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ABSTRACT The incidence, prevalence, and progression of chronic kidney disease (CKD) conditions have
evolved over time, especially in countries that have varied social determinants of health. In most countries,
diabetics and hypertension are the main causes of CKDs. The global guidelines classify CKD as a condition
that results in decreased kidney function over time, as indicated by glomerular filtration rate (GFR) and
markers of kidney damage. People with CKDs are likely to die at an early age. It is crucial for doctors to
diagnose various conditions associated with CKD in an early stage because early detection may prevent or
even reverse kidney damage. Early detection can provide better treatment and proper care to the patients.
In many regional hospital/clinics, there is a shortage of nephrologists or general medical persons who
diagnose the symptoms. This has resulted in patients waiting longer to get a diagnosis. Therefore, this
research believes developing an intelligent system to classify a patient into classes of ‘CKD’ or ‘Non-CKD’
can help the doctors to deal with multiple patients and provide diagnosis faster. In time, organizations can
implement the proposed machine learning framework in regional clinics that have lower medical expert
retention, this can provide early diagnosis to patients in regional areas. Although, several researchers have
tried to address the situation by developing intelligent systems using supervised machine learning methods,
till date limited studies have used unsupervised machine learning algorithms. The primary aim of this
research is to implement and compare the performance of various unsupervised algorithms and identify best
possible combinations that can provide better accuracy and detection rate. This research has implemented
five unsupervised algorithms, K-Means Clustering, DB-Scan, I-Forest, and Autoencoder. And integrating
themwith various feature selectionmethods. Integrating feature reductionmethods with K-Means Clustering
algorithm has achieved an overall accuracy of 99% in classifying the clinical data of CKD and Non-CKD.

INDEX TERMS Chronic kidney disease, unsupervised learning techniques, autoencoder, isolation forest,
DB-scan, K means clustering, feature selection, glomerular filtration rate.

I. BACKGROUND
Chronic Kidney Disease (CKD) indicates a condition where
human kidneys that are damaged [1] and unable to filter the
blood stream and get rid of the metabolic waste the way
are supposed to. CKD usually develops gradually over a
significant amount of time. More than 800 million people all
over the world [2] are found to be affected by kidney disease
including the CKD. Identifying someone as having CKD
requires two sets of samples, taken at least 90 days apart [8].
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Historical values can be used. The estimated Glomerular
Filtration Rate (eGFR) depends on creatinine measurement,
sex, race, and age. CKD can get worse over time and both
kidneys might stop functioning altogether. CKD is often
associated with other conditions resulting in poor clinical
outcomes, such as obesity, and cardiovascular complications,
and can lead to reduced quality of life, obesity, increased
healthcare resource utilization, and death [3]. In some cases,
CKDmay progress to end-stage renal disease (ESRD), result-
ing in even higher morbidity and mortality [4]. The fre-
quency of ESRD has been increasing rapidly worldwide [5].
The guidelines in diagnosing and staging of define CKD as
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a state where one is either suffering from severe kidney dam-
age and/or has a glomerular filtration rate (GFR) of less than
60 ml/min/1.73 m2 for more than 3 months. The use of GFR
as the best indicator of renal function to identify different
stages of CKD with each successive stage defining a more
severe decrease in GFR and the last stage defining kidney
failure with a GFR <15 ml/min/1.73 m2 [12] were also
advocated. Often kidney disease does not cause any major
symptoms in the early stages of the disease, making it difficult
to detect. Early detection is considered to be a crucial factor
in the management and control of chronic kidney disease.

This research aims to ascertain whether Chronic Kidney
Disease is present at an early stage by deploying various
unsupervised algorithms on patients’ data and validating the
classifications to ensure their accuracy. Intending to support
medical personnel and Nephrologists, a novel and efficient
model for predicting Chronic Kidney Disease at an early
stage, even before the clinical diagnosis is proposed. Also
take in to consideration that the time and monetary costs
of CKD diagnosis have to be minimized by using a limited
number of tests to cover the population. This is where the
feature selection plays its part as any reduced model which
uses fewer features, while still maintaining high performance
is preferable. As there is an overlap in the symptoms of
CKD with other diseases and there is also a need to select
the most important features so that patients do not need to
be subjected to a larger number of tests than necessary for
diagnosis of CKD [6]. A selection technique is desired to
ensure the selection of the most significant features.

There have been a number of research initiatives in the
field of Machine Learning for forecasting of kidney disease,
but very few use unsupervised feature learning. Unsupervised
methods have received attention recently [7] due to the non-
dependency on labeled data and are suitable for training
models when the data are imbalanced. The prospects of the
unsupervised approach for CKD were explored and further
investigated. There have been some notable works based on
semi-supervised learning in predicting CKD.

A. RESEARCH APPROACH
This research aims to build an intelligent machine learning
model that can be used reliably to establish CKD diag-
nosis. This model will classify the clinical data of ‘CKD’
and ‘Non-CKD’. This model can also be used to confirm
an initial diagnosis. To do so, various feature selection
methods and unsupervised machine learning algorithms are
implemented, so that a combination of feature selection and
machine learning algorithms can be identified which opti-
mizes accuracy. Unsupervised learning can extract patterns
from unlabeled CKD-related clinical data. These extracted
patterns can be used to classify the patients as ‘CKD’ and
‘Non-CKD’. Various feature selection mechanisms related
to filter methods, wrapper methods, embedded methods, and
unsupervised methods are implemented to identify the most
important features and reduce the number of input vari-
ables into the machine learning model. Algorithms such as,

K-Means clustering, Isolation Forest, DB-Scan, and Autoen-
coder are implemented on various sets of selected features.
Evaluation metrics are generated and are compared with the
performance of existing machine learning models.

II. PREVIOUS WORK
Khamparia et al. [8] proposed a novel deep learning frame-
work for CKD classification in which a stacked autoencoder
model utilizing multimedia data for feature selection with a
SoftMax regression was used as a classifier. Autoencoders
have been used primarily in supervised learning, also auto-
matically learn the hidden feature representation of data in
an unsupervised manner. The learned feature representation
can then be used as input to supervised classifiers, which
makes the entire model a semi-supervised learning model.
This paper claimed that multimodalmodel outperformed con-
ventional classifiers used for chronic kidney disease. In late
2020, Ebiaredoh-Mienye et al. [9] introduced a feature learn-
ing and classification approach which integrated unsuper-
vised enhanced sparse autoencoder (SAE) and supervised
Softmax regression. The challenge of an imbalanced dataset
in applying machine learning algorithms was addressed in
this work and a robust semi-supervised learning model was
proposed [9]. Applied this to three different diseases, obtain-
ing a 98% accuracy for Chronic Kidney Disease (CKD).

