
Received June 18, 2021, accepted August 19, 2021, date of publication August 30, 2021, date of current version September 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3108912

Energy-Efficient Task Scheduling in Design of
Multithread Time Predictable Real-Time Systems
ERNEST ANTOLAK AND ANDRZEJ PUŁKA , (Senior Member, IEEE)
Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland

Corresponding author: Ernest Antolak (ernest.antolak@polsl.pl)

This work supported in part by the European Social Funds through ‘‘CyPhiS—the program of modern Ph.D. studies in the field of
cyber-physical systems’’ under Project POWR.03.02.00-00-I007/17-00, and in part by the Ministry of Science and Higher Education for
Statutory Activities under Project BKM-669/RAU-11/2020.

ABSTRACT The paper presents balanced heuristic techniques of static tasks scheduling in multi-core
real-time system architecture. The main objective was to minimize the energy consumed by the system
without causing deadlines to be missed. The authors proposed a few scheduling scenarios based on
modifications of different parameters of the system and defined appropriate algorithms. The methodology
was verified and tested on the original hardware platform of the system developed by the authors. The system
consists of the reconfigurable set of cores based on an interleaved pipeline processing scheme. The entire
system was modeled as original IP at the RTL level in VERILOG and implemented on a Virtex7 FPGA
platform. The tasks were executed as a set of programs based onMälardalenWCET benchmarks; commonly
used by the PRET community for validation time predictable systems and worst-case analyses. Many series
of experiments were carried out and the results validated the approach and showed that it is possible to
radically reduce the energy consumed by the system while retaining timing conditions (i.e., deadlines). The
authors gathered and discussed results and formulated a set of recommendations for the safety real-time
system’s design flowchart aimed to minimize the energy consumed by the system.

INDEX TERMS Real-time systems, dynamic scheduling, multitasking, pipeline interleaving, power opti-
mization, energy-efficient systems.

NOMENCLATURE
tii-th task symbol.
Tii-th task model.
Ci Program length, (number of instructions

except forMi).
Mi Number of memory access instructions that

refer to data of other threads.
Di Deadline of the task (time).
M_dur Duration of the memory operations

(WCET).
ThN Number of threads processed by the system.
Reqproc Number of clock cycles necessary for

the bus request processing for the longest
pipeline.

Pipelinestart Number of clock cycles necessary for reini-
tialization of the requesting pipeline.

TFii-th task frequency.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

TF Matrix of all task frequencies (TFi).
TFsorted Sorted matrix of all task frequencies.
TFMEAN Mean value of elements of the matrix TF.
CN Number of processing cores.
Fsys Frequency of the system.
Fmargin Empirical parameter.
PE Set of processing elements (cores).
peii-th processing element.
P(pei) Power consumed by pei.
M (pei) Mapping of tasks to pei.
pt(ti) Processing time of the task ti.
GF Optimization goal function.
TS Total sum of all tasks’ frequencies (TFi)

allocated in a given core.
DTS Total sum of all tasks’ frequencies (TFi)

allocated in a dedicated core.
STS Total sum of all tasks’ frequencies (TFi)

allocated in a standard core.
Ptotal Total power dissipated in the system.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 121111

https://orcid.org/0000-0002-6329-8305
https://orcid.org/0000-0001-6853-3610


E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

Pconstraint Power constraint (maximum allowed power
dissipated in the system).

BC Bus controller.
BUS SRQ Bus send request phase.
BUS RRQ Bus receive request phase.
CP Configurable pipeline.
DF Data fetch.
EXE Execute.
GPR General purpose register.
ID Instruction decode.
SA Select address.
SD Select data.
SFT Shift.
SR Select register.
THj Identifier of the j-th thread.
WB Write back.
Etaski Energy consumed by a single task taski.
α Switching activity of the circuit.
CL Switching capacity.
VDD Supply voltage.
Pforecast The value of the forecasted dynamic power.
Pk Dynamic power consumed by k-th task.
Fborder Theoretical border frequency of the system.
RISC Reduced instruction set computer.

I. INTRODUCTION
One of the most important properties (and the most crucial
requirement) of contemporary real-time embedded systems is
their predictability. Modern electronic devices have become
more and more complex. Strong competition between ven-
dors implies that they offer the equipment supporting new,
sophisticated functionalities. However, this intricacy of elec-
tronic embedded system’s architectures may discard their
predictability and the engineers involved in the design pro-
cess are required to spend hundreds of hours to keep the
systems predictable. Over the last decade, one can observe
that researchers from all over the world have made a sig-
nificant effort to find architectures assuring timing repeata-
bility. Real-time systems are commonly used in many
applications (not only safety systems) and must be fully
predictable [1], [2]. All procedures used in the system design
flow must check not only the correct functionality of the
devices but most of all, they should pay attention to timing
dependencies between events occurring in the system. The
issue of timing predictability of electronic systems is known
in the literature [4], [5] as a paradigm of precision time
machines (PRET) formulated by S. Edwards and E Lee [3]
during the Design Automation Conference (DAC) in 2007.

The paper presents the next contribution in the research on
time-predictable systems. The authors deal with the lowest
level of the system architecture, i.e., hardware level devel-
opment. This research on PRET systems follows on from
the previous works that were carried out by the Department
of Electronics, Electrical Engineering and Microelectronics
(former Institute of Electronics) for many years [6]–[8], [24].

The paper consists of seven parts: the second section
analyzes the related work and other solutions concerning
hardware as well as software elements of time-predictable
real-time systems. In the third section, the authors present the
main building blocks of their architecture that are based on
pipeline processing and the threads’ interleaving. The fourth
section formulates the motivation of the work and main con-
tributions of the paper. The fifth section presents the practical
properties of the platform obtained by a set of initial experi-
ments. In the sixth section, we define the tasks’ model, main
parameters, the optimization objectives and the goal function.
In the next, we propose modifications of our scheduling
algorithms and presents different design techniques on an
example. The section number eighth describes the testing
environment and shows the results of the experiments and the
final, ninth section summarizes the paper and presents some
conclusions.

II. RELATED WORK
Designers involved with the process of constructing time-
predictable systems have to investigate many aspects of the
entire architecture. They have to develop hardware, software
and propose appropriate communication protocols. It is rec-
ommended to address these problems at the early stages of the
design flow. Thiele and Wilhelm [5] formulated some rec-
ommendations and guidelines that should be considered by
designers of safety-critical embedded systems. The method-
ology shows how to meet strict, real-time constraints during
the technology mapping, system architecture selection and
software implementation. The authors alsomention the PRET
concept [3], which is suggested to extend the microarchitec-
ture (ISA) of RISC processors [9]. They postulated the addi-
tion of a new timing instruction controlling the processing
time - deadline. A very interesting solution was developed
in the CHESS laboratory at UC Berkeley [11]. This solu-
tion was based on the interleaved pipeline [10] that allows
avoiding problems with data and control hazard occurrences
in the pipeline. The CHESS group also recommended the
memory wheel controller for controlling the access to the
system memory by many tasks (threads). Pułka and Milik [6]
expanded the CHESS solution and proposed the flexible,
time-predictable architecture consisting of a dynamic inter-
leave controller of the threads, a memory access control unit
and thread porch memory.

In general, we can observe that research on PRET
architectures requires the exploration of various issues of
hardware [4], [5], [15], [20]–[22] or software [16]–[19]
development. Frequently, researchers seek general guide-
lines [1], [5], [12]–[15], while some works give dedicated
solutions [17], [19], [20], [22].

