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ABSTRACT This paper presents a control-based trajectory generation approach for unmanned aerial
vehicles (UAVs) under dynamic constraints. It exploits the concept of optimal control to find closed-form
differential equations that satisfy any arbitrary dynamic limitation mapped into kinematic constraints.
Pontryagin’s Minimum Principle applies to derive a set of differential equations in which the dynamic
environment is considered in the constrained Hamiltonian function. In particular, we aim to minimize the
L2-norm of the control input avoiding dynamic obstacles, given initial and final boundary conditions. Lastly,
this paper proposes a novel interpolation algorithm based on rational functions, referred to as rational
recursive smooth trajectory (RRST) method. The method generates an analytic expression that approximates
the control inputs, for which no closed-form solutions are in general attainable.

INDEX TERMS Aerospace, optimal control, calculus of variations, steepest descent, function interpolation,
dynamic interpolation, optimization, rational functions, unmanned aerial vehicles (UAV), path planning,
trajectory generation.

I. INTRODUCTION
Mission planning has been playing a pivotal role in vari-
ous application fields, e.g., in air traffic control, aerospace,
robotics, and mechanics. In the last two decades, research
in the calculus of variation and optimal control has provided
several methodologies for trajectory generation under envi-
ronmental constraints.

In [1] and [2], trajectories avoiding obstacles are obtained
with statistical learning and evolutionary algorithms. In the
domain of calculus of variations, several methodologies for
path planning have been developed [3]–[8]. Second-order and
higher order variational problems are studied in [3] and [4],
respectively. An optimal control methodology is applied to
obtain an optimal path for considered dynamical systemmod-
els in [5]–[9]. In this class of problems, the objective is to
automatically generate smooth trajectories passing through
certain waypoints at specific times. In other words, the tra-
jectory planning consists of finding a relation between time
and space components. Consequently, the trajectory may be
defined as a parametric function of the time. To achieve this
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goal, several methodologies have been successfully applied
by providing only initial and final waypoints or by consid-
ering multiple waypoints. In the former case, it is clear that
the optimal control problem is equivalent to the solution of
the two-waypoint boundary value problem [10]–[12]. In the
latter, by specifying thewaypoints it is possible to define a tra-
jectory passing through the waypoints either statically (using
pure interpolation techniques) or dynamically (through calcu-
lus of variations). In the case of multiple waypoints, dynamic
interpolation was initially studied in [13] for application to
the aircraft motion.

In general, three types of interpolation can be considered:
Static interpolation: the trajectory passes through the way-

points for some values of the time, Fig. 1(a).
Approximation: the trajectory does not necessarily pass

through the waypoints, Fig. 1(b).
Dynamic interpolation: the trajectory is specified in terms

of discrete, ordered waypoints through which the dynamical
system model states must go, Fig. 1(c).

Path primitives such as lines [14], polynomials [15]–[17],
and splines [18], have been deployed as interpolation func-
tions, especially for static interpolation. The objective of
polynomial interpolation techniques is to obtain a trajectory
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FIGURE 1. Static interpolation (a), approximation (b), and dynamic
interpolation (c) of a set of waypoints.

that passes through multiple waypoints. In fact, the differ-
entiability of polynomials makes them a suitable interpola-
tion choice for considering the vehicle dynamics. However,
it is necessary to solve an inverse problem to find a unique
polynomial trajectory that fulfills the constraints. Therefore,
the interpolation problem is often split into splines, i.e.,
piecewise polynomial trajectories. Splines are easy to be
constructed and provide bounded trajectories although the
continuity of the derivatives (smoothness) at the waypoints is
only guaranteed up to a certain order. A recent methodology
that avoids solving an inverse problem has been proposed
in [19] and [20]. Therein, the authors developed a recursive
methodology to build a unique smooth polynomial trajectory
satisfying the kinematic constraints.

Another challenge concerningmission planning is accurate
navigation with obstacle avoidance capability in which the
unmanned aerial vehicle (UAV) can fulfill and accomplish
any given task safely. Artificial Potential Fields (APFs) have
been utilized and continued for path planning [21], including
application to UAVs with promising results [22]. On the
other hand, from the optimal control point of view, Model
Predictive Control (MPC) is a promising approach that has
been used in local motion planning with kinematic and envi-
ronmental constraints [23]. However, the previous techniques
applied in a local context fail in providing optimal paths and
their incremental behavior could lock in local minima and
discontinuity in control inputs [21]. To avoid the limitation
of proposed methods, research is moving towards a dynamic
interpolation based framework.

These limitations motivate us to rethink the problem by
formulating a control-based trajectory generation approach
for mechanical UAV systems under dynamic constraints.
It uses the concept of optimal control to find closed-form
differential equations that satisfy any arbitrary dynamic lim-
itations mapped into kinematic constraints. It is fundamen-
tally different from existing approaches [24] in the following
aspects:

• The trajectory is defined by a constrained Hamiltonian
function that fulfills all the boundary conditions for the
dynamical planner system;

• The trajectory is optimal and obtained by solving
closed-form differential equations that enable consider-
ing the dynamics for the environment such as static and
dynamic obstacles;

• To shape the path with environmental constraints there
is no need to define extra waypoints;

• There is no discontinuity in the states along the optimal
trajectory;

• Lastly, we introduce a novel interpolation method, based
on the Recursive Smooth Trajectory (RST) generation
algorithm recently introduced in [20], which utilizes as
a basis the rational functions to approximate the optimal
control inputs.