A number of studies have used supervised algorithms,
like Random Forest [10], [11], Naive Bayes [12], Gradient
Boosting [13], Logistic Regression [14], FuzzyCMeans [15],
Support Vector Machine [16], [17] classifiers in detecting
Chronic Kidney disease.

Gopika and Vanitha [15] proposed a model based on a
clustering algorithm of the test results for detecting Chronic
Kidney disease and identifying its different stages, in 2017.
Clusters for the different stages in chronic kidney were estab-
lished. The k-means, k-medoids and Fuzzy CMeans were the
most commonly used classifiers. Fuzzy C-Means achieved
an accuracy of 89%. Polat et al. [18] succeeded in early
diagnosis of Chronic Kidney disease using an SVM classi-
fier in 2017. The significance of their work was the use of
feature selection algorithms to reduce the dimension of the
dataset. The two feature selection methods employed were
the wrapper and filter approaches. The filtered subset evalua-
tor with the Best First search engine feature selection method
with the SVM classifier resulted in an accuracy of 98.5%.
This demonstrated that feature selection methods can play
a significant role in terms of the performance of the model.
In 2020, Ogunleye et al. [6] proposed an approach to diag-
nosing chronic kidney disease using the Extreme Gradient
Boosting (XGBoost) model. The University of California
Irvine (UCI) CKD dataset with all the 25 features and attained
an accuracy of 98.7% were used. Wang et al. [19] also
employed the CKD dataset from the UCI machine learning
data warehouse in late 2018. An Associative Classification
Technique implementing several algorithms ZeroR, OneR,
Naive Bayes, J48, IBk (k-nearest-neighbor) based on Apriori
associative algorithm was proposed, of which IBk achieved
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the best result: 99.0% accuracy. No feature reduction tech-
nique was used. Rady and Anwar [20] compared several
data mining techniques for predicting kidney disease stages
in 2019. In their work, hidden information was extracted from
clinical and laboratory patient data, which assisted physi-
cians in maximizing the accuracy of the disease severity
stages identification. However, only used the 361CKD Indian
patients’ data which was only a part of the UCI Machine
Learning repository dataset. Different data mining classifiers,
Probabilistic Neural Networks (PNN), Multilayer Perceptron
(MLP), Support Vector Machine (SVM) and Radial Basis
Function (RBF) algorithms were deployed. PNN achieved
the best classification and prediction performance in terms
of accuracy, sensitivity and specificity. Implementing PNN
achieved a maximum accuracy of 96.7% for the five stages
of CKD. Rustam et al. [21] analysed gene expression data
using Random Forest and Support Vector Machine (SVM)
for detecting chronic kidney disease in 2019. A hybrid model
that combined RF and SVM, called RF-SVM, was proposed
to effectively predict CKD using highly dimensional gene
expression data. The data were collected from the Gene
Expression Omnibus (GEO) database. The 48 samples were
used out of which 36 used for training and 12 for testing.
The accuracy of RF-SVM algorithm was 83.4% which out-
performed some other hybrid models, but the research was
limited by the small dataset.

FIGURE 1. Workflow of the proposed method.

III. PROPOSED METHOD
Fig. 1 shows the framework of the proposed method and the
steps involved. Pseudo code for the proposed method is given
below.

Initially, data preparation and standardization methods
were implemented on the dataset to clean and prepare the
data for further processing, as can be seen in pseudo code
and Fig. 1.

Algorithm 1 Pseudo-Code of the Proposed Method
BEGIN

1. Import the data
2. Impute the missing values
3. Encode texts to numerical values
4. Scale the data
5. Store various feature selection methods in a variable

‘Feature_Selection’
6. Set name as name of feature selection methods
7. FOR name, feature selection methods in

Feature_Selection:
8. Select top features from each method
9. Append the top features in a list
10. Count the occurrence of the features
11. Select the features with occurrence. >3
12. PRINT selected features
END FOR
13. Store various models in a variable ‘unsuper-

vised_models’
14. Set name as name of models
15. Set scoring to different validation scores
16. Set the parameters of the models
17. FOR name, unsupervised models in unsuper-

vised_model:
18. Cluster the data
19. Classify the clusters in to CKD and non CKD
20. Calculate validation scores
21. Save the results as csv file
END FOR

END

A. DATASET
The dataset is part of the online data repository of the
University of California Irvine (UCI) and contains data
of 400 patients [22]. It consists of 24 clinical attributes and
1 class attribute. The datasets consist of 250 CKD cases
and 150 Non-CKD cases. Missing data is a significant prob-
lem in real-world datasets, especially in the medical field.
On average, every patient record and attribute have a few
missing values. Fig. 2 shows the missing values present in
the UCI dataset. Data preparationmethods were implemented
to handle the missing values. The proportion of missing
values for each variable range from 0.3% (1 missing value) to
38% (152 missing values) as shown in Figure 2.

B. ENVIRONMENT SETUP
Table 1 shows the environment setup used for the proposed
method.

C. CHARACTER ENCODING
Before addressing the missing values in the dataset, character
encoding is performed to convert the categorical attribute val-
ues into binary numbers. Sincemostmachine learningmodels
only accept numerical variables as input, it is important to
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FIGURE 2. Visualization of missing values in the dataset.

TABLE 1. Environment setup.

convert textual information into binary values. Categorical
features such as ‘poor’ or ‘good’, ‘no’ or ‘yes’, ‘not present
or ‘present’ are converted to ‘0’ or ‘1’ binary values.