Recently, in [24] we have proposed our system based on the
flexible pipeline configuration and optimal scheduling algo-
rithms. In the presented paper we investigated the problem of
energy optimization in time-predictable systems and propose
our solution in the field. Many examples in the literature
show this problem in modern mobile and remote electronic

121112 VOLUME 9, 2021



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

embedded systems becoming very important. In [23] and [25]
the problem of load-balanced scheduling was addressed and
the authors of the proposed techniques reported a reduction
of the energy consumed by the systems. The authors of [26]
presented a very interesting technique of effective utilization
of processing elements (PE) in the clusters of processors
with the shared L1 cache memory. The solution optimized
synchronization and communication between processing ele-
ments. The result was not exactly dedicated to real-time
systems, however, it allowed radical reduction of the energy
consumed by the system. The authors of [27] proposed a set
of scheduling algorithms and investigated various approaches
based on deadline slack analysis, global dynamic voltage, fre-
quency scaling energy-efficient scheduling (G-Dvfs-ES) and
non-Dfvs energy-efficient scheduling; the presented tech-
niques can be applied to real-time systems. Another set of
contributions highlighted scheduling techniques and energy
optimization based on AI algorithms and heuristics, such as
evolutionary computation [29], machine learning [37] and
linear programming [38].

In the subsequent sections of the paper, we present our
architecture with a set of dedicated scheduling mechanisms
and design methodologies that make use of these algorithms.
The approach allows us to control the power dissipated in the
system, ensuring its predictability during the system design
process.

III. SYSTEM ARCHITECTURE
Our multithread system consists of a set of reconfigurable
RISC processors [24] based on interleaved pipeline process-
ing. The number of cores of the system and the number of
threads assigned to cores can be adjusted during the system
configuration before the synthesis. Fig. 1 presents the scheme
of the entire, regular system architecture, while the internal
structure of a single core is depicted in Fig. 2. Each core pro-
cesses several threads that are interleaved within its pipeline,
i.e., in a given moment of time (clock cycle), different threads
are processed on each stage of the pipeline. This mechanism
ensures the avoidance of complicated analysis of instruction
dependencies in tasks’ programs, which protects the system
from hazards [10]. However, general-purpose register (GPR)
files should be replicated and the structure contains the thread
interleaving controller (TIC) responsible for switching the
tasks. We assumed that memory spaces are separated, i.e.,
each thread has its own program memory, but threads can
communicate with one another via data memories.

A. PIPELINE AND BUS CONTROLLER
The number of stages of a given core’s pipeline can be config-
ured from the range 8–12. The propagation times of the stages
responsible for the selection of the resources, namely Select
Address, Select Data and Select GPR Bank, strongly depend
on the number of processed threads by a given core. When a
core handles a small number of threads, or when the system
clock frequency is significantly below the maximal possible
value, output registers of these stages may be turned off.

FIGURE 1. The multi-core system architecture.

FIGURE 2. Structure of a single core.

FIGURE 3. The structure of the basic, five-stage pipeline together with the
bus controller.

Thus, it is possible to merge them with the next stage,
resulting in a decrease of the total length of the pipeline
that detailed description being found in [24]. Note that in
the presented version, the communication is simplified due
to the bus controllers (BC) (Fig. 3). The sequence of pro-
cessed threads is stored in the queue ThID FIFO of the

VOLUME 9, 2021 121113



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

TIC controller. Based on this sequence, the bus controller
decides when (i.e., during what clock cycles) the banks of
threads’ data memories are in the idle states (are not used).
These moments of time are used for data exchange on the
system bus. This method of the memory system organiza-
tion allows avoiding complicated memory access arbitra-
tions mechanisms. Fig. 3 displays a fragment of the pipeline
together with the cooperating bus controller.

In order to reduce the relationship between the number of
threads processed by a single core, the maximum frequency
of the clock and to simplify inspection of timing predictability
of the system, the pipeline can be extended with additional
stages, but we need to remember that a core with the extended
pipeline must process the appropriate number of threads [10].

B. SIMPLIFIED COMMUNICATION BETWEEN THREADS
The new bus, in comparison to the previous solution [24],
was divided into two separate buses: The Request BUS
and the Receive BUS. This solution allows the elimina-
tion of the ‘IDLE’ state on the single bi-directional bus.
The delay between a request sending and the reply delivery
is fixed to a constant number of clock cycles depending
on the system configuration. Therefore, this solution provides
the predictability of the bus request handling. To guarantee
the predictability for the request sending mechanism, every
thread has its own cyclic time window for requests and the
request can only be sent during this moment of time.

IV. MAIN MOTIVATION AND CONTRIBUTION OF OUR
WORK
Once we developed our platform, we began its experimental
testing. In [24] we presented the first version of our real-
time system and some algorithms that allowedmappingmany
tasks into the proposed architecture, minimizing the resource
utilization factor. Here we present the modified structure
with simplified, inter-task data exchange. Our main goal
and motivation were to obtain a methodology that allows
energy-efficient mapping of tasks into the available structure
while maintaining all the timing requirements of the pro-
cessed tasks. Due to the fact that we focused on the safety,
real-time system design process our approach concerns static
scheduling problems.

The main contributions of the work are:

1) The development of an original multi-core and mul-
titasking platform based on the threads’ interleaving
pipeline processing;

2) The modification of the three scheduling algorithms for
different types of tasks. The new algorithms fit to the
goal function of optimizing the energy consumed in the
real-time system;

3) The development of two design methodologies based on
the proposed heuristic algorithms;

4) A series of analyzes and experiments validating the
approach.

We divided our approach into three phases:

1) Initial phase: covers simulations and implemen-tations
of different tasks and various scenarios; during this
phase, a variety of parameters are measured;

2) Project phase: application of the selected design
methodology during which the actual design is imple-
mented into the system with the use of the proposed
algorithms;

3) Final (post-layout) phase: we estimate results, carry
out the post-layout simulation and perform a series of
analyses.

V. PRACTICAL VERIFICATION OF PLATFORM
PROPERTIES
In the beginning, we carried out a series of experiments with
tasks that were planned to be a part of applications working
within the system platform. Detailed analyses of the results
of these experiments delivered properties of the task and their
parameters that can be used during the process of the actual
system application design.

A. TASKS IDENTIFYING
These experiments were conducted to find if there exists a
relationship between the energy consumed by the system and
its configuration. Moreover, we wished to describe this rela-
tionship in a formal manner. As an example, we chose 60 test-
ing programs taken from Mälardalen benchmarks [35], such
as: bubble sort, cyclic redundancy check, iterative Fibonacci,
etc. All of these benchmarks (tasks) were implemented in
the assembler language for our microarchitecture and were
compiled to machine codes (see Fig. 15 in the conclusions).
Then, these codes were incorporated into the Verilog RTL
model of the system and simulated in the Xilinx Vivado ISE
environment.

The results of the experiments during the initial phase
allowed us to formulate relationships between the amount of
processed data and the number of instructions (refer to the
task model in the next section) and the relationship between
the average power necessary for the execution of a given
task (Fig. 4-5). In all analyses and evaluations, we considered
the worst-case scenarios. Moreover, the results of the experi-
ments allowed us the express reasonable, possible to achieve
deadlines for all simulated cases.