In detail, the paper is organized as follows. Section II
formulates the dynamical system model for the planner
block and presents the path motion dynamics. In Section III,
the optimal control law and conditions for optimality is rig-
orously derived. Section IV introduces a novel interpolation
approach based on RST and rational functions providing an
analytic expression of the optimal control inputs. Simulation
results are reported in Section V. Finally, the paper is con-
cluded in Section VI.
Notation: A trajectory is said to have k-th degree paramet-

ric continuity in parameter t , if its k-th derivative dk

dtk Q(t) is
continuous. It is then also called Ck continuous.

II. PROBLEM FORMULATION
We start with the dynamical system model of the trajectory
planner, considering the 1D position and its k derivatives
(velocity, acceleration, etc.). The extension to the 3D casewill
be considered later. In the state-space form, the systemmodel
can be written in a linear time-invariant form as:

ẋ(t) = Ax(t)+ Bu(t) (1)

where x(t) ∈ χ ⊂ Rk+1 is the dynamical system state and k
is the order of the kinematic constraint, u(t) ∈ R is the control
input, and the system representation is in the following

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · 0 1
0 · · · · · · 0 0

 , B =


0
0
...

0
1

 . (2)

Utilizing the state-space equalization leads to the possibil-
ity of analyzing the functionality of planner dynamics in the
search space. To proceed with the control based approach we
propose the following problem:
Problem 1: Generate a C3 trajectory x(.) in 1D, which

minimizes the cost functional

Joc =
1
2

∫ T

0
u2(t)dt, (3)

amongst all C3 curves, with the following boundary condi-
tions

x(0) = x0, x(T ) = xT ,

ẋ(0) = v0, ẋ(T ) = vT ,

ẍ(0) = a0, ẍ(T ) = aT , (4)
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for the dynamical system

ẋ(t) =

0 1 0
0 0 1
0 0 0

x(t)+
00
1

 u(t). (5)

The functional in (3) is the L2-norm of the control input
and ensures that the trajectory reaches the final state with
minimum control input energy. The reason for choosing the
L2-norm consists in the fact that it can easily be deduced from
Pontryagin’s minimum principle [10]. The objective is to find
a u(t), denoted by u∗(t), such that the cost functional in (3) is
minimized. Consequently, a trajectory is derived.

III. DERIVATION OF THE OPTIMAL CONTROL LAW AND
CONDITIONS FOR OPTIMALITY
In this section, we use Pontryagin’s Minimum Principle [10]
to derive an optimal control law. The methodology follows by
formulating the Hamiltonian system and then applying the
first-order necessary conditions. For the sake of complete-
ness, Pontryagin’s Minimum Principle is recalled below.
Theorem 1 [10]: Consider the general dynamical system

model

ẋ(t) = f (x(t), u(t), t), (6)

where x(0) is given. The associated cost functional is defined
as

JP(0) = 9(x(T ), T )+
∫ T

0
D(x(t), u(t), t)dt, (7)

where the target condition must satisfy

9(x(T ), T ) = 0. (8)

If the control signal is unconstrained, then

∂HP
∂u
= 0, (9)

with the Hamiltonian

HP(x(t), u(t), λ(t), t) = D(x(t), u(t), t)

+ λ>(t)f (x(t), u(t), t), (10)

where λ(t) is the costate. In addition, the more general condi-
tion for the constrained optimal control signal can be written

HP(x∗(t), u∗(t), λ∗(t), t) ≤ HP(x∗(t), u(t), λ∗(t), t), (11)

for all admissible u(t). Indeed, minimizing the Hamiltonian
results in optimal values of the state and costate over all
admissible u(t).

Now, let us define λ(t) = [λ1(t) λ2(t) λ3(t)]> ∈ R3

and a constant c = [c1 c2 . . . c6]>. From (3) and (5),
the Hamiltonian can be written as

Hoc =
1
2
u2(t)+ λ>(t)(Ax(t)+ Bu(t)). (12)

The necessary conditions are derived by differentiat-
ing (12) with respect to λ(t) and u(t) that are:

λ̇(t) = −
∂Hoc
∂x u=u∗

(13)

FIGURE 2. 1D optimal states. The corresponding cost is (Joc = 0.3516).

∂Hoc
∂u
= 0. (14)

This results in the following form:

λ̇1(t) = −
∂Hoc
∂x1
= 0→ λ∗1(t) = c1 (15)

λ̇2(t) = −
∂Hoc
∂x2
=−λ1(t)→ λ∗2(t)=c1t + c2 (16)

λ̇3(t) = −
∂Hoc
∂x3
=−λ2(t)→ λ∗3(t)=

1
2
c1t2−c2t+c3 (17)

∂Hoc
∂u
= u(t)+ λ3(t)→ u∗(t) = −

1
2
c1t2 + c2t − c3. (18)

Equations (15)-(17) represent a set of conditions on the
adjoint vector λ(t). These conditions must be satisfied to
get the optimality of the control law. With this control law,
the system follows the optimal state trajectory

ẋ3(t)= u∗(t)→x∗3(t)=−
1
6
c1t3 +

1
2
c2t2 − c3t + c4 (19)

ẋ2(t)= ẋ3(t)→x∗2(t)=−
1
24
c1t4 +

1
6
c2t3 −

1
2
t2 + c4t+c5

(20)

ẋ1(t)= ẋ2(t)→x∗1(t)=−
1
120

c1t5 +
1
24
c2t4 −

1
6
c3t3

+
1
2
c4t2 + c5t + c6. (21)

Definition 1: An extremal control law is one that satis-
fies conditions (13)-(14) of Pontryagin’s Minimum Principle.
An extremal control law is a globally optimal control law for
the dynamical system model in (5).