D. HANDLING MISSING VALUES
After performing the character encoding, missing values in
the dataset are handled using the ‘mean imputation’ method,
see Fig. 1. Only one feature has attribute values for all
cases, whereas the rest of the attributes had some missing
values. This is to be expected with real-life patient-data. It is
important to handle missing data because any result based on
a dataset with non-random missing values could be biased.
To tackle the issue, the following method was used:

1) MEAN IMPUTATION
During the data preparation process, the dataset is analyzed to
check for missing attribute values. A statistical method knows
as ‘mean imputation’ is then implemented on the dataset.
Mean imputation is a process of replacing missing values of a
certain attribute with the mean of non-missing values of that
attribute, see equation 1. The imputed values are calculated
as the weighted average value of the items for the current or
previous instances. Using this method, the missing values in
the dataset are filled in.

E. DATA TRANSFORMATION
Data transformation changes the values of the dataset so that
all can be used for further processing. This research uses
the data standardization method. Data standardization can
increase the accuracy of the machine learning models.

This can be expressed in the following way:

yi,c =
∑

wiyi/
∑

wi (1)

where,

yi is the value for variable y for i-items.
wi is the weighted average value for i-items.

1) STANDARDIZATION OF DATA
Standardization converts the data to a mean of 0 and a stan-
dard deviation of 1. The conversion formula is given below:

Z = (x − µ)/σ (2)

where,

Z = Standardized score.

X = Observed value.

µ = Mean of sample.

σ = Standard deviation of sample.

The value ranges of the features before and after standard-
ization of the data, are displayed in Table 2.

F. DATA REDUCTION
Dimensionality reduction, or data reduction is used to reduce
the input variables to the machine learning model by iden-
tifying the most useful features/attributes in the dataset. It is
crucial to implement data reduction because using large num-
ber of input variables can result in poor performance of the
machine learning algorithms.

1) REASON FOR FEATURE REDUCTION
In order to limit the time and monetary costs of CKD diagno-
sis the smallest number of tests that is sufficient for the widest
range of people need to be selected. This is where the fea-
ture selection plays a role as a it is desirable to reduce the
number of features while still maintaining high performance.
Also, correlated features are redundant and might degrade the
performance of machine learning algorithms. Reducing the
dimension of the dataset and removing irrelevant features can
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TABLE 2. Features and their value range before and after standardization.

produce a comprehensive model for classification. The main
challenge of the feature reduction procedure is to recognize
the best subset of features in order to achieve the best classi-
fication result [23]–[26].

The correlation between the features is depicted in
Figure 3. It can be seen that packed cell volume and
hemoglobin, as well as packed cell volume and red blood cell
count, have positive correlation coefficients of about 0.85 and
0.7 respectively. Another positive relationship with a correla-
tion coefficient of 0.68 was detected between red blood cell
count and hemoglobin. On the other hand, the lowest corre-
lation can be seen for hypertension with hemoglobin and red
cell volume with an approximated correlation value of −0.6.

2) FEATURE SELECTION METHODS
Feature selection techniques are important for unsupervised
machine learning algorithms as are essential to extract the
best attributes for classification. The main purpose of fea-
ture selection is to remove a subset of input features which
are not important for classification [18]. This can decrease
the cost of the training and obtain higher accuracy [27].
Feature selection allows the machine learning model to
remove non-informative and redundant predictors from the

FIGURE 3. Correlation matrix of the features.

model and establish a CKD diagnosis more quickly with
less clinical data. Classifying the patients into ‘CKD’ and
‘Non-CKD’ classes as quickly as possible can help the clin-
ics/hospitals to allocate hospital resources to the patients that
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require them. Various feature selection methods are imple-
mented in this research and are integrated with various unsu-
pervised machine learning algorithms.

Feature selection methods are generally divided into
three categories: Filter, Wrapper, and Embedded methods.
An appropriate feature selection improves the performance
of the classifier and reduces the computing time by using
optimized data in the dataset [18], [23], [28], [29]. Although
traditional feature selection algorithms are used frequently,
suffer from explainability issues, e.g., when working with
clinical data, it is often difficult to explain why some of the
features are removed from the provided dataset. Each of the
categories of feature selection algorithms has its explainabil-
ity limitationmaking it difficult to clarifywhy certain features
are selectedwithout diving deep into themathematical formu-
lation. The Filter methods do not leverage the model’s char-
acteristic to filter the features. AlthoughWrapper methods do
leverage a model’s prediction, it chooses a subset of features
solely based on accuracy or another similar scoring. For the
Embedded method, even though it is calculated as a part of
the training process, it has to incorporate each model’s indi-
viduality and it is often difficult and tedious to provide expla-
nations for every single model. Considering these drawbacks,
an unsupervised feature selection technique, based on model
agnostic explanations is required for this work and SHAP
(SHapley Additive exPlanations) was adopted. This approach
assigns the SHAP values, which are contribution values for
a model’s output for each feature of each data point. These
SHAP values determine the feature importance so that the
contribution information of each feature can be used to sort
the features based on their importance. Selecting a subset of
features based on SHAP values means selecting the first fea-
tures after ordering them based on the feature contributions
to the model’s prediction. Feature selection methods based on
SHAP values has proven their superiority for solving various
classification problems in recent years [30] The motivation to
use such an approach is based on the growing need for model
interpretation.

In this research, all 24 features were ranked using the
6 feature selection techniques which belong to four different
types of feature selection methods. The set-theory-based rule
is presented, combining several feature selection methods.
The four kinds of feature selection techniques that are utilized
were illustrated in figure 4.

a: FILTER METHODS
Filter feature selection methods make use of statistical tech-
niques to predict the relationship between each independent
input variable and the output (target) variable. The filtermeth-
ods evaluate the significance of the feature variables based
on their inherent characteristics without the incorporation of
any learning algorithm. These methods are computationally
inexpensive and not subjected to overfitting [27].

PEARSON
The correlation coefficient formula quantifies the linear
dependence between two continuous variables. It returns

FIGURE 4. Feature reduction through feature elimination.

values between −1 and +1. The below Pearson correlation
coefficient formula is used to measure the correlation of two
variables:

r =
N6xy− (6x) (6y)√

[N6x2 − (6x)2][N6y2 − (6y)2]
(3)

where,

N = the number of pairs of scores.
6xy = the sum of the products of paired scores.
6x = the sum of x scores.
6y = the sum of y scores.
6x2 = the sum of squared x scores.
6y2 = the sum of squared y scores.