B. MULTITASKS SIMULATION
In the next part of these experiments, we constructed a set
of 60 various benchmarks and divided the executed tasks
into 6 different scenarios. These scenarios define various
configurations of the system, i.e., they have a different num-
ber of cores and processed threads per core. To minimize
the description of different scenarios we use the following
code: a x b, where a represents the number of processing
cores and b stands for the number of working threads in a
single core. In cases 2–6 below, when the number of cores
is greater than 1, tasks are executed concurrently, so natu-
rally, we should slow down the frequency to obtain the same

121114 VOLUME 9, 2021



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

FIGURE 4. Selected tasks’ properties obtained during the initial phase
(dependence between energy of the task and its data size).

FIGURE 5. Relationship between the energy consumed by a task and the
system frequency for the selected tasks.

processing time for all scenarios. In other words, we have the
following:

1. 1 × 60 threads with 150 MHz clock
2. 2 × 30 threads with 75 MHz clock
3. 3 × 20 threads with 50 MHz clock

4. 4 × 15 threads with 37.5 MHz clock
5. 5 × 12 threads with 30 MHz clock
6. 6 × 10 threads with 25 MHz clock
The total execution time of the tasks for each configuration

was experimentally verified by a set of simulations. The dif-
ferences were very small: the values of the makespan varied
within a range from 11 279 ns for scenario 1, to 11 645 ns for
scenario 6 (Fig. 17). This difference comes from the effect
of the pipeline initialization time and equals 10 clock cycles.
However, the disproportion is respectively small (here only
3.5%) and it should tend towards zero when the execution
time grows. In other words, we can assume that in each
scenario, the system performed the same tasks at the same
time.

FIGURE 6. Resources utilization.

Every case, i.e., the system was configured in a way
defined in the scenarios and was synthesized and imple-
mented in the Virtex-7 XC7VX485T-2FFG1761C FPGA
device. In Fig. 6, we summarized the resource utilization for
all scenarios. The diagram shows that the number of logical
resources utilization (Slice LUTs and Slice Registers) rises
as the number of cores increases. It is connected with the
necessity of the replication of the processing element, such
as arithmetic-logic units or shifters. A similar tendency can
be observed for switching resources (F7 Mux and F8 Mux),
but in this case, the growth is significantly lower as cores with
a lower number of threads do not require large multiplexors.

We made a series of probabilistic analyses of the power
dissipated in the system. The obtained power prognoses are
depicted in Fig. 7.We can conclude that partitioning the entire
system into a greater number of processing cores allows for a
decrease in the system clock frequency and a huge reduction
of the energy consumed by the system for the execution of
all tasks (in the current example, over 17 times larger). This
shows the advantages of the configurable hardware architec-
ture of the real-time systems. We present, in the subsequent
sections, that the maximization of processing elements is the
next logical step after the structure adjustment to tasks and
their deadlines, in order to obtain energy-efficient, real-time
applications.

Additionally, based on the initial experiments (Fig. 4-5),
we can estimate the energy necessary for the execution of

VOLUME 9, 2021 121115



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

FIGURE 7. Power consumption prognoses for different scenarios.

a given task before synthesis (pre-layout) by constructing
a special empirical function that estimates the relationship
between the energy, the amount of data and the system fre-
quency for a given number of processing cores (CN) for a
specific task i:

Etask i = f (data_size,Fsys,CN ) (1)

VI. OPTIMIZATION GOALS–PROBLEM FORMULATION
The initial phase presented above, gave us a significant
amount of information concerning the tasks processed within
the system. We assume that these tasks are independent
(there is no scheme fork-join) and they can use common data
(i.e., see data interchange in the next section). Furthermore,
we assume that all tasks can be processed concurrently and
all have equal priorities. The most important parameter of
all the tasks is the deadline, i.e., we require a system that
guarantees 100% of timing predictability (the requirement for
safety real-time systems). Generally, we deal with aperiodic
tasks, however, the methodology can be simply extended to
periodic tasks.

We assumed that every task, besides the empirical energy
characteristic function (1), can be described by the following
model [24]:

Ti = {Ci,Mi,Di} (2)

where:

Ci – the program length, i.e., number of
instructions when implementing a given task
(exceptMi);

Mi – number ofmemory access instructions that
refer to the data of other threads;

Di – deadline of the task (i.e., maximal accept-
able execution time).

Another notable parameter of the system is M_dur.
It defines the duration of the memory operations and reflects
the worst-case assumptions for unpredictable access to the
system memory. Thanks to the modifications described in the
previous section of the paper, we can simplify this factor in

comparison to [24]:

Mdur = 2 · ThN + Reqproc + Pipelinestart (3)

where:

ThN – number of threads processed by the sys-
tem;

Reqproc – number of clock cycles necessary for
the bus request processing for the longest
pipeline;

Pipelinestart – number of clock cycles necessary for
reinitialization of the pipeline sending the
request.

In case of a reconfigurable system, we applied a task model
based on the number of executed instructions instead of using
average or critical task execution times. Such a solution
turned out to be much more convenient and the mapping of
tasks was independent of the system frequency.

We also defined a task frequency [24] parameter that
expresses the processing rate of a given task. As we showed
in the paper, TF parameters (4) simplify the control over the
tasks’ deadlines:

TF i =
Ci +Mi ·M_dur

Di
(4)

Recently, in [24], we proposed three scheduling algo-
rithms: BLIS, COTAS and STODER that were applied
for scheduling independent tasks, co-operating tasks and
scheduling in the system consisting of different, configured
pipelines, respectively. All of these algorithms were designed
for resource minimization under the general condition of
meeting time predictability. One of the first operations is
setting the minimal number of processing cores. However,
in the current version, the goal is different (see next subsec-
tion) as we would like to find a solution with reduced energy
consumption. Our research showed that there is a strong rela-
tionship between power dissipated in the system and the clock
frequency. As we will show in the experimental part of our
work, we should assume the frequency (i.e., the clock cycle
duration) and then set an appropriate number of processing
cores.

Thus, if we express the number of the processing cores
as the ratio of the total sum of all tasks’ frequencies (TS)
and the clock cycle duration, rounded to the nearest integer,
the equation becomes:

CN =
TS

Sys_clk
(5)

From this, we obtain the expression for the system
frequency:

Fsys = (1+ Fmargin) ·

∑N
i=1 TF i
CN

(6)

This formula shows that in order to reduce the system
frequency we need to increase the number of the process-
ing cores, in order to keep all deadlines met. Moreover,
we need to introduce an additional empirical parameter,

121116 VOLUME 9, 2021



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

Fmargin (approx. 4–12%) that is used for determining the
system frequency Fsys. We address this problem in the con-
clusions. The experimental part of our work verifies this
hypothesis.

A. GOAL FUNCTION
To formulate the goal function of our scheduler assume that:
Th denotes the set of all threads executed by the system; PE
is the set of all processing elements (cores); E(pei) represents
the energy consumed by the i-th processing element; M(pei)
denotes the mapping of tasks to a given pei and pt(ti) is the
processing time of the task ti. With these, we can define the
goal function GF (7) as:

GF (Th)
def
= min

M

∑N
i E

(
pei
)

and
PE =

{
pe1, ..,pei, ..peN

}
and

∀

ti ∈ Th
∃

M
(
pei
) ti ∈ M (

pei
)

and
∀

i 6= j
M
(
pei
)
6=M

(
pej
)

and
∀

ti ∈ Th
Di ≥ pt (ti)

(7)

VII. DESIGN METHODOLOGY
The process of task scheduling is one of the crucial proce-
dures carried out during the real-time system design. The effi-
cient scheduling process may guarantee optimal utilization of
available resources and satisfy design constraints [23]–[32].
There exist many techniques and algorithms in the field
of scheduling. These take into account various factors and
properties of the destination platform and different processing
efficiencies of the system components.