By applying the boundary conditions (4), the optimal
adjoint variables λ∗(t) = [λ∗1(t) λ

∗

2(t) λ
∗

3(t)]
>, the optimal

trajectory x∗(t), and the optimal control law u∗(t) can be
computed analytically. Fig. 2 shows the extremal curves con-
necting two waypoints (x(0), ẋ(0), ẍ(0)) = (0, 0, 0) and
(x(T ), ẋ(T ), ẍ(T )) = (1, 0, 0) for the value of T = 4 s.
It can be shown that the boundary conditions are matched.
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FIGURE 3. Gradient Lines in the case of a potential function
V (x(t), y(t), xob, yob) obstacle with xob = 0.5, yob = 0.5, m = 2, and
` = 0.02.

Until now, we described a constrained Hamiltonian for-
malism (12) for the optimal control of the motion planner
dynamics in (5). Safety is an essential issue for accomplishing
a given mission and this is challenged when we operate in
a dynamic unknown environment. For this reason, we are
interested in considering the dynamics of obstacles in the con-
strained Hamiltonian formalism. This methodology allows
us to derive a set of closed-form differential equations in
which the dynamic environment is considered in the con-
strained Hamiltonian function. The objective is to find an
optimal path from an initial condition X0 = [x(0) y(0)]>

to a final destination point XT = [x(T ) y(T )]> avoiding
collision with obstacles. In this case, the augmented dynam-
ical system model in the state-space form can be written
as:

x(t)
ẋ(t)
ẍ(t)
y(t)
ẏ(t)
ÿ(t)

 =

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)
ẋ6(t)

 =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

x(t)

+


0 0
0 0
1 0
0 0
0 0
0 1


[
u1 (t)
u2 (t)

]
. (22)

Without losing the generality, we consider an obstacle cen-
tered in (xob, yob), and we define a simple repulsive potential
function [25]. Let V (x(t), y(t), xob, yob) be in the form

V (x(t), y(t), xob, yob) =
`

(x(t)− xob)m + (y(t)− yob)m
,

(23)

where m is a natural positive number and ` is a constant
parameter (see Fig. 3).
Interestingly, we can bring the potential function in (23) to

the constrained Hamiltonian formalism. To do so, we propose
the following problem:

Problem 2: Generate a C3 trajectory X (.) in R6, which
minimizes the cost functional

Job =
1
2

∫ T

0

(
x21(t)+ x

2
4(t)+ u

2
1(t)+ u

2
2(t)

+
`

(x(t)− xob)m + (y(t)− yob)m

)
dt, (24)

amongst all C3 curves, with the following boundary
conditions

X (0) = X0, X (T ) = XT ,

Ẋ (0) = V0, Ẋ (T ) = VT ,

Ẍ (0) = A0, Ẍ (T ) = AT , (25)

for the dynamical system in (22).
To proceed, let us define

p(t) = [p1(t) p2(t) p3(t) p4(t) p5(t) p6(t)]> ∈ R6. (26)

From (24) and (22), the Hamiltonian can be written as

H =
1
2
x21(t)+

1
2
x24(t)+

1
2
u21(t)+

1
2
u22(t)

+
1
2

`

(x1(t)− xob)m + (x4(t)− yob)m

+ p1(t)x2(t)+ p2(t)x3(t)

+ p3(t)u1(t)+ p4(t)x5(t)+ p5(t)x6(t)+ p6(t)u2(t).

(27)

Following the necessary conditions and after straightfor-
ward computation resulting in closed-form differential equa-
tions

∂H
∂u1
= 0→ u1(t)+ p3(t) = 0 (28)

∂H
∂u2
= 0→ u2(t)+ p6(t) = 0 (29)

ṗ1(t) = −x1(t)+
m`(x1(t)− xob)m−1(

(x1(t)− xob)m + (x4(t)− yob)m
)2
(30)

ṗ2(t) = −p1(t) (31)

ṗ3(t) = −p2(t) (32)

ṗ4(t) = −x4(t)+
m`(x4(t)− yob)m−1(

(x1(t)− xob)m + (x4(t)− yob)m
)2
(33)

ṗ5(t) = −p4(t) (34)

ṗ6(t) = −p5(t) (35)

It is not possible to solve analytically the resulting
closed-form differential equations for Problem 2. In the
next section, we propose two iterative learning-based algo-
rithms for solving the mentioned optimal control problem
that involves both terminal constraints on the state variables
and inequality constraints on the states (navigation function)
along the entire trajectory.
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A. STEEPEST DESCENT APPROACH
Let

ṗ(t) = −
∂H
∂X

(36)

∂H
∂u
= ∇f (u(t)), (37)

and u(i)(t) = [u(i)1 (t) u(i)2 (t)]> be the i-th iteration of the opti-
mal control u(0)(t) = [u(0)1 (t) u(0)2 (t)]>. Using the steepest
descent methodology [26], our algorithm reads as follows:
Step 1: Define an arbitrary control input u(0)(t) =

[u(0)1 (t) u(0)2 (t)]>.
Step 2: By having u(0)(t) = [u(0)1 (t) u(0)2 (t)]>, it is possible

to update the states in (22).

Step 3: Update the co-state equation ṗ(t) = −
∂H
∂X

.

Step 4: By having the information of control inputs u(i)(t),
states X(i)(t), and co-states p(i)(t) from the previous iteration
we can update the control inputs in the following form

u(i+1)(t) = u(i)(t)− γ∇f (u(i)(t)), (38)

where γ = [γ1 γ2]> > 0 is the learning rate vector.
Step 5: Check if ‖H(i)

‖ ≤ ε or ‖J (i−1)ob − J (i)ob‖ ≤ ε where
ε is a small positive constant. If this is true, then u∗(t) =
u(i+1)(t) else i = i+1, u(i)(t) = u(i+1)(t) and return to Step 3.