The Pearson product-moment correlation coefficient,
or simply the Pearson correlation coefficient or the Pearson
coefficient correlation r determines the strength of the linear
relationship between two variables. The stronger the associ-
ation between the two variables, the closer the answer will
be to +1 or −1. Attaining values of 1 or −1 signify that all
the data points can be plotted on the straight line of ‘best fit.’
The closer the answer lies near 0, the larger the independent
variation in the variables [46].

After applying the Pearson correlation between each fea-
ture and target variable (Class), the features can be ranked in
this way illustrated in figure 5: it can be seen that, based on
Pearson correlation, hemoglobin is highly correlated to the
target variable and potassium is the least correlated one. This
makes hemoglobin as a highly important and potassium as a
least important feature.

CHI-2
A chi-square test is used in statistics to test the inde-
pendence of two events. Given the data of two features,
the observed count and expected count were obtained.
Chi-Square measures how the expected count and observed
count deviate from each other [47]. Contigency table and
expected values has to be calculated before chi square calcu-
lation. Contigency table is a table that represents the distribu-
tion of one feature and another in columns. It is used to study
the relationship between two features. The expected count for
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FIGURE 5. Feature ranking after applying Pearson correlation.

each cell would be the product of the corresponding row and
column totals divided by the sample size. Observed values
are the actual values calculated from the sample. Then the
expected counts will be contrast with the observed counts,
cell by cell. The more the difference, the higher the resul-
tant statistics, which is the chi square. The formula for chi
square is,

χ2
=
6((Observed − Expected)2

Expected
(4)

When two features are independent, the observed count
is close to the expected count, thus will have a smaller
Chi-Square value. Inorder to find the feature importance, chi
square between each feature and target variable (Class) is cal-
culated. Higher the Chi-Square value between a feature and
target column means it more dependent on the target column
and it can be selected formodel training. After applying Chi-2
technique, the features can be ranked in this way illustrated
in figure 6.

FIGURE 6. Feature ranking after applying Chi-2 method.

b: WRAPPER METHODS
Wrapper methods create several models which have different
subsets of input feature variables. Later the features that result
in the best performing model according to the performance
metric are selected [29]. The main idea behind a wrapper
method is to search for the set of features which work best
for a specific classifier as shown in figure 7:

RECURSIVE FEATURE ELIMINATION
The Recursive Feature Elimination (RFE) works by recur-
sively removing attributes and building a model on those

FIGURE 7. Wrapper feature selection method principle.

attributes that remain. It performs a greedy search to find
the best performing feature subset [31]. It uses the model
accuracy to identify which attributes (and combination
of attributes) contribute the most to predicting the target
attribute. It iteratively creates models and determines the
best or the worst performing feature at each iteration. The
subsequent models use the remaining features until all the
features are explored. The features are then ranked based on
the order of their elimination. In the worst case, if a dataset
contains N features RFE will do a greedy search for 2N
combinations of features. Here RFE is used with the Logistic
Regression classifier to select the top features as depicted in
Figure 8.

FIGURE 8. Feature ranking after applying RFE method.

c: EMBEDDED METHODS
Machine learning models that have feature selection natu-
rally incorporated as part of learning are called Embedded
feature selection methods [50]. Built-in feature selection is
incorporated in some of the models, which means that the
model includes predictors that help in maximizing accuracy,
as illustrated in figure 9.

FIGURE 9. Embedded feature selection method principle.

In this method, the machine learning model chooses the
best representation of the data. The examples of the algo-
rithms making use of embedded methods are penalized
regression models. The Logistic Regression and Random
Forest were utilized.
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LOGISTIC REGRESSION
Rule-based models like Logistic Regression (LR) with
L1 penalty (Lasso regression) intrinsically conduct feature
selection [48]. It is a linear model that uses this cost function:

1
2Ntraining

Ntraining∑
i=1

(
y(i)real − y

(i)
pred

)2
+ α

n∑
j=1

∣∣aj∣∣ (5)

where, aj is the coefficient of the j-th feature. The final term
is called L1 penalty and α is a hyperparameter that tunes the
intensity of this penalty term. The higher the coefficient of
a feature, the higher the value of the cost function. So, the
idea of Lasso regression is to optimize the cost function,
reducing the absolute values of the coefficients. Obviously,
this works if the features have been previously scaled. For
example, using standardization or other scaling techniques.
α hyperparameter value must be found using a cross-
validation approach. Trying to minimize the cost function,
Lasso regression will automatically select those features
that are useful, discarding the useless or redundant features.
In Lasso regression, discarding a feature will make its coef-
ficient equal to 0. A feature Importance plot created with LR
is shown in figure 10.

FIGURE 10. Feature ranking after applying logistic regression method.

RANDOM FOREST
Random forest (RF) is another common feature selection
technique. It consists of extracting the feature importance
rank from tree-base models [49]. The feature’s importance
is essentially the Mean of the individual trees’ improvement
in the splitting criterion produced by each variable. In other
words, it is the magnitude of the score or impurity which was
improved when splitting the tree using that specific variable.
This can be used to rank the features and then select a subset.
RF feature importance is biased towards features with more
categories. Besides, if two features are highly correlated, both
of their scores decrease regardless of the quality of the fea-
tures. As mentioned, Random Forest uses the mean decrease
impurity (Gini index) to estimate a feature’s importance. The
lower the value, the more important the feature is. Gini index
is defined as:

Gini = 1−
n∑
i=1

(Pi)2 (6)

where, the second term is the sum of the squared probabilities
of each class for sample i. The Gini index of feature j is
measured for each node of a tree where feature j was used
and averaged over all trees in the ensemble. If all the samples
that reached the node are linked with a single class, then that
node can be called pure. This can give a good estimate on the
threshold value to set when selecting features based on their
importance as shown in figure 11.

FIGURE 11. Feature ranking after applying random forest method.

d: UNSUPERVISED FEATURE SELECTION METHOD
SHAP (SHAPLEY ADDITIVE EXPLANATIONS)
The SHAP approach assigns the SHAP values, which are con-
tribution values for a model’s output for each feature of each
data point [51]. These SHAP values encode the importance
of a feature for the model. The mean of the columns of each
matrix is calculated and the vectors of mean SHAP values for
each class are summed and ordered in a decreasing way. The
first position of the resulting vector contains the most impor-
tant feature, the second position contains the second most
important, and so on. Since SHAP can provide a means to
interpret the model’s decisions by indicating the importance
of the dataset features. A feature selection algorithm based on
the most important features according to the absolute SHAP
values would provide good results [30]. Here, the Tree SHAP
explainer approach is used with the Isolation forest model
for feature selection and the feature importance plot is shown
in figure 12.

