
Received June 24, 2021, accepted August 23, 2021, date of publication August 30, 2021, date of current version September 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3108839

Privacy-Aware Resource Sharing in Cross-Device
Federated Model Training for Collaborative
Predictive Maintenance
SOURABH BHARTI , (Member, IEEE), AND ALAN MCGIBNEY , (Member, IEEE)
Nimbus Research Center, Munster Technological University, Cork, T12 P928 Ireland

Corresponding author: Sourabh Bharti (sourabh.bharti@cit.ie)

This work was supported in part by the CONFIRM Science Foundation Ireland (SFI) Research Center for Smart Manufacturing, Ireland,
in part by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant 847577,
and in part by the Research Grant from SFI (Ireland’s European Structural and Investment Funds Program and the European Regional
Development Fund 2014–2020) under Grant 16/RC/3918.

ABSTRACT The proliferation of Industry 4.0 has made modern industrial assets a rich source of data that
can be leveraged to optimise operations, ensure efficiency, and minimise maintenance costs. The availability
of data is advantageous for asset management, however, attempts to maximise the value of this data often fall
short due to additional constraints, such as privacy concerns and data stored in distributed silos that is difficult
to access and share. Federated Learning (FL) has been explored to address these challenges and has been
demonstrated to provide a mechanism that allows highly distributed data to be mined in a privacy-preserving
manner and offering new opportunities for a collaborative approach to asset management. Despite the
benefits, FL has some challenges that need to be overcome to make it fully compatible for asset management
or more specifically predictive maintenance applications. FL requires a set of clients that participate in
the model training process, however, orchestration, device heterogeneity and scalability can hinder the
speed and accuracy in the context of collaborative predictive maintenance. To address this challenge, this
work proposes a split-learning-based framework (SplitPred) that enables FL clients to maximise available
resources within their local network without compromising the benefits of a FL approach (i.e., privacy and
shared learning). Experiments performed on the benchmark C-MAPSS data-set demonstrate the advantage
of applying SplitPred in the FL process in terms of efficient use of resources, i.e., model convergence time,
accuracy, and network load.

INDEX TERMS SplitNN, federated learning, predictive maintenance, Industry 4.0.

I. INTRODUCTION
Predictive maintenance (PdM) [1] of manufacturing assets
offer a number of benefits to industry, including proactive
asset health management and reduced downtime [2] which
are key components for cost effective operation of manu-
facturing systems. One application of PdM is the ability
to forecast an asset’s remaining useful lifetime (RUL) in
terms of the number of remaining running cycles from
the point of prediction beyond which the asset will no
longer be able to operate. The RUL prediction is enabled
by gathering asset operational data sensed by smart sensors
mounted on and around these assets. The sensed data is often
gathered and processed by IoT edge devices deployed at the

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

manufacturing site or factory floor to garner various asset
failure patterns. These patterns are subsequently used as input
to train predictive machine learning models on these edge
devices for the specific asset.

It has been shown that a predictive model trained by the
failure patterns extracted from a single asset is not robust
enough to handle unseen failure patterns [3], [4] and thus
may result in inaccurate RUL prediction for a given asset.
In other words, a predictive model trained by a richer and
more diverse source of failure pattern data will provide a
more robust prediction model. One can generate more failure
patterns at the cost of running the asset multiple times to
its failure, which is expensive and not feasible for small and
medium scale organizations [3]. To this end, manufacturing
organizations are starting to participate in a data-driven
business ecosystem [5] where the asset failure pattern data

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 120367

https://orcid.org/0000-0002-3135-6339
https://orcid.org/0000-0002-0665-2005

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

can be considered as a strategic resource to exchange with
each other to create a more robust model that can benefit
all participants. The use-case of predicting RUL through this
collaborative ecosystem is known as collaborative PdM.