B. CONJUGATE GRADIENT APPROACH
Inspired by the conjugate gradient methodology [27], our
algorithm reads as
Step 1: Define an arbitrary control input u(0)(t) =

[u(0)1 (t) u(0)2 (t)]>.
Step 2: By having u(0)(t) = [u(0)1 (t) u(0)2 (t)]>, it is possible

to update the states in (22).

Step 3: Update the co-state equation ṗ(t) = −
∂H
∂X

.

Step 4: By having the information of control inputs u(i)(t),
states X(i)(t), and co-states p(i)(t) from the previous iteration
we can update the control inputs in the following form

u(i+1)(t) = u(i)(t)+ γ r (i), (39)

where

r (i) = −∇f (u(i)(t))+ ζ (i−1)r (i−1) (40)

ζ (i−1) =
‖∇f (u(i)(t))‖2

‖∇f (u(i−1)(t))‖2
, (41)

with the initial condition r (0) = −∇f (u(0)(t)).
Step 5: Check if ‖H(i)

‖ ≤ ε or ‖J (i−1)ob − J (i)ob‖ ≤ ε where
ε is a small positive constant. If this is true, then u∗(t) =
u(i+1)(t) else i = i+1, u(i)(t) = u(i+1)(t) and return to Step 3.

C. CONVERGENCE
In this subsection, we prove the convergence of the proposed
algorithm.
Proposition 1: Let ‖γ ‖ be sufficiently small, and
∇f (u(i)(t)) 6= 0 then Job(u(i+1)(t)) < Job(u(i)(t)).

Proof: Using the Taylor’s expansion we can write

f (u(i)(t)− γ∇f (u(i)(t)))

= f (u(i)(t))+∇f >(u(i)(t))
(
− γ∇f (u(i)(t))

)
. (42)

Observing (42), we can say that the multiplication of two
gradients in the RHS of (42) is always positive. Also, γi > 0
for i = 1, 2 is positive and, therefore, we can write

f (u(i)(t))+∇f >(u(i)(t))
(
− γ∇f (u(i)(t))

)
< f (u(i)(t)), (43)

whichmeans that the second term in the LHS of (43) is always
negative and the result follows. With both algorithms we
guarantee that f is decreasing, therefore also Job is decreasing
since the integrand is always semi-definite positive.

Furthermore, the terms in the cost functional in (24) are
convex. Therefore, it is possible to check whether u∗(t) is an
isolated local or global minimum. This statement is supported
by the following result.

For the sake of exposition simplicity, we consider the 1D
cost functional with m = 2, then we have,

Job =
1
2

∫ T

0

(
x21(t)+ u

2
1(t)+

`

(x(t)− xob)2

)
dt, (44)

and the Jacobian and Hessian matrix of (44) are

J̃ =

x1(t)− `

(x1(t)− xob)3
u1(t)

 , (45)

H̃ =

 3`
(x1(t)− xob)4

+ 1 0

0 1

 , (46)

that shows the sufficiency condition for u∗1(t) to be an isolated
global minimum. Indeed, the determinant of the first principal
minor is positive and the determinant of the Hessian is as well
always positive, therefore Job is strictly convex.

D. COMPUTATIONAL COMPLEXITY
We consider the following assumptions on Problem 2.
A 1: f (u(t)) is differentiable and continuous, and f (u(t)) is

bounded below, that there exists a constant δlb such that

f (u(t)) ≥ δlb.

A 2: ∇f (u(t)) is Lipschitz continuous, therefore, there
exists a constant γn ≥ 0, for all u(t), ū(t)

‖∇f (u(t))−∇f (ū(t))‖ ≤ γn‖u(t)− ū(t)‖.

Theorem 2: Let us assume that A 1-A 2 hold. Then, it exists
a constant δup depending on u0(t), for all ε ∈ (0, 1), at most
δup

ε2
≈ O(ε−2) iterations are needed to obtain in the iteration

ui(t) such that at most ‖H(i)
‖ ≤ ε.

Proof: Using Taylor’s expansion gives that, for each
i ≥ 0,

f (u(i)(t))− f (u(i)(t)− γ∇f (u(i)(t)))

≥ f (u(i)(t))− f (u(i)(t))+ γ∇f >(u(i)(t))
(
∇f (u(i)(t))

)
121720 VOLUME 9, 2021
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−
1
2
γ 2γn∇f >(u(i)(t))

(
∇f (u(i)(t))

)
, (47)

for any γ ≥ 0.Maximizing the right-hand side of the previous
inequality with respect to γ yields

f (u(i)(t))− f (u(i)(t))−
1
γn
∇f (u(i)(t)))

≥
1
2γn
∇f >(u(i)(t))

(
∇f (u(i)(t))

)
≥
ε2

2γn
, (48)

for each iteration i as long as ∇f >(u(i)(t))
(
∇f (u(i)(t))

)
≥ ε.

Therefore, the maximum number of iterations can be defined

as
2γn(f (u(0)(t)− δlb)

ε2
,
δup

ε2
.

E. LAGRANGIAN FORMALISM AND VARIATION OF THE
REPULSIVE FUNCTION DUE TO DYNAMICS OF THE
OBSTACLE
The goal of this section is twofold. We first propose an
alternative solution to Problem 2. Thenwe address themotion
path in a dynamic environment, where an obstacle can change
its position over time.