Based on the analyses of the literature we can formu-
late the condition of the schedulability of a given set of
tasks as: ‘‘determine the set of properties of the system
that allow appropriate task scheduling and fulfilling all
the constraints concerning system timing, resources, power,
etc.’’

The main taxonomy [14], distinguishes static and dynamic
scheduling algorithms. The first approach dynamically maps
tasks into the processing elements during the system run,
while the static approach is performed during the system
design; we focused on the static methods. The previous ver-
sion described in [24] was based on the idea of resource
minimization and accommodation of the core architecture to
properties of a specific task. In the current version of the
approach, we extend the methodology to the reduction of the
energy dissipated by the designed system.

A. SCHEDULING OF INTERLEAVED THREADS
The specificity of interleaving pipeline processing makes the
scheduling process somehow different. In such systems we
cannot talk about sequential execution of tasks, margins and
deadline slacks [27], [29], [32] (Fig. 8). Moreover, the order
and the frequency of the appearance of the processed tasks
may differ, i.e., the tasks that should be executed faster (the
ratio of its instructions to the deadline is bigger) are present
in the sequence more frequently than others. The thread
interleaving controller block (Fig. 2) is responsible for the
preparation of the appropriate sequences stored in the ThID
FIFO. This solution is based on the previous experiences of
our team [6]–[8]. The entire sequence consists of a fixed
part that includes the identifiers of all threads processed by a
given core and the configured part, where threads with shorter
deadlines appear more frequently. Moreover, because of the
hazard control, the minimal distance between two identical
identifiers should be at least N -2, where N is the length of
the pipeline. The latter requirement necessitates introducing
bubbles. or idle states, into the pipeline, especially when
particular tasks are terminated. This mechanism reduces the
throughput but ensures predictability. Fig. 9 presents the
subsequent stages of the pipeline processing and timeline
of 10 different tasks scheduled to a given core. The diagram
presents a 12-stage pipeline, so to eliminate the problem of
dynamic hazards, e.g., control or data, we need to map at
minimum, 9 different tasks into the core (see Fig. 3).

FIGURE 8. Sequential scheduling of tasks (a) and interleaved tasks
scheduling (b).

B. ENERGY EFFICIENT SCHEDULING
As the above section defined our goal function (7), we can
modify our scheduling algorithms.

In the case of BLIS algorithms that concern the simplest
case (i.e., threats not interacting with one another), we should
modify the beginning of the procedure as shown in Fig. 10.
We also balanced the initial tasks assignment mechanism
(Step 7). Moreover, thanks to the new inter-thread commu-
nication mechanism, we can avoid time-consuming iteration
as theM_dur parameter is independent of CN. Because of the
latter issue, the COTAS II and BLIS II algorithms differs only
in one step (Step 1), necessary forM_dur calculation [24].

Fig. 11 contains the modified version of the STODER II
algorithm. This set of modified scheduling algorithms I-III is
the toolset for the energy reduction design methodologies.

VOLUME 9, 2021 121117



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

TABLE 1. Description of tasks in the tested example.

FIGURE 9. Interleaved 12-stage pipeline processing 10 different tasks.

We explain these methodologies through an example.
To facilitate the clearance of the differences between the
approaches, we use the same example of tasks. The param-
eters of tasks were obtained utilizing the technique described
above (see section V).

C. DESCRIPTION OF THE TESTED EXAMPLE
To simplify the analysis and make it more readable,
we assumed that the tasks were independent (Mi = 0). This
does not impact the generality of the considerations.

Our example consists of 50 different tasks based on the
Mälardalen benchmarks [35] described in Table 1. The table
also contains numbers of instructions (Ci), tasks’ deadlines
(Di) and tasks’ frequencies (TFi).

D. SIMPLE APPROACH
When the set of energy constraints is empty (i.e., a simple
design) we can directly use the algorithm BLIS II. We should
start by determining the matrix, TF, of task frequencies (see
in Table 1).

And after sorting we obtain:

TFsorted = {TF46,TF20,TF45,TF36,TF35,TF16,TF40,

TF49,TF37,TF50,TF15,TF33,TF8,TF3,TF39,

TF2,TF22,TF28,TF34,TF32,TF31,TF14,TF27,

TF11,TF26,TF43,TF9,TF23,TF18,TF25,TF4,

TF29,TF5,TF17,TF38,TF12,TF24,TF44,TF6,

TF41,TF48,TF10,TF13,TF30,TF47,TF1,TF19,

TF7,TF42,TF21}

The parameter TS for all tasks equals 319.26 and was deter-
mined in Step 1. With this, we can determine the number of
cores and set up the clock frequency (Steps 2–3). Based on the
system analysis [24] we can assume that, for 50 threads work-
ing in the system, consisting of 12-stage pipelines, the maxi-
mal frequency can be equal to approximately 200 MHz. This
information allows us to take 2 cores (the minimal number of
cores that can assure time predictability). For the maximal
safety margin (Fmarg = 12%) we have Fsys ≈ 179 MHz
(Fsys ≤ Fmax). For further evaluation, we assume 180 MHz.

121118 VOLUME 9, 2021



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

FIGURE 10. BLIS II and COTAS II scheduling algorithms for energy
reduction.

Eventually, after PHASE 2 (the load balancing procedure) we
obtain the following assignments of tasks to cores:

Core#0 ← {T21,T19,T35,T1,T40,T13,T49,T48,T15,T41,

FIGURE 11. STODER II scheduling algorithm for energy reduction.

T33,T6,T39,T12,T2,T38,T34,T29,T32,T4,T27,

T23,T11, T43} with SUM = 160.94 < Fsys;

and

Core#1 ← {T20,T42,T45,T7,T16,T30,T37,T10,T50,T48,

T8,T44,T3,T24,T22,T17,T28,T5,T31,T25,

T14,T18,T26,T9,T46,T36}

with SUM = 158.32 < Fsys.

From the result of applying this simple methodology,
we obtained a 2-core structure, where the first processes
24 different threads, while 26 threads are executed in the sec-
ond core. Based on the previous experiments, for the given

VOLUME 9, 2021 121119



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

set of tasks, we can forecast the average power consumed by
the system with a frequency of180 MHz at the level 1.95 W.

E. SFERA METHODOLOGY
Our first proposal of the design methodology of energy-
efficient, real-time systems was called SFERA (Scheduling
for Energy Reduced Applications). The algorithm consists
of five steps, shown in Fig. 12, that realize our goal func-
tion defined by (7). The method combines scheduling for
time predictability with searching for threads mapping; this
process assures energy reduction. However, we would like
the structure of the system to remain as compact as possible
by using a minimal number of cores. The SFERA approach
makes use of all three modified scheduling algorithms: BLIS
II, COTAS II and STODER II.

FIGURE 12. First system design methodology: SFERA for scheduling tasks
in the regime of efficient energy dissipation with a small amount of
resource utilization.