3) OUTCOMES OF FEATURE SELECTION PROCESS
The 24 features were ranked using the Pearson, Chi-2, RFE,
Random Forest, Logistic Regression, and SHAP. The rank-
ings were shown in Figures 5 – 12. It is clear that the
features are ranked differently by different algorithms. The
11 top-ranked features from each feature selection method
were selected for the best trade-off between model perfor-
mance and simplicity. After this selection, the sets of the
retained features for Pearson, Chi-2, RFE, Random Forest,
Logistic Regression, and SHAP are represented by P, C, R,
L, A, G, and E respectively.

P = [Hemoglobin, Specific Gravity, Packed Cell Volume,
Red Blood Cells_normal, Albumin, Red Blood Cell Count,
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FIGURE 12. Feature ranking after applying SHAP method.

Hypertension_yes, Diabetes Mellitus_yes, Pus Cell_normal,
Blood Glucose Random, Appetite_poor]

C = [Red Blood Cells_normal, Hypertension_yes, Dia-
betes Mellitus_yes, Appetite_poor, Albumin, Pedal Edema_
yes, Anemia_yes, Pus Cell_normal, Pus Cell clumps_present,
Specific Gravity, Coronary Artery Disease_yes]

R = [Albumin, Hemoglobin,Red Blood Cells_normal,
Specific Gravity, Appetite, Blood Pressure, Diabetes Mel-
litus, Hypertension,Packed Cell Volume, Pedal Edema, Pus
Cell clumps]

L = [Albumin, Specific Gravity, Red Blood Cells,
Hemoglobin, Diabetes Mellitus, Hypertension, Appetite,
Pedal Edema, Packed Cell Volume, Pus Cell, Pus Cell
clumps]

A = [Albumin, Specific Gravity, Red Blood Cells,
Hemoglobin, Diabetes Mellitus, Hypertension, Appetite,
Pedal Edema, Packed Cell Volume, Pus Cell, Pus Cell
clumps]

G = [Hemoglobin, Specific Gravity, Serum Creatinine,
Packed Cell Volume, RedBloodCells, Red BloodCell Count,
Albumin, Hypertension, Blood Glucose Random, Diabetes
Mellitus, Sodium]

E = [Appetite, Pedal Edema, White Blood Cell
Count,Anemia, Hypertension, Packed Cell Volume, Sugar,
Coronary Artery Disease, Albumin, Diabetes Mellitus, Red
Blood Cell Count, Blood Urea]

The features that are included in these sets are depicted
in figure 13. Here importance indicates the number of occur-
rences of a feature in [P U C U R U L U A U G U E].

A feature is only taken in the final reduced feature set if
its number of occurrences (importance) is more than 3. This
yields the final selected features (SF) set as:
Sf = [Albumin, Diabetes Mellitus, Hypertension, Red

Blood Cells, Specific Gravity, Appetite, Hemoglobin, Packed
Cell Volume, Pedal Edema, Pus Cell clumps]

G. CLASSIFICATION
This section discusses the unsupervised machine learning
algorithms implemented in this research. After applying
the feature selection methods described above, preprocessed
datasets are created. These datasets are used for training and

FIGURE 13. Final outcome of the feature selection process.

testing the machine learning models. Since all the classifi-
cation models are unsupervised separate training and testing
data is not required, moreover, dataset is limited in size thus,
the whole data comprises of 400 data points were passed to
kmeans model as a preliminary training data. The training
allows the models to generate a distinct set of data points
(Z0 to Z3). As illustrated in Fig. 14 each classifier, K-means
clustering, DB-scan, Autoencoder, and I-forest have a distinct
point that is used to separate the data into clusters of CKD and
Non-CKD cases. These clusters are used to classify the data
into classes.

1) K-MEANS CLUSTERING
Unsupervised algorithms can make predictions or inferences
from unlabeled data. Clustering unlabeled data based on
inferences is very useful when working with clinical data.
K-means clustering is a centroid-based unsupervised clus-
tering algorithm that can be used for classification. The pre-
processed dataset created with the feature selection methods
is used to train the algorithm and extract a data point (Z0).
This data point is used to classify the data in ‘CKD’ and
‘Non-CKD’ cases. Similar data points are clustered together
to find an underlying pattern for assessment. K-means deliv-
ers the final output through a process called iterative refine-
ment. It tries to minimize the sum of the squared distance
between the data points and the cluster’s centroid. The cen-
troid is defined as the arithmetic mean of all the data points
that belong to that cluster. The number of groups is denoted
by K, and each data point is iteratively assigned to one of
these groups of clusters based on the identified similarities
among the features. The initial number of clusters ‘K’ has
to be provided as an input. This can sometimes be a delicate
issue and users sometimes end up running the systemmultiple
times with different values of K. Afterwards, a comparison is
then made to select the best value of ‘K’. However, various
methods are available for getting a reasonably stable approx-
imation of K. K-means most commonly uses ‘Euclidean
Distance’ to determine the distance between two data points
(Zn and Zm). One of the key advantages of K-means is that,
in case the number of features is really high, it can still
complete the computation in a reasonable time if the value
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FIGURE 14. The application of clustering algorithms.

of ‘K’ is kept relatively small [32].

Dist
(
Zn,Zm

)
=

D∑
i=1

(Zni − Z
m
i )

2 (7)

S(argmin)
k∑
i=1

∑
yεS1
||y− µi||2

= S(argmin)
k∑
i=1

|Si|V (Si) (8)

Given a set of d-dimensional real vector observations
(y1, y2, . . . , yn), K-means clustering partitions the n observa-
tions into k (≤n) sets S = [S1, S2, . . . , Sk] so as to minimize
the Variance. µi denotes the ‘Mean’ of Si and V is the
Variance.