We investigated how to solve Problem 2 with Hamiltonian
formalism. The link between theHamiltonian and Lagrangian
is the Legendre transformation [28]

H = Ẋ
∂L
∂Ẋ
− L, (49)

where L is the Lagrangian. So we have:

L(X , Ẋ ) =
1
2
x21(t)+

1
2
x24(t)+

1
2
u21(t)+

1
2
u22(t)

+V (x(t), y(t), xob, yob)+ θ1(t)(ẋ1(t)− x2(t))

+ θ2(t)(ẋ2(t)− x3(t))+ θ3(t)(ẋ3(t)− u1(t))

+ θ4(t)(ẋ4(t)− x5(t))+ θ5(t)(ẋ5(t)− x6(t))

+ θ6(t)(ẋ6(t)− u2(t)) (50)

where θ (t) = [θ1(t) θ2(t) θ3(t) θ4(t) θ5(t) θ6(t)]> is the
Lagrange multiplier vector. From calculus of variations the-
ory, solving problem (24) is equal to solving the Euler-
Lagrange equation

∂L
∂X
−

d
dt

(
L
∂Ẋ

)
+

d2

dt2

(
L
∂Ẍ

)
+
∂L
∂θ
−

d
dt

(
L
∂θ̇

)
= 0 (51)

and by substituting the Lagrangian defined in (50) into (51)
it follows that

u1(t) = θ3(t) (52)

u2(t) = θ6(t) (53)

θ̇1(t) = x1(t)−
m`(x1(t)− xob)m−1(

(x1(t)− xob)m + (x4(t)− yob)m
)2 (54)

θ̇2(t) = θ1(t) (55)

θ̇3(t) = θ2(t) (56)

θ̇4(t) = x4(t)−
m`(x4(t)− yob)m−1(

(x1(t)− xob)m + (x4(t)− yob)m
)2 (57)

θ̇5(t) = θ4(t) (58)

θ̇6(t) = θ5(t). (59)

Interestingly equations (52)-(59) are equivalent to those
obtained in the Hamiltonian formalism. We now proceed to
consider the motion path in a dynamic environment. To do so,
let V (x(t), y(t), xob, yob) be in the form

V (x(t), y(t), xob(t), yob(t))

=
`

(x(t)− xob(t))m + (y(t)− yob(t))m
. (60)

The time derivative of (60) is

∂V (t)
∂t
=
∂V (t)
∂X

Ẋ(t)+
∂V (t)
∂xob

ẋob(t)+
∂V (t)
∂yob

ẏob(t). (61)

The first term of (61) represents the variations on V (t) due
to changes in the motion path. The last two terms indicate the
dynamics of the obstacle in the environment and which given
by

∂V (t)
∂xob

ẋob(t)+
∂V (t)
∂yob

ẏob(t)

=
m`(x1(t)− xob(t))m−1(

(x1(t)− xob(t))m(x4(t)− yob(t))m
)2 ẋob(t)

+
m`(x4(t)− yob(t))m−1(

(x1(t)− xob(t))m + (x4(t)− yob(t))m
)2 ẏob(t). (62)

To calculate (62), it is necessary to have the velocities of
the obstacle in the x and y-direction. By having the variation
of the impulsive potential function in (61) and adding to
the functional in (24), we can handle the dynamic obstacle
avoidance.

IV. ANALYTIC EXPRESSION OF THE OPTIMAL CONTROL
INPUTS
Majority of motion planning problems cannot be solved ana-
lytically. The differential equations related to the optimal
control problem are generally non-linear and therefore the
solutions (if they exist) can be only represented numerically.
However, analytic closed-form expressions approximating
the numerical solutions offer several advantages: 1. Oversam-
pling, thus, they provide a quick methodology to evaluate
intermediate points. 2. In the context of optimal control, they
can be used to express the control inputs, allowing derivation
and integration for state estimation. 3. They are often smooth
functions (e.g. polynomials [17]) and smoothness in control
inputs is a desired property [19]. Furthermore, they can be
easily implemented in microcontrollers.

To approximate the numerical solutions obtained in
Section III, we firstly use polynomials as basis functions and
we exploit the Recursive Smooth Trajectory (RST) gener-
ation method recently introduced in [19] and [20]. Lastly,
we introduce a novel interpolation method, based on the RST
algorithm, which utilizes as basis the rational functions.
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FIGURE 4. Sampling of the control input.

A. RECURSIVE SMOOTH TRAJECTORY
The RST algorithm was proposed in [19] and [20] as an
iterative interpolation method. The idea is to recursively build
an unique polynomial function fk (t) knowing the associated

kinematic constraints d i

dt i fk (t)

∣∣∣∣
t=tj

= σi,j for each point in time

tj with j = 0, 1, . . . ,N and i = 0, 1, . . . k , where N + 1 and
k are the number of waypoints and the number of derivative
constraints, respectively. Indeed, it has been shown in [19]
and [20] that, defined the polynomial function as

fk (t) =
k∑
i=0

pi(t), (63)

if

pi(t) =
1
i!

( N∏
n=0

(t − tn)
)i
· si(t), (64)

then the i-partial function (See Def.1 in [20]) fi(t) depends
recursively on fi−1(t). In particular,

si(tj) =

d i

dt i
fk (t)

∣∣∣∣
t=tj

−
d i

dt i
fi−1(t)

∣∣∣∣
t=tj( N∏

n=0
n6=j

(tj − tn)
)i . (65)

Therefore, it is possible to component-wise approximate
the optimal control input u(t) with a polynomial fk (t). The
idea is to sample the desired input into N + 1 waypoints
(x0, x1, . . . , xN = xT ) and for each of them provide the infor-
mation on its derivatives up to the k-th derivative, denoted as
kinematic constraints (see Fig. 4).

