogenic externalities.
Intra-system phenomena are those related to the activities
within the aquaculture itself and are specially linked with its
carrying capacity.

6) EDGE COMPUTING

Consistent and diverse data is the basics to build smart water
quality applications. However, as the frequency and type of
data resources expand, a centralized system to collect and
analyze data simply may not be a viable approach. Further-
more, associated costs with the data transfer from distributed
sensors are not irrelevant, putting away further investments
in sensor coverage and data reporting interval [18]. As a
solution to this, advances in distributed intelligence, whereby
content, control, and computation are moved closer to
end users/sensors, i.e., to the network edge, has led to
the emergence of the Edge Computing paradigm, which
allows network functions to be virtualized and deployed
at the network edge [117]. Essentially, the physical prox-
imity between the computing and information-generation
sources promises several benefits compared to the traditional
cloud-based computing paradigm, including low latency,
energy efficiency, privacy protection, reduced bandwidth
consumption, and context awareness [118].

The combination of Al in conjunction with edge comput-
ing arises a new concept, the Edge Intelligence (EI) [118],
which aims to investigate distributed computing of ML
models. A popular solution for distributed learning is
represented by Federated Learning (FL) [119], which works
by combining in a central server the training results of
a shared model with certain Stochastic Gradient Descent
(SGD) methods, such as the selective SGD [120]. A water
quality application of this can be found in [121], where a
sensor-based FL model is proposed to monitor algal blooms
by using distributed observation data with geologically
separated local models. A large IoT network is deployed
within the Keum river, South Korea. The authors present a
novel FL scheduling algorithm in order to fairly schedule
data over edge servers for avoiding the overfitting problem.
EI could encourage the ocean conservation and water
quality community to innovate novel applications. This is an
open research area to be tackled within sustainable marine
ecosystems.

7) ANOMALY DETECTION

Anomaly detection is the identification of rare items,
events or observations which raise suspicions by differing
significantly from the majority of the data, i.e., that do not
conform to an expected pattern. Generally, anomalies can
be categorized into two types: (i) outliers, data points that
differ greatly from others within the dataset; and (ii) anomaly
patterns, a small fraction of data different from the majority,
including particular fluctuations, shapes and trends, which
always provide more information than single points [108].
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AD has been traditionally implemented manually, relying
mainly on visualization tools. However, marine systems
are characterized by complex interactions among different
dynamical and random processes, so conventional models
cannot accurately identify these special patterns. Data-driven
methods, specially DL architectures, can help in this way.
We present some examples next.

A framework for automated AD in high-frequency water
quality data from in situ sensors, using turbidity, conductivity
and river-level data collected in the Great Barrier Reef is
presented in [106]. As future work, the authors say it could
be applied to other variables such as dissolved oxygen, water
temperature and nitrates. These properties are highly dynamic
in space and time and so differentiating anomalies shall
be more challenging, but they are potential near-real time
surrogates for sediment and nutrient concentrations, reducing
laboratory analysis and improving the way water quality is
assessed. The study in [107] explores the river-flow-induced
impacts on the performance of water quality forecasting
in the coastal waters in Hilo Bay, Pacific Ocean. For this
purpose, hourly recorded water quality parameters of salinity,
temperature and turbidity as well as the flow data of the
Wailuku River were used as inputs for deep ANNs, ELM and
SVR. Results show that river flow made the most and least
improvement on the forecasting efficiency of turbidity and
water temperature, respectively. The authors in [108] present
a wavelet ANN for detecting anomalies in ocean fixed-point
in situ time series from the National Ocean Test Site of China.
Salinity and surface current speed are the considered water
parameters under an unsupervised setting. Results show that
the presented method is more tolerant to noise and more
sensitive to anomalies with temporal dependencies. However,
its spatial particularity and short period of data records may
lead to misclassification.

To the best of our knowledge, we believe AD has not yet
received the necessary focus within marine environments,
and could provide powerful insights thanks to its ability
to identify hidden patterns. In this regard, AD can offer
prior information and be a useful tool to build early-warning
systems with foresighted control that are vital to avoid
ecological disasters and to maintain the desired system
sustainability. Therefore, we believe it is still an open research
area to be undertaken. In this sense, more complex and inte-
grated autonomous systems shall be designed involving water
quality assessment and forecasting, early warning through
AD, and finally decision-making based on reinforcement
learning, with the overall wrap of deep learning.

VIi. CONCLUSION

An appropriate evaluation of water quality is key in
order to guarantee sustainability to our oceans and coastal
regions. Leveraging on a combination of cross-disciplinary
technologies including RS, IoT, Big Data, cloud computing,
and Al is essential to attain this aim. In this paper, we have
conducted a review about methodologies and technologies
for water quality monitoring that contribute to a sustainable
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management of marine environments. Specifically, we have
focused on DL strategies for water quality estimation
and forecasting. The analyzed works have been classified
depending on the type of task, scenario and proposed DL
architecture. Moreover, several applications including coastal
management and aquaculture have been surveyed. Finally,
we have discussed open issues still to be addressed and
potential research lines where transfer learning, knowledge
fusion, anomaly detection, reinforcement learning, edge
computing and decision-making policies are expected to be
the main involved agents.
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