A centralized cloud infrastructure lends itself to be an
ideal solution for data pooling to enable collaborative PdM,
however, in the manufacturing domain, there is a reluctance
to embrace this approach due to concerns relating to the
protection of commercial intelligence (due to industrial
competition) and the risk associated with sharing asset failure
data on public cloud infrastructures. When the assets belong
to different organizations, sensitive commercial information
can be garnered from the shared data which is an undesired
consequence the majority of participating organizations want
to avoid. Even a single organization sometimes can be
hesitant to centralize its own asset failure data gathered from
multiple manufacturing sites due to legal constraints [3]. As a
result, most of the failure pattern data-sets sit in silos and are
difficult to extract, aggregate and share, which hinders the
potential value that can be generated from a large pool of data.

A. FL FOR COLLABORATIVE PdM
The advent of federated learning (FL) [6] offers a potential
solution that allows the manufacturing industry to bring
isolated data islands together to train better models, while
at the same time protecting their commercial intelligence.
FL enables multiple IoT edge devices that can be deployed
at manufacturing sites or even distributed across multiple
organisations, to exchange failure pattern data about a
particular asset without the need to share the raw data that
can embed potentially sensitive commercial intelligence [3].
In a typical FL process, these edge devices participate as
FL clients training the global model with their own data
and exchanging global model updates with a centralized
server. The server then aggregates the received model updates
to create an improved global model, which can be distributed
among clients for use in their PdM application. However,
continuous improvement in the global model is achieved only
by clients participating in multiple iterations of the training
process. This iterative exchange of model updates instead
of raw manufacturing data allows a manufacturer to remain
in control and protect the privacy of this data at all times,
while availing of the benefits of the model built through
collaboration.

In traditional FL, the data across these clients can share the
same feature space (horizontally partitioned) but belong to a
different sample ID space [7]. In the context of collaborative
PdM, the asset degradation pattern data can be horizontally
partitioned across similar types of assets working under
similar operating conditions across multiple manufacturing
sites. On the other hand, the data across clients can also share
the same sample IDs but differ on the features (vertically
partitioned). This is when the same asset is being monitored
using different type of sensors acrossmanufacturing sites. For
instance, the degradation of health of an industrial bearing
can be monitored by capturing images in a time-series and/or

by recording various other parameters such as vibration,
temperature data etc.

Broadly speaking, there are two distinct application set-
tings of a FL approach for collaborative PdM; cross-silo and
cross-device [6]. While cross-silo involves geo-distributed
data-centers for collaborative learning, cross-device remains
the most commonly used FL setting in which clients are
identified as resource-constrained IoT edge devices. A cross-
device approach can facilitate timely RUL prediction as it
takes full advantage of agile edge data analytics. As shown
in Fig. 1a, FL clients are generally recognised as single-
board edge devices capable of sensing the asset data while
having limited battery and computational resources. Edge
devices are less reliable (in terms of uncertain availability of
computational resources), state-less and usually participate
in a horizontal FL of a light-weight global predictive
model. A good use-case for cross-device FL in PdM is
collaborative model training on similar assets across multiple
manufacturing sites, when timely RUL prediction is of
paramount importance (e.g. in safety critical scenarios). This
work considers a cross-device FL setting with asset failure
data horizontally partitioned acrossmultiple IoT edge devices
deployed at different manufacturing sites.

B. MOTIVATION
In a cross-device FL scenario for PdM involving heteroge-
neous edge devices, there can be some FL clients not in
possession of enough computational resources to train the
global model in a timely manner. These clients can cause
a delay in model aggregation and even disconnect during a
training iteration. This in turn may hinder other clients from
efficient learning of the failure patterns from each others’
data. This situation may halt the collaborative prognosis
process for a period of time and prove to be costly in scenarios
such as predictive maintenance.

As depicted in Fig. 1a, a typical FL client is considered
to be a standalone edge device that exchanges the global
model parameter updates with the global server. However,
in the context of collaborative PdM, a FL client can be
part of a local network of an organisation/manufacturing
site. Currently, FL provides no provision for communication
resource sharing i.e., utilization of the local edge server
(Fig. 1b) to interact with a global server. As a result of which,
dissemination of a more evolved global model to the clients
may get delayed and as a result, the system is unable to predict
a failure before it occurs.