Unfortunately, when the number of waypoints N + 1
is large and when tj are equally spaced, the Runge’s phe-
nomenon may occur [29]. The Runge’s phenomenon rep-
resents an unwanted oscillation near the endpoints of the
polynomial interpolation function. To avoid it, one possibility
relies on spline interpolation methods [18] that connect low
order polynomial functions. However, if the estimation of

the states is required, it is necessary to solve a set of linear
equations to find the constants of integration. With a unique
function, the number of linear equations to solve reduces
significantly. Another way to tackle the oscillation problem
consists of changing the distribution of the nodes tj more
densely towards the edges of the interval [t0; tN ] [30]. Since
the sampling process is designed by the user, a standard
choice considers the set of points in time as the set of Cheby-
shev nodes. In particular, for N + 1 points in the interval
[t0; tN ], nodes are transformed into

t̂j=
1
2
(t0 + tN )+

1
2
(tN − t0) cos

[
2j+1

2(N+1)
π

]
, j = 0, . . . ,N .

(66)

Runge’s phenomenon can be avoided also with optimiza-
tion on the polynomial interpolant. Indeed, it has been shown
that the set of feasible functions satisfying the kinematic
constraints σi,j can be expressed as an induced set by the
polynomial q(t) as follows

fext(t) = fk (t)+

(∏N
n=0 (tj − tn)

)k+1
(k + 1)!

· q(t). (67)

To minimize the oscillation effect, we can look for the
minimal energy error function as the solution to

min
q(t)

∫ tN

t0

∣∣∣∣∣∣∣∣(u(t)−fk (t)−
(∏N

n=0 (tj − tn)
)k+1

(k + 1)!
· q(t)

)∣∣∣∣∣∣∣∣2dt.
(68)

However, such optimization process is computationally
expensive, therefore we propose to use RST, exploiting its
efficiency advantage.

B. RATIONAL RECURSIVE SMOOTH TRAJECTORY
Polynomial interpolation is in general a simple and fast pro-
cess to implement. Nevertheless, when the degree of the
interpolant function is high, oscillation at the edgesmay occur
as mentioned before. For this reason, we consider a different
basis function which may take advantage of the simplicity
of polynomials but also provide more flexibility and degrees
of freedom to tackle Runge’s phenomenon. We identify and
propose such basis as the rational basis function

Rn,d (t) =
N (t)
D(t)

, (69)

where N (t) is the numerator, a polynomial of degree n, and
D(t) is the denominator, a polynomial of degree d . Such
choice allows us to exploit some of the polynomial properties
for both numerator and denominator but most importantly,
enables the development of a new algorithm, referred to
as rational recursive smooth trajectory (RRST). To find the
coefficients of both numerator and denominator, the idea
is to pick the denominator D(t) and use RST to find the
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coefficients of the numerator N (t). Intuitively, the new kine-
matic constraints for building N (t) are a weighted sum of the

kinematic constraints d i

dt i fk (t)

∣∣∣∣
t=tj

(given) and the kinematic

constraints d i

dt iD(t)

∣∣∣∣
t=tj

(designed as input). The following

Lemma provides the mathematical formulation for the RRST.
Lemma 1: Let tj be a point in time, for j = 0, 1, . . . ,N,

such that d i

dt i fk (t)
∣∣
t=tj

is the associated given kinematic con-
straint, for i = 0, 1, . . . , k. Let N (t) be a polynomial and
D(t) be a given polynomial of degree d. If fk (t) is a rational
function defined as

fk (t) = Rn,d (t) =
N (t)
D(t)

, (70)

with n = (k+1)(N +1)−1, then the coefficients of N (t) can
be obtained with RST, in particular its associated kinematic
constraint has expression

d i

dt i
N (t)

∣∣∣∣
t=tj

=

i∑
l=0

(
i
l

)(
d l

dt l
fk (t)

∣∣
t=tj

)
·

(
d i−l

dt i−l
D(t)

∣∣
t=tj

)
.

(71)

Proof: For simplicity of notation, the rational function
Rn,d (t) will be denoted with R(t). We proceed by induction
on the kinematic constraint. Consider the case when i = 0,
then

N (tj) = R(tj) · D(tj) (72)

represents the value that N (t) needs to assume at the time tj.
For the case i = 1

d
dt
N (t)

∣∣∣∣
t=tj

=
d
dt

(
R(t) · D(t)

)∣∣∣∣
t=tj

(73)

which is equal to

d
dt
N (t)

∣∣∣∣
t=tj

=

(
1
0

)
R(tj)·

(
d
dt
D(t)

∣∣
t=tj

)
+

(
1
1

)(
d
dt
R(t)

∣∣
t=tj

)
· D(tj). (74)

Suppose that the statement of the lemma is true for the case
i, which means that

d i

dt i
N (t)

∣∣∣∣
t=tj

=

i∑
l=0

(
i
l

)(
d l

dt l
R(t)

∣∣
t=tj

)
·

(
d i−l

dt i−l
D(t)

∣∣
t=tj

)
.