The SFERA methodology is useful, when we have the
energy constraint (this parameter is required). Here, we have
assumed that the maximum average power consumed by the
tasks cannot exceed 0.8 W. In the first step, we must find
themaximum allowed frequency, 180MHz, the same as in the
subsection D (section V) for the simple approach. Then the
appropriate scheduling algorithm should be selected. Since
we wished to compare both methods, we assume the same
tasks and choose BLIS II. Thenwe should execute subsequent
steps (1–6), namely: 1) calculate TS= 319.26; 2) assume the
number of cores – we start from CN = 3; 3) estimate the
processing frequency for the experimentally selected margin
Fmarg = 10% we have Fsys ≈ 117 MHz; 4) check if Fsys ≤
Fmax (the frequency is allowed); 5–6) sort TF matrix – the
result is the same as previously in BLIS II (compare to
TFsorted). This methodology requires two iterations. After the
first mapping we obtain:

Core #0 ← {T46,T16,T47,T40,T30,T33,T6,T8,T44,T28,

T5,T34, T29,T11, T9,T11, T26}

with SUM = 106.37;

Core #1 ← {T20,T42,T35,T1,T49,T13,T15, T41,T3,T24,

T22,T17,T32,T25,T27,T23,T45}

with SUM = 104.14;

Core #2 ← {T45,T7,T36,T19,T37,T48,T50,T10,T39,T12,

T2,T38,T18, T31,T4, T14, T21}

with SUM = 108.42.

This structure consists of three cores: Core #0 with
17 threads, Core #1 with 17 threads and Core #2 with
16 threads. The total power consumed by this implementation
(Step 3 of the SFERA algorithm) was estimated with the
average power predicted for this case being 1.15W. However,
this value does not satisfy the power constraint; thus, the value
of cores must be incremented and the SFERA algorithm
restarted. The new value of the frequency, Fsys, is 88 MHz.
We need to assign tasks to 4 cores:

Core #0 ← {T46,T21,T49,T13,T37,T48,T2,T38,T22,T17,

T31,T9, T35} with SUM = 79.53;

Core #1 ← {T20,T42,T40,T30,T50,T10,T39,T12,T28,T5,

T14, T23,T16} with SUM = 79.37;

Core #2 ← {T45,T7,T47,T15,T41,T3,T24,T34,T29,T27,

T4,T43} with SUM = 80.12;

Core #3 ← {T36,T19,T1,T33,T6,T8,T44,T32,T25,T11,

T18,T26} with SUM = 80.24.

The final structure consists of four cores: Core #0 with
14 threads, Core #1 with 13 threads, Core #2 with 12 threads
and Core #3 with 11 threads. The presumed value of the aver-
age power dissipated by this implementation is approximately
0.78 W; thus, it meets the demanded constraint (0.8 W) and
we may terminate the scheduling.

F. MAXPRO METHODOLOGY
A brief analysis of the first experiments concluded that the
dynamic energy of the system can be reduced when we
decrease the frequency. However, in the time-predictable
application cases, the necessity of increasing the number of
processing cores occurs. Therefore, by using the highest pos-
sible number of cores we can obtain the most energy-efficient
implementation of the system.

OWith these results, we propose another strategy of start-
ing from the selection of a maximal number of processing
cores. The only limitation is the minimal number of threads
that should be mapped into the core. As it was mentioned
above, due to the threads interleaving mechanism, we need
to determine the appropriate number of processed threads
within a given pipeline [10], followed by finding the balanced
load of all cores (PHASE 2 of the BLIS II algorithm). Next,
for the most loaded core (ML), calculate the working fre-
quency of the system and finally, check the energy consumed
by the system. This philosophy is represented by the third
algorithm, MAXPRO (MAXimum PROcessing units mini-
mum energy).

The first step of the third algorithm – MAXPRO is deter-
mining the maximal number of cores that can be applied.
At the beginning (p. B) we assumed a 12-stage pipeline;

121120 VOLUME 9, 2021



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

TABLE 2. Resources utilization comparison for used design methods.

this means that a given pipeline should process at least 10 dif-
ferent and interleaved threads in order to avoid hazards [10].
This simple consideration leads to the conclusion that, for
50 hardware threads, we should take a maximum of 5 cores.
After the step 2 we obtain the following mapping:

Core #0 ← {T46,T21,T16,T47,T41,T2,T38,T31,T25,T22,}

with SUM = 63.69;

Core #1 ← {T20,T42,T40,T30,T33,T6,T17,T14,T18, T43}.

with SUM = 63, 84;

Core #2 ← {T45,T7,T49,T13,T8,T44,T28,T5,T27,T23}.

with SUM = 63.82;

Core #3 ← {T36,T19,T37,T10,T3,T24,T34,T29,T11,T9}.

with SUM = 64.81;

Core#4 ← {T35,T1,T50,T48,T39,T12,T32,T4,T26,T15}

with SUM = 63.09.

The maximally loaded core is Core #3 – its SUM = 64.81,
thus we can set the system frequency (Fsys) to 65 MHz. The
predicted average power consumed by this implementation of
the system equals approximately 0.49 W.

G. POST-LAYOUT ESTIMATION–EXAMPLE SUMMARY
This section explains the last stage of our methodol-
ogy, namely post-layout. All the implementations of the
system, described above, were synthetized to an FPGA
Virtex7 device. The numbers of used resources are depicted
in Table 2.

As expected, based on the previous research (compare
to [24] and section IV.B), the structure containing more pro-
cessing cores requires more logical resources (Slice LUTs
and Slice Registers); while the amount of switching resources
(F7 Mux and F8 Mux) grows when the ratio of threads
per core is larger. However, the differences do not exceed
10% for each of the considered cases. The first approach,
BLIS, generates results very quickly and this approach can
be used in conjunction with a smaller number of resources
and the energy consumed in the system isn’t important.
The second method, SFERA, combines two factors: reduced
energy and the minimization of resources. The main draw-
back of this approach is the necessity of tedious, iterative
calculations, but finally, it reaches the energy constraint. The
third methodology, MAXPRO, obtains the energy-efficient
solution immediately, but at the expense of a relatively big

structure. All methods give time-predictable devices, i.e., the
execution times of all tasks are the same; thus, there exists a
direct relationship between the energy consumed in a given
solution and the system configuration. For all examined and
presented cases we estimated the average power dissipated
by the system utilizing professional Xilinx Vivado ISE tools
(Fig. 14). We gathered the estimated values and documented
them in Table 3. The results show that our prognoses are
pessimistic. However, the estimated values based on the prob-
abilistic estimations are closer to the actual values.

TABLE 3. Average power consumed in the three implementations.

FIGURE 13. Second system design methodology: MAXPRO for scheduling
tasks in the regime of minimal energy dissipation with the maximal
number of processing cores.

VIII. EXPERIMENTS AND RESULTS
To verify our approach, we carried out a series of differ-
ent experiments. The scheduling algorithms used by the
design methodologies, described in the previous section,
were implemented as heuristic programs in the LPA Prolog
language [39], based on the backtracking mechanism. Fol-
lowing this, all prepared system configurations (scenarios)
were implemented in the Verilog model of our platform.
For the device, we used a Xilinx Virtex 7 FPGA working

VOLUME 9, 2021 121121



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

FIGURE 14. Example of instructions counting (Vivado simulator).

on the platform VC707. The entire system was modeled
in Verilog and synthesized in the Vivado ISE environment.
Tasks were implemented as assembler programs and com-
piled into machine code by the special compiler implemented
in C++ (Fig. 15). During the task identification described
in section V, special simulation models are executed in the
Vivado ISE simulator. Those models were supplied with
special counters, which tallied the tasks’ length (number of
instructions). Moreover, we can identify the type of program
instructions (Fig. 14). After a system was configured, i.e.,
we selected the number and types of processing cores, and
mapped tasks (machine codes of programs) into the local
memories, we synthesized it into the FPGA platform and
analyzed the obtained parameters.

FIGURE 15. Tasks the compiler used in the system configuration.