C. CONTRIBUTIONS
1) This work proposes a framework (SplitPred) for col-

laborative PdM which provides a conventional cross-
device horizontal FL to support reliable model training
at FL clients. This is realised by enabling an IoT edge
device (FL client) to off-load part of its model training
task to other edge resources that reside on the same
network (Fig. 1b).

2) SplitPred utilises split-learning deployment strategies,
whose secure data-sharing nature enables edge devices

120368 VOLUME 9, 2021

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

FIGURE 1. Comparison between conventional FL and proposed
framework for collaborative PdM.

at FL client’s local network to collaboratively train the
global model while maintaining data-privacy.

3) SplitPred also ensures that edge devices exchange
model updates with the local edge server (Fig. 1b),
which subsequently passes them on to the global server
for aggregation. This helps expedite the local model
convergence time as the edge devices sometimes are
not able to have real-time access to the global server [8]
which results in delayed model update exchanges.

4) SplitPred is evaluated against a case study of remaining
useful lifetime (RUL) prediction for aircraft compo-
nents in a simulated collaborative PdM set-up using
the benchmark C-MAPSS data-set [9]. The results
compare SplitPred’s performance with traditional FL
and centralised approaches using the following met-
rics: model convergence time, accuracy and network
resource consumption.

The remaining of the paper is organised as follows.
Section II discusses the related research, section III gives the
preliminaries while section IV explains SplitPred’s logical
architecture and interaction among system components in
detail, section V gives the performance evaluation of Split-
Pred, section VI concludes the paper and finally section VII
provides future research scope.

II. RELATED RESEARCH
A. EDGE/FOG BASED AND HYBRID PdM
In [10], an edge based PdM architecture is proposed that
utilizes the edge computing capabilities of an IoT based

manufacturing system. A cooperation mechanism between
edge and cloud computing is also discussed to classify the
functionality of edge devices and cloud based resources. It is
proposed that edge computing is more suited for real-time
processing of manufacturing data while the cloud should be
utilised to learn more complex data patterns [11]. The fault
detection system proposed in [12] uses a two tier architecture
with a real-time fault detector implemented on single-board
computers and a fault detector based on Long Term Short
Memory (LSTM) executing at the back-end. Other similar
proposals [13]–[15] advocate for the utilization of edge/fog
computing for IoT based manufacturing. However, none of
the above techniques support deployment of the solution fully
on edge devices (e.g. single-board computers). In addition,
there is no provision for resource sharing among edge devices
to support collaborative failure pattern learning. Existing
solutions rather limit edge computing interaction to failure
detectors that run pre-trained models. Contributions such
as [16] propose resource sharing based distributed learning
of machine failure pattern by off-loading the computational
tasks from a central server to fog nodes (i.e. network edge
device deployed close to the edge device) to minimize the
system response time for delay-sensitive applications. The
model is divided into layers that are allocated to different
devices. The framework is not fully edge based and there is no
provision of resource sharing among edge devices. Moreover,
the privacy preserving aspect of the raw data is not taken into
consideration.

B. PRIVACY PRESERVING COLLABORATIVE PdM
Federated learning (FL) [17] has come through as a popular
privacy preserving distributed learning technique in recent
years. For PdM, it enables manufacturing assets to learn
failure patterns from other similar assets without the need
reveal their own local data. This creates a virtual network
of similar assets distributed across multiple manufacturing
sites, this approach is even more beneficial when the assets
belong to different organisations. The assets in these virtual
networks can be represented by digital agents often referred
to as ‘digital twins’ [18].