(75)

Then, it is true also for the case i+ 1. Indeed

d i+1

dt i+1
N (t)

∣∣∣∣
t=tj

=
d
dt

i∑
l=0

(
i
l

)(
d l

dt l
R(t)

∣∣
t=tj

)
·

(
d i−l

dt i−1
D(t)

∣∣
t=tj

)

=

i∑
l=0

(
i
l

)
d
dt

[(
d l

dt l
R(t)

∣∣
t=tj

)
·

(
d i−l

dt i−1
D(t)

∣∣
t=tj

)]

=

i∑
l=0

(
i
l

)(
d l+1

dt l+1
R(t)

∣∣
t=tj

)
·

(
d i−l

dt i−1
D(t)

∣∣
t=tj

)

+

i∑
l=0

(
i
l

)(
d l

dt l
R(t)

∣∣
t=tj

)
·

(
d i+1−l

dt i+1−l
D(t)

∣∣
t=tj

)
(76)

where we used the linearity of the differential operator and
the product rule. With a change of variable in the first term of
the RHS, h = l + 1, it follows that

d i+1

dt i+1
N (t)

∣∣∣∣
t=tj

=

i+1∑
h=1

(
i

h− 1

)(
dh

dth
R(t)

∣∣
t=tj

)
·

(
d i+1−h

dt i+1−h
D(t)

∣∣
t=tj

)

+

i∑
l=0

(
i
l

)(
d l

dt l
R(t)

∣∣
t=tj

)
·

(
d i+1−l

dt i+1−l
D(t)

∣∣
t=tj

)

=

i+1∑
l=0

(
i+ 1
l

)(
d l

dt l
R(t)

∣∣
t=tj

)
·

(
d i+1−l

dt i+1−l
D(t)

∣∣
t=tj

)
where we used the Pascal’s identity(

i+ 1
l

)
=

(
i

l − 1

)
+

(
i
l

)
. (77)

Hence the result is true for i+1 and by induction is true for
all positive integers. FromCorollary 1.1 of [20], theminimum
degree n of N (t) is (k + 1)(N + 1)− 1.

Lemma 1 provides the general expression of the kinematic
constraints associated to N (t), however it assumes that the
denominator D(t) is given. The choice of the denomina-
tor remains an open question in this paper although some
considerations can be made. The denominator represents a
whole set of degrees of freedom and therefore the choice of
the coefficients should in principle consider some strategies.
For example, a fundamental aspect is the position of the
roots inside the interval [t0, tN ]. Indeed, if one real pole
(denominator root) falls inside the desired interval, it may
cause discontinuities in the rational interpolant. To avoid
this, a possible strategy relies on the selection of multiple
complex conjugate roots. Further studies have to be made in
the roots locus analysis for such rational function but they go
out of the scope of this paper therefore we postpone these
questions to future work. Finally, it is interesting to notice
that if the denominator D(t) is constant, we lead back to the
classical polynomial interpolation via RST, therefore we can
tract RRST as a rational basis extension of the RST algorithm.

To facilitate the implementation of the RRST algorithm,
we report the pseudo code in Tab. 1.

To show how the RRST tackles the oscillation problem,
we report in Fig. 5 an example of function approximationwith
polynomials (RST) and rational functions (RRST). In partic-
ular, we select as function to interpolate fk (t) = arctan(π t),
with t ∈ [−1, 1]. Fig. 5 illustrates the resulting interpolants
when the number of waypoints is set to 10 and no kinematic
constraints (from velocity on) are imposed. The denominator
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Algorithm 1 Rational Recursive Smooth Trajectory (RRST)
1: Inputs:

N + 1 points in time t0 < t1 < · · · < tN ;
Number of derivatives k to fulfill;
Kin. constr.
d i

dt i fk (t)
∣∣
t=t0

, . . . , d
i

dt i fk (t)
∣∣
t=tN

;
Denominator D(t) of degree d .

2: Initialize:
Kin. constr.
d i

dt iD(t)
∣∣
t=t0

, . . . , d
i

dt iD(t)
∣∣
t=tN

;
3: for i = 0 to k do
4: for j = 0 to N do

5: d i

dt iN (t)

∣∣∣∣
t=tj

=

6:
∑i

l=0
(i
l

)( d l

dt l fk (t)
∣∣
t=tj

)
·

(
d i−l

dt i−lD(t)
∣∣
t=tj

)
;

7: end for
8: end for
9: Get N (t) with RST given the kinematic constraints

d i

dt iN (t)

∣∣∣∣
t=tj

as input;

10: fk (t) =
N (t)
D(t) .

of the rational function is set to D(t) = t2 + 0.1 and for such
choice, RRST shows to perform better than the polynomial
interpolant at the edges.

V. RESULTS
This section presents several simulation results to show how
ourmethodology can solve the problem of generating optimal
and smooth trajectories avoiding an obstacle without the need
to define extra waypoints in the search space. First, we start
with an obstacle avoidance scenario that can be used for real-
time applications. We perform a computer simulation on the
path planner dynamics using the optimal control methodol-
ogy which was designed in Section III. Then, we compare
the performance of the proposed optimal method concerning
other strategies.

A. OBSTACLE AVOIDANCE
We solve the proposed motion planning problem with differ-
ent values of `. We start by considering ` = 0.01, and then
we increase ` until the influence of the potential function
(navigation function) in (23) is robust enough to avoid the
obstacle. Therefore, we choose ` = 0.02, 0.04, 0.06, 0.08
and the total time is set to T = 4s. The obstacle is centered
at the point (xob, yob) = (0.5, 0.5) m in the search space.
The objective is to generate a feasible trajectory from an
initial to a final condition. To do so, we impose the initial
and final states to be x1(0) = 0,x2(0) = 0,x3(0) =
0,x4(0) = 0,x5(0) = 0,x6(0) = 0 and x1(T ) = 1,x2(T ) =
0,x3(T ) = 0,x4(T ) = 1,x5(T ) = 0,x6(T ) = 0.
The optimal trajectory is shown in Fig. 6. It should be

noted that increasing the parameter ` results in a higher

FIGURE 5. Comparison between polynomial (RST) and rational (RRST)
interpolation of 10 waypoints, obtained as samples of the analytic control
input arctan(πt).