The set of characteristics depicted in Fig. 16 show the
linear relationship between the system frequency and the
average power dissipated in the device. This relation was
already reported in the literature [29]. In our case, we can
express the dynamic power by:

Pdynamic = α · CL · V 2
DD · Fsys (8)

where:

α denotes the switching activity of the circuit,
CL represents the switching capacity (a constant)
and VDD is supply voltage.

It can be noted that the rate of rise (dP/dF) grows as the
number of processed threads increases. This can be explained

by the growing switching activity for the larger number of
processed tasks. Every point of a given curve in Fig. 16 cor-
responds to a power iteration of the algorithm SFERA.

FIGURE 16. Waveforms showing the relationship between power
consumed in the system and the frequency for a different number of
threads (all obtained by the SFERA algorithm).

Fig. 17 shows the correspondence between the energy
and the system configuration (scenario) in time-predictable
systems. These examples of waveforms shows that all tasks
are ready before the deadline (the red line); although, when
the frequency is bigger, they are completed earlier (see the
yellow stamps denoting the tasks’ termination time).

FIGURE 17. The total energy consumed by the system processing 60
different tasks during 10 microseconds in various scenarios (the
waveform was taken from Vivado ISE simulator).

121122 VOLUME 9, 2021



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

Fig. 18 and Fig. 19 present relationships between power
and the system configuration for a single-core architecture
and the multi-core structure, respectively. These diagrams
show how the energy dissipated by the real-time systems
can be controlled and how we may consider possible savings
during the system design.

FIGURE 18. Average power consumed in a single core for a different
number of processed threads.

FIGURE 19. Average power dissipated by the system depending upon the
configuration.

Fig. 20 shows that the forecasted values of the power
dissipated by a given implementation of the system are pes-
simistic. Based on the tasks’ characteristics obtained in the
initial phase and assuming that there are N tasks and the k-th
task consumes power pk , we have:

Pforecast =
∑N

k=1
pk (9)

The actual values estimated for the implemented system in
hardware are smaller, so the implementation alwaysmeets the
constraints.

Due to dealing with real-time systems, the deadlines of the
tasks are very important. On the other hand, the processing
time of a given task is strongly connected with the number
of instructions that need to be executed. The relationship
between the number of instructions and data size handled
by a task depends on the type of a given task and may

FIGURE 20. Diagrams presenting the prognosed and estimated average
power for different system frequencies.

FIGURE 21. Diagrams showing the relationship between the task
complexity and the data size for two selected benchmarks.

vary (Fig. 21 shows this property for different benchmarks).
Data sets were generated randomly. The appropriate config-
uration of the simulation models of the tasks allowed us to
calculate these parameters (Fig. 22).

Fig. 23 presents how the relative change of the system
frequency affects the overall system predictability. We intro-
duced a borderline at point 0 % for the theoretical frequency
Fborder defined as:

Fborder =

∑N
i=1 TF i
CN

(10)

VOLUME 9, 2021 121123



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

FIGURE 22. Total number of instructions vs. data size for selected
Mälardalen benchmarks (original symbols [35]).

where:

N – a number of tasks,
TFi – task frequency of i-th task
and CN – number of processing cores.

While the relative change of the system frequency is
defined as the difference between the actual frequency of the
system, Fsys, and the theoretical border frequency, Fborder ,
and can be expressed in a percentage, namely:

δF =
Fsys − Fborder

Fborder
· 100% (11)

Fig. 23 shows that in order to obtain the reliable real-
system that guarantees 100% predictability (all deadlines are
met), we need to introduce a safety margin, i.e., the system
frequency should exceed the theoretical level stemming from
the sum of tasks’ frequencies. Our experiments showed that
this margin may vary between 4 % and 12 % depending
on the system configuration and the number of threads per
processing core.

IX. SUMMARY
A. GENERAL REMARKS
The paper addresses some issues concerning energy-efficient
tasks scheduling in time-predictable embedded systems.
We presented a proposal of an energy-efficient design
methodology that can be an important part of real-time
system’s design flow. We focused on low-level, hardware
design and safety systems with a defined set of tasks and
procedures, i.e., static scheduling. The main goal of the pre-
sented approach is to guarantee 100% predictability; how-
ever, we showed that it could potentially give further energy
savings. The entire methodology was incorporated into the
process of tasks mapping to the original real-time platform
and based on the threads interleaving [24].

As it was presented, the methodology is based on three
phases (steps). The first phase is the most tedious and time-
consuming, but it gives information about the tasks’ behav-
ior in the presented system architecture and delivers their

FIGURE 23. Relationship between the number of failed deadlines and the
relative change of the system frequency.

important parameters. This information is used during
the second stage of the methodology, i.e., the selection of
the structure of the system (number of processing cores) and
mapping (scheduling) tasks to the system resources. For this
purpose, we proposed three versions of scheduling algorithms
that can be applied to different types of tasks (independent
and cooperating) and pipelines (general-purpose – standard
or dedicated). Based on these algorithms, we proposed three
different methodologies: the simple, SFERA and MAXPRO.
After the system configuration is the last, third phase – the
system design. The presented results obtained for a set of
Mälardalen WCET benchmarks [35] validate our approach.

B. DESIGN AND TESTING ENVIRONMENT
In our experiments, we used the professional version of the
Xilinx Vivado ISE design tool. The entire system is described
as an original IP in Verilog hardware description language
(HDL); tasks were compiled into machine code (Fig. 15) and
stored in local memories (defined as Xilinx macros). We used
Xilinx Vivado andMentor Graphics simulators for timing and
functional simulation. Real-time systems were synthesized
and implemented in a Xilinx Virtex7 FPGA device on the
platform VC707 (Fig. 24). The probabilistic power analyses
were performed with a Vivado ISE analyzer.

We used the artificial intelligence language, LPA PRO-
LOG [39], for the scheduling algorithm’s implementation.
PROLOG, unlike many other such tools, is a declarative
language of programming in logic based on the backtracking
search and linear resolution. For the tested examples we
obtained results after less than 10 second. However, this
parameter is not so important taking into account that the
scheduling process is static (off-line). Finally, the tasks’ com-
piler was implemented in the C++ language.

C. COMPARISON TO OTHER APPROACHES
Table 4 gathers some selected parameters comparing our
methodology to other approaches. Though it is very diffi-
cult to compare different platforms and processing tasks,

121124 VOLUME 9, 2021



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

TABLE 4. Comparison with other approaches in the field of multi-task scheduling.

FIGURE 24. Our research stand.

we determined common properties of selected methodologies
that were reported in the literature.Most of themethodologies
were based on heuristics, but there are also purely algorithmic
(mathematical) approaches. Many techniques are dedicated
to reconfigurable platforms (systems) consisting of many
processors and/or many cores. In regards to computational
complexity, our approach, as well as those reported in [25]
and [38], has a complexity of O(n·ln(n)) + O(n). The first,
dominating component is caused by the necessity of sorting
tasks. The approach reported in [29] and based on evolu-
tionary computing and genetic algorithms, has the lowest
value but it gives sub-optimal solutions. All techniques gave
reasonable and noticeable power savings generally related to
a single-core system implementation. Our methodology was
also compared to a single core solution. Although our system
cannot, in its current state, process many tasks, it is fully
predictable and based the static scheduling, so the amount of
time spent on off-line calculations is not as important.