The number of clusters was set to six by parameter tuning,
and the actual class labels on each cluster were checked.
Except for cluster 1, the other clusters reflect CKD patients,
as seen in the tables below, where cluster 1 only contains
non-CKD cases, while the majority of cases in the remaining
clusters are CKD cases. To categorise a new data point in the
future, it can be given as test data, and the euclidian distance
to each cluster centroid can be calculated to discover which
one is closest, and then it can be labeled under that cluster.

2) DB-SCAN
DB-Scan is Density-Based Spatial Clustering of Applications
with Noise. The goal of DB-=Scan is to find core samples of
high density and expand them to clusters. It is most suitable
for data which contain clusters of similar density [33].

DB-Scan detects density connected clusters by discovering
one of its core objects p and computing all objects which are

TABLE 3. Clusters of K-Means.

density-reachable from p. The collection of density-reachable
objects is found by iteratively computing density reachable
objects. DB-Scan checks the neighborhood N of each object
p in the database. If N (p) of an object p consists of at least
µ objects, i.e., if p is a core object, a new cluster X containing
all objects of N (p) is created. Then, the neighborhood of all
objects q X, which have not yet been processed, is checked.
If object q is also a core object, the neighbors of q, which
are not already assigned to cluster X, are added to X and
their neighborhood is checked in the next step. This procedure
is repeated until no new object can be added to the current
cluster X.

DBSCAN aims at discovering clusters which are high-
density regions of the dataset. It applies two hyperparameters:
Eps (the neighborhood radius) and minPts (minimum number
of neighbors) to consider a point a core point. It defines
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a point as a core-point if there are at least minPts sample
points in its Eps neighborhood. The points within the Eps
neighborhood of a core-point are said to be directly reachable
from that core-point. A point q is reachable from a core-
point p if there exists a path from q to p where each point is
directly reachable from the next point. The parameter values
of MinPts and Eps corresponding to the highest clustering
accuracy were selected.

The whole dataset comprising of 400 data points was
passed to DB scans model for training. Parameter values for
Eps and minPts were selected as 3.6 and 150 respectively
by hyper parameter tuning Based on these parameter values,
DBscan treats some data points as a cluster and other dat-
apoints as outliers, labeling them as −1. There is only one
cluster. Table 4 depicts the number of elements in the cluster
and the number of outliers. The cluster consists of 174 dat-
apoints of which 150 cases are non-CKD cases and all the
outliers are CKD cases.

TABLE 4. Clusterpoint and outliers of DB-Scan.

To classify a new data point in future, it can be given as test
data into this DB scan model which checks whether a given
sample is within eps distance of one of the core samples. If it
is, it takes the label of the core sample (classify it as non CKD
case), if it is not, it us an outlier (CKD case).

3) AUTOENCODER
An autoencoder neural network is an unsupervised deep
learning technique that consists of two components: an
encoder and a decoder. The main concept is that both encoder
and decoder are trained together, minimizing the discrepancy
between the original data and its reconstruction [34].

The encoder e(x) represents a mapping of an input x with
higher dimensions to a hidden compressed representation,
and the decoder d(x) maps this compressed representation
back to a reconstructed version of x, such that d(e(x)) ≈ x.
The reconstruction error of autoencoder networks can

be used to classify CKD and non-CKD cases. Here the
encoder has two layers, one input layer and one hidden
layer, whereas the decoder has one hidden layer and one
output layer. Encoder/decoder networks are fully or densely
connected neural networks with rectified linear unit (ReLu)
activation between layers. An encoder network, defined as
e(x): X 7→ Z, maps from the input space X ∈ RM to latent
embedding Z ∈ RD, and a decoder network, d(e(x)): Z 7→ X,
maps the embedding Z back to the input space-optimize over
encoder and decoder networks as follows:

minϕ,8E ‖x − d(e(x))‖ (9)

where, φ andψ are the parameters of the encoder and decoder
neural networks, respectively. The expectation is taken over
the training data, and the loss is the squared 2-norm distance

between the input x and the reconstructed input. The training
parameters for auto encoder are the number of times the algo-
rithm trains on the training data and the number of samples
processed before the model is updated.

Loss MSE between inputs and outputs, see equation 10,
gives the anomaly score for the Auto-Encoder, for each data-
point that passes through it.

MSE =
1
n

∑n

i=1
(xi − x̂i)

2 (10)

where, MSE is the Mean Squared Error, n is the number of
data points xi is the observed values and (x ^i ) is the predicted
values. Tuning parameters for autoencoder is given in Table 5.

TABLE 5. Tuning parameters of autoencoder.

Here the encoder of the model consists of two layers
that encode the data into lower dimensions. The decoder of
the model consists of two layers that reconstruct the input
data. The reconstruction errors are considered to be anomaly
scores. The model is compiled with Mean Squared Logarith-
mic loss and Adam optimizer.

The model is then trained with 40 epochs and a batch size
of 50, and in the testing phase, scores are sorted in ascending
order and a threshold is set such that scores of more than the
threshold result in a cluster of CKD instances, while those
below that threshold result in a cluster of non-CKD cases.

Fine-tuning of this threshold is done by comparing the
anomaly scoreswith actual class labels. (Note that class labels
are not given as input to the model). As a result, based on
this threshold, there are two clusters: cluster 1 contains all
cases with a loss MSE of more than the threshold value,
which will be mapped as 1 and cluster 2 contain all cases with
a loss MSE of less than the threshold value, which will be
mapped as 0.

The clusters obtained using the autoencoder with all fea-
tures considered are shown in the table below. Cluster 1 has a
total of 260 datapoints, with 250 of them belonging to CKD.
Cluster 2 has 140 datapoints, all of which are non-CKD cases.

TABLE 6. Clusters of autoencoder.

The model and threshold value can be used to cluster new
data in the future.
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4) ISOLATION FOREST
Isolation Forest (Iforest) ‘isolates’ observations by randomly
selecting a feature and then randomly selecting a ‘‘split
value’’ between the maximum and minimum values of the
selected feature. Since recursive partitioning can be repre-
sented by a tree structure, the number of splittings required to
isolate a sample is equivalent to the path length from the root
node to the terminating node. This path length, averaged over
a forest of such random trees, is a measure of normality and is
used as the decision function. Random partitioning produces
noticeably shorter paths for anomalies. A forest of random
trees collectively produces shorter path lengths for particular
samples [35]. Tuning parameters for isolation forest are given
in Table 7.