FIGURE 6. The optimal path obtained solving the closed-from differential
equations in (28-35).

related cost functional Job =
1
2

∫ T
0

(
x21(t)+ x

2
4(t)+ u

2
1(t)+

u22(t) + V (x(t), y(t), xob, yob)
)
dt and safety margin from

the obstacle. The states (position, velocity and acceleration)
and the control inputs for different values of ` are shown
in Fig. 7, 8. The results illustrate how our methodology is
capable of generating an optimal path avoiding an obstacle,
without extra waypoints.

So far, the control inputs u(t) = [u1(t) u2(t)]> are
obtained in an offline stage and lack of an analytic expression.
To ease the implementation of control laws in microcon-
trollers, we propose to consider a set of waypoints sampled
from the control signals and interpolate them with unique
polynomial and rational functions, exploiting the RST and
RRST algorithms, respectively. As representative scenarios,
we analyze the impact of the number of waypoints N + 1
and the depth of the kinematic constraints k on the goodness
of approximation for both the basic functions. We choose as
denominator D(t) = t2 + 10. Fig. 9 illustrates an example of
interpolation of the control input u1(t) (with no closed-form
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FIGURE 7. Evolution of the states obtained solving the closed-from
differential equations in (28-35).

FIGURE 8. Evolution of the control inputs u(t) = [u1(t) u2(t)]> obtained
solving the closed-from differential equations in (28-35).

expression available). In particular, four cases have been stud-
ied: Fig. 9 (a) shows the two interpolants passing through 12
waypoints with no information on the kinematic constraints
(only position is given); Fig. 9 (b) compares the two functions
passing through 6 waypoints where only the information on
the velocity was given on each of them (k = 1); Fig. 9 (c)
shows how both functions try to approximate the control
signal when only 4 waypoints are selected but with informa-
tion on velocity and acceleration; Lastly, Fig. 9 (d) displays
the two interpolants passing through only 3 waypoints with
information up to jerk on each of them (k = 3). It is easy to
notice that under the same polynomial degree ((k + 1)(N +
1)− 1 is constant in the 4 examples), the best approximation
is obtained when we consider more waypoints, as expected.
However, when N is large, to avoid oscillation, rational
functions show better performance. Moreover, in all the
other cases (b)-(d), the coefficients of the denominator in
the rational function have significant influence on the inter-
polant behaviour and therefore this suggests to conduct future
studies.

B. CLUTTERED ENVIRONMENT
An effective comparison of performance is considered
between the proposed method and other strategies: the
MPC [23] and the APF [21], [22] approaches in a cluttered

FIGURE 9. Comparison of control input approximation via RST and RRST.
(a) Top-left N = 11, k = 0. (b) Top-right N = 5, k = 1. (c) Bottom-left
N = 3, k = 2. (d) Bottom-right N = 2, k = 3.

environment. The planner starts at (0, 0) m encountering
six obstacles at (xob1 , yob1 ) = (0.5, 0.5) m, (xob2 , yob2 ) =
(0.8, 0.3) m, (xob3 , yob3 ) = (0.6, 0.2) m, (xob4 , yob4 ) =
(0.8, 0.8) m, (xob5 , yob5 ) = (0.8, 0.1) m, and (xob6 , yob6 ) =
(0.2, 0.8) m and reaches the target at (1, 1) m. The
Fig. 10 shows the trajectories generated by the MPC [23],
the APF [21], [22], alongwith the proposedmethod. It is clear
that the APF generates a trajectory that suffers from discon-
tinuity in the control inputs. However, as shown in Fig. 10,
the summation of a repulsive potential field may result in
local minima. The trajectory generated by APF is not optimal
and passes between two obstacles from the starting posi-
tion to the target position. Two obstacles are close enough
to have zero gradients in the summation of attractive and
repulsive potentials. The proposed methodology avoids the
well-known local minima phenomena due to the superposi-
tion of potential fields. Indeed, in Problem 2, we added repul-
sive potential functions and other constraints into the dynamic
interpolation framework and following the constrained
Hamiltonian formalism that allows obtaining the optimal
trajectory.

In the MPC methodology, the trajectory is generated from
the initial condition (0, 0) m and fed to the interior-point
solver to solve the constrained nonlinear optimization during
the navigation. The discontinuity also can be observed by
the MPC technique. The significant difference between the
performance of the proposed framework over the MPC and
APF strategies is the lack of oscillations when approach-
ing the obstacles, with our approach resulting in smooth
controllers. In [21], authors suggested switching potential
functions to avoid local minima. However, the discontinuity
in the control inputs due to the switching functions cannot be
removed.

Moreover, Fig. 10 (top) shows that the settling time is also
sluggish and significant overshoot exists for the APF method
in regions of the relatively flat gradient. The MPC method
fails in avoiding obstacles while the proposed technique gen-
erates smooth and feasible trajectory. The MPC, on the other
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FIGURE 10. Comparison of trajectories generated by different methodologies: the MPC [23] and
the APF [21], [22] based methods in a cluttered environment over the proposed one.

TABLE 1. Comparison of execution time for different methodologies.

hand, requires a very high computational execution time (see
table 1) compared to our proposed method.
Remark: The limitation of the proposed methodology is the

tuning parameter ` in the repulsive potential function in (23).
As the number of obstacles increases, there is a need to find
the optimal values for each obstacle function.

VI. CONCLUSION
We investigated the problem of path planning for mechanical
UAV systems. We showed that by using Pontryagin’s Mini-
mum Principle, it is possible to derive a set of closed-form
differential equations in which the dynamic environment
is considered in the constrained Hamiltonian function. The
same closed-from differential equations are obtained via
Lagrangian formalism. Finally, we proposed a novel inter-
polation algorithm based on rational functions, referred to
as a rational recursive smooth trajectory (RRST) method.
The algorithm can effectively generate an analytic expression
that approximates control inputs for which no closed-form
solution is in general attainable.
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