One of the primary requirements of data-driven prognosis
is for data-sets generated by the participating digital twins
to be statistically homogeneous [19]. In the context of PdM,
the data-sets generated by two digital twins are statistically
homogeneous if they contain similar failure patterns of the
corresponding assets working under the same operational
conditions. While existing approaches are few and limited to
the application of FL [19]–[22] without considering the com-
putational challenges in manufacturing environment, it has
been observed that these solutions are able to tackle the data
privacy issue in collaborative prognosis. The collaborative
prognosis mechanism proposed in [19] deploys a digital twin
based FL solution that predicts the RUL of an aircraft engine.
A LSTM based predictive model is used for local training and
traditional federated averaging technique is used for model
aggregation. Results demonstrate the mechanism’s ability to

VOLUME 9, 2021 120369

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

match the prediction accuracy of centralised learning while
maintaining data privacy. A similar mechanism proposed
in [20] predicts the RUL of the aircraft engine with clients
using a simple multi-layer perceptron (MLP) model with
Kalman filter for training. Results showed that even a simple
MLP model can result in good accuracy while maintaining
data privacy. Both of these mechanisms use benchmark
C-MAPSS data-set for training and testing [9].

The above discussed approaches do not address the
challenges of applying conventional FL within a cross-
device setting for collaborative PdM. The approach proposed
in [22] is designed for cross-silo FL setting. Whereas the one
proposed in [19] utilises LSTM as the global learning model
which is not suitable for cross-device FL setting. [20] utilises
a lightweight MLP based global model (suitable for edge
devices) but assumes that the edge devices are equipped with
constant availability of computational and communication
resources. [21] does not discuss about the application
setting of FL for collaborative PdM. Thus, the existing
FL approaches for PdM lack provision for computational
resource sharing and distributed model deployment among
edge devices installed within a FL client’s local network.
In addition, the existing approaches do not have provision
for communication resource sharing which results in a higher
number of message exchanges throughout the global model
training process.

III. PRELIMINARIES
A. FEDERATED LEARNING
A traditional FL setup (Fig. 2) involves multiple edge
devices working as standalone clients with the single global
server. Usually, a fixed number of FL clients (D) are selected
randomly from a pool of edge devices which have shown
their interest in participating in the learning process. For an
iteration of training at time t , each participating client (d)
downloads the global learning model (θt) from the global
server and start training the model with it’s own local data.
If md represents the local training data set samples for client
d , then

∑D
d=1md = M , where M is the total size of data

samples from D clients. The FL attempts to optimize f (θ).

min
θ
f (θ)

f (θ) =
D∑
d=1

md
M
Fd (θ)

Fd (θ) =
1
md

∑
i∈md

f i(θ) (1)

where f i(θ) is the loss function associated with sample i in
the data-set of client d .
During the local training, client d updates the global

learning model using an optimization algorithm such as
stochastic gradient descent (SGD) and Adam to minimize
their loss functions. At the end of local model training, each
client shares the updated global model (θdt+1) with the global

FIGURE 2. Traditional Federated Learning.

FIGURE 3. A simple neural network design.

server:

θdt+1 = θt − αdλd (2)

where αd is the learning rate and λd is the gradient computed
at client d on its local data-set with θt . The global server
aggregates the received local models and computes the
improved global model (θt+1) as follows.

θt+1 =

D∑
d=1

md
M
θdt+1 (3)

The improved global model is subsequently downloaded
by FL clients for the next round of training. This process
continues until the global model converges.

B. SPLIT LEARNING
Most of the learning models such as neural networks attempt
to minimize F(w, b) (Eq. 1) with w and b being the model
parameters to be optimised. Fig. 3 shows a simple neural
network design with one input layer, k hidden layers and
one output layer [23]. Each layer has a number of neurons
where nk is the number of neurons, ak is the vector of
neuron activation, wk is the weight matrix, bk is the bias
vector at layer k . The training process involves (1) Forward-
propagation and (2) Back-propagation.
Forward-propagation: The training data is fed to the

input layer which is transformed into intermediate features
(a1, a2, . . . , ak) with the help of weights and bias involved

120370 VOLUME 9, 2021

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

between layers. Each layer outputs a weighted vector of
neurons (z) which is fed into an activation function g(z) to
produce the activation for the next layer. The output from
the ‘output layer’ is fed to a cost function which gives the
loss value. There are number of activation and cost functions
proposed in the literature that can be used as per the suitability
for a specific application.
Back-propagation: The final step of the training process

is to back-propagate the loss to update the weights and bias
for each layer. This is realised by computing the partial
derivatives of the cost function with respect to the weights (w)
and bias (b) in the network and updating their values. This
process continues until the difference between the current
value and previous value is negligible. A simple Gradient
Descent [24] update rules are as follows (Eq. 4).

wk = wk − α
∂C
∂wk

, bk = wk − α
∂C
∂bk

(4)

where α is the learning rate for the algorithm andC is the cost
function.