TABLE 7. Parameters of Isolation Forest.

Training parameters for Isolation Forest are the number of
trees to create a forest, the maximum number of features,
and the sub-sampling size. During the test phase: Isolation
Forest finds the path length of the data point from all the
Isolation Trees and finds the average path length. The higher
the path length, the more normal the point, and vice-versa.
Based on the average path length, it calculates the anomaly
score. Decision_function of Iforest can be used to get this. For
Iforest, the lower the score, the more anomalous the sample.
Scores are sorted and a threshold is set such that scores less
than that threshold result in a cluster of CKD instances, while
those below that threshold result in a cluster of non-CKD
cases. Fine-tuning of this threshold is done by comparing the
anomaly scoreswith actual class labels. (Note that class labels
are not given as input to the model). As a result, based on
this threshold, there will be two clusters: cluster 1 contains all
cases with an anomaly score less than the threshold value and
will be mapped as 1; cluster 2 contains all cases with anomaly
scores more than the threshold value and will be mapped as 0.

The clusters obtained using Isolation Forest with all fea-
tures considered are shown in Table 8. Cluster 1 has a total
of 250 data points, with 232 of them belonging to CKD.

Cluster 2 has 150 data points with 132 of them belonging to
nonckd cases.

TABLE 8. Clusters of Isolation Forest.

This model and threshold values can be used to cluster new
data in the future.

H. CLUSTER VALIDATION
The clusters generated from each algorithm are evaluated
using cluster validation methods. These methods are used to
compare the performance of each cluster.

Validation can be done in two ways:
1. Internally
2. Externally

1) INTERNAL VALIDATION
Internal validation processes evaluate the connectedness, i.e.,
how well a pair of data points within the same cluster is
connected to each other. Tand the compactness, i.e. how close
are the data points, placed inside the same cluster are to
each other. Internal measures do not require any prior cluster
labelling or ground-truths. Acceptable clusters have minimal
‘Connectedness’ and ‘Compactness’ [36], [37].

In this section, a look at how the clusters have been val-
idated using various internal metrics were carried out. The
indexes that were used here is also discussed.

a: DAVIES–BOULDIN INDEX (DBI)
The metric works on the basis of the ratio of within cluster
distances to between-cluster distances. The smaller the values
are, the better the clustering would be. A factor to note is
that, to make it consistent with other indices used in this
research, the reverse of Davies-Bouldin Index (1- Davies-
Bouldin Index) [38] were used. The Davies Bouldin Index
can be calculated for any value of a cluster (n) using the
following expression [39]:

DBI =
1
nc

∑nc

j=1k=1.nc.k6=jmax
Rjk (11)

Rjk =

1
‖Cj‖

∑
yεCj

d(y,xj)+ 1
||Ck||

∑
yεCk

d(y,xk)

d(xj,xk)
(12)

where, d is the Euclidian Distance between the points, cj is
the cluster j having xj as the centroid.

Figure 16 illustrates the Daviesbouldin score for all the
classifier without and with feature reduction. In both cases,
it can be seen that kmeans performing well with good scores.

b: CALINSKI-HARABASZ INDEX
Calinski-Harabasz is a ratio-type index that evaluates the
cluster validity by comparing the average between and
within-cluster sum of squares. A higher value indicates better
clustering [40].
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TABLE 9. Internal and external methods and their criteria.

FIGURE 15. Cluster validation.

The Index, CH, Is Defined as:

CH (k) =
Vb/k− 1)
Vw/N− k

(13)

where Vb is the overall between-cluster variance, Vw is the
overall within-cluster variance, N is the number of observa-
tions and k denotes the total number of clusters.

Figure 17 depicts the Calinski Harabasz Index for all the
classifier without and with feature reduction.

c: SILHOUETTE COEFFICIENT SCORE
Silhouette coefficient score is one of the most widely used
internal cluster validation techniques. The Silhouette Coeffi-
cient score is derived for each of the samples using the mean
within-cluster (intra-cluster) distance and the mean nearest-
cluster distance, generally using the following equation [38].

c = (q− p)/Max(p, q) (14)

c is Silhouette Coefficient score.

VOLUME 9, 2021 126493



L. Antony et al.: Comprehensive Unsupervised Framework for CKD Prediction

FIGURE 16. (a). Validating by Davies-Bouldin Index for all feature set.
(b). Validating by Davies-Bouldin Index for the reduced feature set.

where,
p is mean within-cluster (intra-cluster) distance.
q is the distance between a sample and the nearest

cluster that the sample is not a part of.

The metric is primarily an intuitive graphical tool that aids
the user in visually assessing cluster quality. Figure 18 depicts
the silhoutte score for all the classifier without and with
feature reduction.

2) EXTERNAL VALIDATION
External validation techniques gauge the degree to which
cluster labels match class labels supplied externally. These
class labels have not been used in any of the processes dis-
cussed in previous sections. The ‘True Rate of Detection’
(the ‘Recall’ measure) for each of the clusters were observed.
Several validation methods have been applied.

This section will provide a detailed inspection of the qual-
ity of the clustering using various External metrics.

a: ADJUSTED RAND INDEX (ARI)
The Rand Index (RI) is a similarity measure between two
sets of clusters by considering all pairs of provided samples

FIGURE 17. (a). Validating by Calinski-Harabasz Index for all feature set.
(b). Validating by Calinski-Harabasz Index for reduced feature set.

that are assigned in the same or in different clusters in the
predicted and the true clusters. Scores closer to 1 signify
better clustering [42], [43]. The ARI results are shown
in Figure 19.

The raw RI score is adjusted for chance as follows:

ARI =
RI− Expected_RI

max (RI)− Expected_RI
(15)

b: MUTUAL INFORMATION (MI)
The Mutual Information (MI) quantifies the degree of infor-
mation the two clusters in question have in common. In infor-
mation theory it is often referred to as ‘Correlation Measure’.
The classifiers in the model had the following Mutual Infor-
mation Score:

c: V-MEASURE
V-measure or Validity measure of a cluster is a metric devel-
oped using conditional entropy analysis. Entropy measures
the degree of disorder within a cluster. V-measure takes the
Harmonic mean of two important characteristics of a cluster,
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FIGURE 18. (a). Validating by Silhouette coefficient for all feature set
(b). Validating by Silhouette Coefficient scores for the reduced feature set.

homogeneity– the measure of a cluster holding only mem-
bers of a single specific cluster, and completeness–whether
all members of a given class are allocated to the same
cluster [44].