Fig.25 shows a comparison of the maximum and minimum
energy savings for the references presented in Table 4. Such a
comparison seems to be most justified because of the differ-
ences in architectures, operation frequencies and abstraction
levels of other algorithms. Our solution is comparable to the
work of [27], [29], [38]. We used FPGA platform and our
hardware-matched approach could adapt the structure to the
tasks performed on it. Other solutions affected at most the
clock frequency and/or supply voltage.

FIGURE 25. Comparison of percentage of the energy saving for different
approaches.

In Fig. 26 and 27, we showed the percentage energy sav-
ings obtained with our solution and the approach presented
in [38]. Fig. 26 shows the energy savings in a given core
relative to a reference core that processes 40 tasks while
in Fig. 27, the obtained energy savings are related to a
2-core reference architecture. Although both implementa-
tions are different, the comparisons concern similar applica-
tions. In the proposed approach, we focused on the analysis
only the dynamic energy, which has a decisive impact on the
possible energy savings. As shown on the diagram depicted
in Fig. 20, there is a fairly large discrepancy between the

VOLUME 9, 2021 121125



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

energy predicted and the energy actually consumed by the
system. However, such solutions indicate a large margin of
safety in terms of time predictability of the system. The work
presented in [38] gives more accurate prognoses, but the
prognoses are optimistic and meeting deadlines for tasks is
more risky.

FIGURE 26. Energy savings related to the reference core.

FIGURE 27. Comparison of percentage of the energy savings for different
system architectures related to the 2-core structure.

D. CONCLUSION
The presented methods and algorithms are based on the
system architecture described in [24]; however, we have
extended the structure and modified the tasks interchange
mechanism. Thus, the memory operations time, (M_dur) in a
new version of our architecture, is independent of the number
of employed cores. In this work, we focused on the problem
of the reduction of the energy dissipated in the real-time
system, but the main goal remained the same: we required a
system that assures time predictability. Therefore, the speed
of the system was reduced to 200 MHz. In the previous
version of our system [24], we reported the maximal fre-
quency up to 500 MHz. It was possible to achieve that under
the assumption of PLL-based generator usage, available in
Virtex 7, and the implementation of all tasks in small scratch-
pad memories. That architecture allows us manual modifi-
cation of final the mappings and connecting resources. The
new, extended architecture can process large amounts of data,
occupies more area and the net delay parameter combined

with the memory access delay reduces the maximal working
frequency. Although the device’s throughput is important,
the predictability of the entire system is the most crucial fac-
tor. Additionally, we have control over the energy consumed
by the system and, if necessary, we can reduce it by 80% (in
comparison to the one core implementation).

We developed our own design methodology of real-time
systems and paid attention to the design automation process.
Instead of slacks and deadlines’ margin analyses, we defined
the processing frequency of a task (TF) parameter that com-
bines a task’s complexity (i.e., a total number of various types
of instructions) and its deadline. This parameter allows the
simple and efficient mapping of tasks and guarantees the time
predictability of the system. To make the results possible,
we have to assume a margin for the system frequency, Fsys,
the Fmargin parameter in the (5) was added. Based on the
results of our experiences, this parameter should be taken
from the range of 4–12%.

E. AREAS FOR FURTHER RESEARCH
The design methodology based on the utilization of the pro-
posed algorithms is being constantly developed and tested.
We plan to verify it in the design of safety systems. Other
possibilities of further research include investigations on
increasing the overall system performance by reducing mem-
ory access delay impact on the frequency and reducing the
synchronization, i.e., the introduction of GALS (globally
asynchronous locally synchronous) into data interchange pro-
tocols. The GALS bus will allow the selection of a different
clock frequency for each core in the system. We would also
like to test various mechanisms of threads identifier genera-
tion in a TIC controller (Fig. 2). Finally, in the near future,
we also plan to move the implementation from the proto-
type (FPGA) into an ASIC developed in the SYNOPSYS
environment.

REFERENCES
[1] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,

J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, and A. Tocchi, ‘‘T-CREST: Time-predictable multi-core
architecture for embedded systems,’’ J. Syst. Archit., vol. 61, no. 9,
pp. 449–471, Oct. 2015.

[2] Y. Liu, G. Xie, Y. Tang, andR. Li, ‘‘Improving real-time performance under
reliability requirement assurance in automotive electronic systems,’’ IEEE
Access, vol. 7, pp. 140875–140888, 2019.

[3] S. A. Edwards and E. A. Lee, ‘‘The case for the precision timed (PRET)
machine,’’ in Proc. 44th ACM/IEEE Design Autom. Conf., Jun. 2007,
pp. 264–265.

[4] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernandez,
A. Ramirez, and M. Valero, ‘‘Predictable performance in SMT processors:
Synergy between the OS and SMTs,’’ IEEE Trans. Comput., vol. 55, no. 7,
pp. 785–799, Jul. 2006.

[5] L. Thiele and R. Wilhelm, ‘‘Design for timing predictability,’’ Real-Time
Syst., vol. 28, nos. 2–3, pp. 157–177, Nov. 2004.

[6] A. Pułka and A.Milik, ‘‘Dynamic rescheduling of tasks in time predictable
embedded systems,’’ IFAC Proc. Volumes, vol. 45, no. 7, pp. 305–310,
2012.

[7] Ł. Golly, A. Milik, and A. Pulka, ‘‘High level model of time predictable
multitask control unit,’’ IFAC-PapersOnLine, vol. 48, no. 4, pp. 348–353,
2015.

121126 VOLUME 9, 2021



E. Antolak, A. Pułka: Energy-Efficient Task Scheduling in Design

[8] L. Golly, ‘‘Concurrent modeling of time predictable multitask electronic
systems in SystemC language,’’ Ph.D. dissertation, Dept. Autom. Control,
Electron. Comput. Sci., Silesian Univ. Technol., Gliwice, Poland, 2016.

[9] W. Stallings, ‘‘Reduced instruction set computer architecture,’’ Proc.
IEEE, vol. 76, no. 1, pp. 38–55, Jan. 1988.

[10] E. Lee and D. Messerschmitt, ‘‘Pipeline interleaved programmable DSP’s:
Architecture,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. 35, no. 9,
pp. 1320–1333, Sep. 1987.

[11] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A. Lee,
‘‘Predictable programming on a precision timed architecture,’’ in Proc.
Int. Conf. Compil., Architectures Synth. Embedded Syst. (CASES), 2008,
p. 137.

[12] S. Andalam, P. S. Roop, A. Girault, and C. Traulsen, ‘‘A predictable
framework for safety-critical embedded systems,’’ IEEE Trans. Comput.,
vol. 63, no. 7, pp. 1600–1612, Jul. 2014.

[13] D. Broman, M. Zimmer, Y. Kim, H. Kim, J. Cai, A. Shrivastava,
S. A. Edwards, and E. A. Lee, ‘‘Precision timed infrastructure: Design
challenges,’’ in Proc. Electron. Syst. Level Synth. Conf. (ESLsyn),
May/Jun. 2013, pp. 1–6.

[14] G. C. Buttazzo,Hard Real-Time Computing Systems. NewYork, NY, USA:
Springer, 2011.

[15] B. Forsberg, L. Benini, andA.Marongiu, ‘‘HePREM: Enabling predictable
GPU execution on heterogeneous SoC,’’ in Proc. Design, Autom. Test Eur.
Conf. Exhib. (DATE), Mar. 2018, pp. 539–544.

[16] L. M. AlBarakat, P. V. Gratz, and D. A. Jimenez, ‘‘MTB-fetch: Multi-
threading aware hardware prefetching for chip multiprocessors,’’ IEEE
Comput. Archit. Lett., vol. 17, no. 2, pp. 175–178, Jul. 2018.