Split learning (details in section IV.C) works on the
principle of splitting the neural network and lets different
devices process different layers of the model. In other words,
the learning model is distributed among multiple devices
that consent to aggregate the model at the end of training.
A simple split neural network (SplitNN) architecture [25]
can be realised using two devices d1 and d2 where d1 has
all input (X) values and d2 has their corresponding labels.
d1 trains the X values on the bottom half of neural network
and shares the activations and gradients from the split layer
with d2 which, in-turn calculates the loss using labels and
back-propagates it to d1. The process continues until the
model converges. Here, d1 and d2 are learning the samemodel
in a collaborative manner without revealing the training
data.

IV. SplitPred: PROPOSED ARCHITECTURE
Fig. 4 represents the logical view of SplitPred in which
edge devices deployed on multiple manufacturing sites
participate in the collaborative PdMprocess. The contribution
of SplitPred is its ability to enable edge devices in the local
network to share their computational and communication
resources while training the global model. In addition
SplitPred enables edge devices to utilise the already allocated
bandwidth to the edge server in order to interact with the
global server to reduce the number of message exchanges
and the model convergence time. As the collaborative model
training at the FL client’s local network involves multiple
edge devices sharing their resources, any provision to enable
this should also make sure that the local data being used for
training is well protected. To this end, SplitPred utilises the
split neural network (SplitNN) architectures [25] deployed on
the local network edge devices to enable privacy preserving
resource sharing while training the global model. More
details about the SplitNN deployment strategies are given in
section IV.C.

FIGURE 4. SplitPred logical view.

A. SYSTEM COMPONENTS AND ASSUMPTIONS
As the SplitPred is deployed on the local network of a
manufacturing site, it utilizes a three-layer local network
architecture as follows:
• Field devices: This layer is composed of sensors,
actuators etc, responsible to sense and reliably extract
parameters from the manufacturing site and receive
actuation instructions based on processedmanufacturing
data. Sensors transmit the raw sensed observations to
the preferred edge device (can be via wired or wireless
communications protocols e.g. IEEE 802.15.4) to feed
the input to the learning models.

• Edge devices: The edge device layer is composed of IoT
edge devices that receive raw data from field devices
and process it for inference. Edge devices are single-
board computers (e.g. Raspberry Pi), equipped with
limited computational and communication capabilities
(eg. WiFi).

• Edge server: This layer consists of an on-premise
application edge server responsible for furnishing the
final results to the global server [26]. A SplitPred edge
server receives the global model and assigns a suitable
edge device for training. It is a computationally rich
device to which edge devices can also off-load their
neural network segment, although it should be noted that
the edge server can also be a single-board computer with
similar capabilities as edge device.

It is assumed that the global model is downloaded beforehand
by the manufacturing site’s local network edge server and
the appropriate edge device(s) are designated as FL clients
to gather the asset relevant data and utilise it for global
model training. Manufacturing assets (machines/equipment)
can be represented as a set A = {A1,A2, . . . ,Ak}. The
asset parameters, operational condition along with ambient
parameters are captured by shop floor sensors, represented
as a set S = {s1, s2, . . . , sn}. Each sensor is considered as
a sensing and communicating device with limited computa-
tional capabilities to process the sensed data. Thus, sensors
transmit the sensed data to edge devices denoted by ED =
{ED1, ED2,. . . , EDm}. Sensors can communicate with edge

VOLUME 9, 2021 120371

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

device within their local network range. In addition, there
is one edge server (ES) for the shop floor which interacts
directly with the user and/or global server.