V-Measure, v Can Be Expressed as:

v =
(1+ β) ∗ homogeneity ∗ completeness
(β ∗ homogeneity+ completeness)

(16)

where,
v is V-measure v.
Default value of β is 1, signifying equal weightage of

homogeneity and completeness.
Figure 21 shows the Vmeasure score for all the classifier

without and with feature reduction. In both cases, it can be
seen that kmeans performing well with good scores.

The effectiveness and accuracy of the four unsupervised
machine learning methods can be evaluated using perfor-
mance indicators. Positive classification occurs when a per-
son is classified as having CKD. When a person is not
classified as having CKD, he has a negative classification.

FIGURE 19. (a). ARI scores for all features. (b). ARI scores for the reduced
feature set.

Similarly, True Positive (TP) indicates instances correctly
categorized as CKD, True Negative (TN) instances cor-
rectly categorized as non-CKD. False Positive (FP) indicate
non = CKD cases, incorrectly classified as CKD and False
Negative (FN) indicate CKD cases incorrectly classified as
non-CKD. The Table 10 gives more explanation.

d: ACCURACY
Accuracy is the most intuitive performance measure. It is
simply a ratio of the correctly predicted observation to the
total observations. Accuracy can be expressed as

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN)

e: PRECISION
Precision is the ratio of correctly predicted positive observa-
tions to the total predicted positive observations. Precision
can be expressed as

Precision = (TP)/(TP+ FP)

f: RECALL
The recall is the ratio of correctly predicted positive obser-
vations to all observations in the actual class. Recall can be
calculated as

Recall = (TP)/(TP+ FN)
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FIGURE 20. (a). Validating by Mutual Information Score for all feature set.
(b). Validating by Mutual Information Score for the reduced feature set.

g: F1-SCORE
F1 Score is the weighted average of Precision and Recall.
Therefore, this score takes both false positives and false
negatives into account. The F1-score can be expressed as

F1-score = 2(Precision× Recall)/(Precision+ Recall)

IV. RESULTS AND DISCUSSIONS
Validation scores obtained by considering all the 24 features
for DB scan, K-means, I-forest, and Autoencoder are given
in the Table 11. Both K-means and autoencoder have a 100%
recall, indicating that all CKD cases were correctly pre-
dicted. K-means clustered 253 anomalies as CKD, although
only 250 of these are true CKD cases, giving it a preci-
sion of 98 percent. Smaller values for davies bouldin score
and higher values for mutual information_scores, adjuste-
drand scores, Vmeasurescore, silhouette scores and calinski-
harabasz scores indicate s how good the clustering is. All the
internal validation scores such a s silhouette score, calinski-
harabasz score and daviesbouldin score are slightly better
for DB scan than for K-means. However, with an accuracy
of 99.3 percent and an F1-score of 99.4 percent, K-means
clustering outperforms the other three approaches.

FIGURE 21. (a). Validating by V-measure for all feature set (b). Validating
by V-measure for the reduced feature set.

TABLE 10. Explanation on different evaluation.

The 24 features were ranked using Pearson, Chi-2, RFE,
Random Forest, Logistic Regression, and SHAP. The vali-
dation score results and computational time obtained for the
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TABLE 11. Validation score for all features.

TABLE 12. Validation scores for reduced features.

TABLE 13. Computation time for all the methods.

final reduced feature set are shown Table 11, Table 12 and
Table 13 respectively. For these highly reduced feature sets,
Autoencoder yielded an unsatisfactory result, while DBscan

and Isolation Forest produced acceptable results. However,
k-means had a low Daviesbouldin score, high other cluster
validation scores and low computational time which indicates
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TABLE 14. Comparison of existing and proposed work.
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TABLE 14. (Continued.) Comparison of existing and proposed work.

that K-means performs well with a reduced feature set. It has
ah 99% accuracy and a 99.2 % f1-score.

A. COMPARISON OF THE PROPOSED MODEL WITH
PREVIOUS WORK
There are only a limited number of studies, using unsuper-
vised systems and algorithms to solve the issue of early
detection of CKD. However, in detecting CKD, there were
some studies based on semi-supervised and supervised
learning which were worthmentioning. Relevant studies have
been included for performance comparison in Table 14.

From the comparison table it can be seen that no existing
work in detecting CKD achieved an accuracy of more than
99.0% whereas the proposed method showed a maximum
accuracy of 99.3% using the K-means Clustering algorithm.
Most studies did not employ feature selection techniques,
and those that did not clearly state why some features were
left out. The research sorting out the most important features
for disease prediction leaving out less important ones. Using
an unsupervised method, combined with appropriate feature
selection techniques led to an improvement in accuracy for
detecting CKD.

V. CONCLUSION AND FUTURE WORK
This work developed an approach for improved prediction
and detection of Chronic Kidney Disease based on various
unsupervised machine learning approaches including autoen-
coder, Isolation forest, DB-scan and Kmeans. For consid-
ering all the 24 features resulted in a 91% accuracy for
I-forest, 94% for DB-Scan, 97.5% for Autoencoder and,
99.3% for K-means clustering. To reduce the time and
financial expenses of CKD diagnosis, six feature selection
strategies, which fall into four distinct categories of feature
selection methods, were used. The best features were selected
using a set-theory-based rule, which combines multiple fea-
ture selection approaches. The data were then classified and
validated. For the reduced feature set also Kmeans outper-
formed other unsupervised algorithms with 99% accuracy.

The suggested technique can assist clinicians in manag-
ing numerous patients and providing CKD diagnoses more
quickly. Organizations can use the suggested machine learn-
ing architecture in regional clinics with reduced medical
expert retention over time, allowing patients in regional loca-
tions to receive early diagnosis. As an extension of this work,
detection of the five different stages of Chronic Kidney Dis-
ease in a similar manner can be done. Thus, would support
the medical community in just to detecting the existence of
the disease, but also in identifying the stages of the disease.
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