[17] A. Alhammad and R. Pellizzoni, ‘‘Time-predictable execution of multi-
threaded applications on multicore systems,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), 2014, pp. 1–6.

[18] M. Fernández, R. Gioiosa, E. Quiñones, L. Fossati, M. Zulianello, and
F. J. Cazorla, ‘‘Assessing the suitability of the NGMP multi-core pro-
cessor in the space domain,’’ in Proc. 10th ACM Int. Conf. Embedded
Softw. (EMSOFT), 2012, pp. 175–184.

[19] M. Schoeberl, ‘‘A Java processor architecture for embedded real-time
systems,’’ J. Syst. Archit., vol. 54, nos. 1–2, pp. 265–286, Jan. 2008.

[20] B. Akesson and K. Goossens, Memory Controllers for Real-Time Embed-
ded Systems. New York, NY, USA: Springer, 2012.

[21] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, ‘‘PRET DRAM
controller: Bank privatization for predictability and temporal isolation,’’ in
Proc. 9th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth.
(CODES+ISSS), Oct. 2011, p. 99.

[22] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, and
W. C. Probst, ‘‘Towards a time-predictable dual-issue microprocessor:
The Patmos approach,’’ in Proc. 1st Workshop Bringing Theory Pract.:
Predictability Perform. Embedded Syst. (PPES), 2011, pp. 11–21.

[23] Y. Kim, J. Kong, and A. Munir, ‘‘CPU-accelerator co-scheduling for CNN
acceleration at the edge,’’ IEEE Access, vol. 8, pp. 211422–211433, 2020,
doi: 10.1109/ACCESS.2020.3039278.

[24] E. Antolak and A. Pułka, ‘‘Flexible hardware approach to multi-core time-
predictable systems design based on the interleaved pipeline processing,’’
IET Circuits, Devices Syst., vol. 14, no. 5, pp. 648–659, Aug. 2020, doi:
10.1049/iet-cds.2019.0521.

[25] A. U. Rehman, Z. Ahmad, A. I. Jehangiri, M. A. Ala’Anzy, M. Othman,
A. I. Umar, and J. Ahmad, ‘‘Dynamic energy efficient resource allocation
strategy for load balancing in fog environment,’’ IEEE Access, vol. 8,
pp. 199829–199839, 2020, doi: 10.1109/ACCESS.2020.3035181.

[26] F. Glaser, G. Tagliavini, D. Rossi, G. Haugou, Q. Huang, and L. Benini,
‘‘Energy-efficient hardware-accelerated synchronization for shared-L1-
memory multiprocessor clusters,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 32, no. 3, pp. 633–648, Mar. 2021, doi: 10.1109/TPDS.2020.3028691.

[27] G. Xie, G. Zeng, X. Xiao, R. Li, and K. Li, ‘‘Energy-efficient scheduling
algorithms for real-time parallel applications on heterogeneous distributed
embedded systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 12,
pp. 3426–3442, Dec. 2017, 10.1109/TPDS.2017.2730876

[28] J. Chen, C. Du, P. Han, and Y. Zhang, ‘‘Sensitivity analysis of strictly
periodic tasks in multi-core real-time systems,’’ IEEE Access, vol. 7,
pp. 135005–135022, 2019.

[29] H. Bahn and K. Cho, ‘‘Evolution-based real-time job scheduling for co-
optimizing processor and memory power savings,’’ IEEE Access, vol. 8,
pp. 152805–152819, 2020, doi: 10.1109/ACCESS.2020.3017014.

[30] S. Moulik, R. Devaraj, and A. Sarkar, ‘‘COST: A cluster-oriented schedul-
ing technique for heterogeneous multi-cores,’’ in Proc. IEEE Int. Conf.
Syst., Man, Cybern. (SMC), Oct. 2018, pp. 1951–1957.

[31] R. Pathan, P. Voudouris, and P. Stenstrom, ‘‘Scheduling parallel real-time
recurrent tasks on multicore platforms,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 4, pp. 915–928, Apr. 2018.

[32] S. I. Kim and J.-K. Kim, ‘‘A method to construct task scheduling
algorithms for heterogeneous multi-core systems,’’ IEEE Access, vol. 7,
pp. 142640–142651, 2019.

[33] T. H. Cormen and T. H. Cormen Eds., Introduction to Algorithms, 2nd ed.
Cambridge, MA, USA: MIT Press, 2001.

[34] VC707 Evaluation Board for the Virtex-7 FPGA. Accessed: Nov. 2019.
[Online]. Available: https://www.xilinx.com/support/documentation/
boards_and_kits/vc707/ug885_VC707_Eval_Bd.pdf

[35] Mälardalen:WCET Benchmark Programs. Accessed:Mar. 2021. [Online].
Available: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

[36] D. Kim, Y.-B. Ko, and S.-H. Lim, ‘‘Energy-efficient real-time
multi-core assignment scheme for asymmetric multi-core mobile
devices,’’ IEEE Access, vol. 8, pp. 117324–117334, 2020, doi:
10.1109/ACCESS.2020.3005235.

[37] H. Chniter, O. Mosbahi, M. Khalgui, M. Zhou, and Z. Li, ‘‘Improved
multi-core real-time task scheduling of reconfigurable systems with
energy constraints,’’ IEEE Access, vol. 8, pp. 95698–95713, 2020, doi:
10.1109/ACCESS.2020.2990973.

[38] Logic Programming Associates. Accessed: Mar. 2021. [Online]. Available:
https://www.lpa.co.uk/

ERNEST ANTOLAK received the M.Sc. degree
in electronics and telecommunication engineer-
ing from the Silesian University of Technol-
ogy, Gliwice, Poland, in 2018. He is currently
pursuing the Ph.D. degree in project methodol-
ogy of designing real-time systems. His research
interests include real-time scheduling, designing
safety-critical embedded systems, cyber-physical
systems, systems on chips, and energy-efficient
digital architectures.

ANDRZEJ PUŁKA (Senior Member, IEEE)
received the M.Sc., Ph.D., and D.Sc. degrees in
electronics from Silesian Technical University,
Gliwice, Poland, in 1989, 1997, and 2013, respec-
tively.

He is currently a University Professor of the
Silesian University of Technology and the Deputy
Head of the Department of Electronics, Electri-
cal Engineering and Microelectronics. He is the
author and coauthor of approximately 90 scientific

papers, including journal articles, book chapters, and conference papers. His
research interests include the automated design of digital and mixed-signal
circuits in FPGAs, modeling and simulation of electronic embedded systems,
VHDL, verilog, systemverilog, systemC, real-time systems–precision time
machines (PRET), design of energy-efficient systems, power optimization
in SoC, AI, and commonsense reasoning modeling and applications of
FPGA platforms for hardware acceleration of complex computations in
bioinformatics. He is a member of the Electronics Commission, Polish
Academy of Sciences.

VOLUME 9, 2021 121127

http://dx.doi.org/10.1109/ACCESS.2020.3039278
http://dx.doi.org/10.1049/iet-cds.2019.0521
http://dx.doi.org/10.1109/ACCESS.2020.3035181
http://dx.doi.org/10.1109/TPDS.2020.3028691
http://dx.doi.org/10.1109/ACCESS.2020.3017014
http://dx.doi.org/10.1109/ACCESS.2020.3005235
http://dx.doi.org/10.1109/ACCESS.2020.2990973