The data transmission between sensors and edge device
is completed in one-hop (Eq. 5). Two neighbouring edge
devices can also communicate with each other in one-hop.
Apart from this, all edge devices can communicate with the
edge server in one hop (Eq. 6).

∀si ∈ S, mindist
EDj∈ED

(si,EDj) ≤ RED (5)

∀EDj ∈ ED, mindist(EDj,ES) ≤ RES (6)

Here, RED and RES represents the coverage of edge device
and edge server, respectively. The distance (dist) is Euclidean
and can be calculated using the latitude and longitude of the
devices.

B. DATA PROCESSING
Edge devices can independently choose their computing
strategy in terms of local processing and/or off-loading it to
another edge device or edge server. Since the overall objective
of SplitPred is to enable agile edge analytics, both local
and collaborative data processing are modelled around their
respective execution time [27].

1) LOCAL PROCESSING
To fully enable edge analytics, each edge device can
participate in training different NN models or segments of
different NN models, in a sequential manner. Thus, at time t ,
an edge device can work on a set of processing tasks T (t) =
{T1,T2, . . . ,Tz}. The total amount of processing required for
a task Ti can be estimated in terms of the number of layers (l)
in NNmodel (N l

i) for Ti and the amount of data (di) to be used
to execute on the layers. Thus the execution time (ETi(t)) for
Ti executing on an edge device (ED1) can be estimated as

ETi(t) = ET qi (t)+
C(N l

i , di)

P(ED1)
(7)

where ET qi and C(N l
i , di) are queuing time, total processing

for Ti, P(ED1) is the processing capability of ED1 at time t .

2) OFF-LOADING
An edge device can off-load the part of Ti to another
neighbouring edge device or edge server. In other words,
an edge device (ED1) can off-load a segment of the NN to
be executed on another device (for eg. ED2). In this case,
the total execution time (ET oi (t)) of a task Ti can be estimated
as a sum of local execution time on ED1, data transmission
time and local execution time on ED2.

ET oi (t) = ET ED1
i (t)+

d(Ti)
λ
+ ET ED2

i (t) (8)

where d(Ti) is the amount of data transmitted and λ is the
data transmission rate which can be modelled using Shannon
Capacity Theoerm [28].

FIGURE 5. Functional view for SplitNN deployment.

3) PROBLEM DEFINITION
With the objective of minimizing the execution time for all
tasks, the problem addressed by SplitPred can be defined as:

min
z∑
i=1

[
ETi(t)+

m=|ED|∑
j=1

ET oi (t)Pr[a
o
i (t) = j]

]
(9)

s.t. ∀Ti ∈ T , aoi (t) ∈ [0,m] (10)

∀Ti ∈ T ,ETi(t) ≥ 0,ET oi (t) ≥ 0 (11)

where aoi (t) ∈ [0,m] is the off-loading indicator taking
the value j if the task if off-loaded to EDj. Pr[aoi (t) = j] is the
probability whose value becomes 1 for the ED on which the
task is off-loaded to. The constraint in Eq. 10 satisfies
the condition of local processing when aoi (t) = 0. On the
other hand, Eq. 11 makes sure that the execution time never
becomes negative.

The following subsection discusses the realisation of local
processing and off-loading in the context of the SplitPred
architecture.

C. PRIVACY PRESERVING RESOURCE SHARING VIA
SplitNN DEPLOYMENT STRATEGIES
Central to SplitPred is the distribution of neural network
layers across multiple edge devices (Fig. 5), as such there can
be a number of SplitNN deployment strategies [25] based on
the different combination of neural layer distribution. Split-
Pred leverages these strategies to enable privacy-preserving
resource sharing among edge devices on the local network.
Although there can be a number of combinations, this section
discusses three deployment strategies (SplitPred1, SplitPred2
& SplitPred3) that can be used as foundational building
blocks for any combination required to enable privacy-
preserving resource sharing.

1) SplitPred1
Fig. 6 presents the workflow of a simple scenario which
involves an edge device (ED) & edge server (ES) in direct

120372 VOLUME 9, 2021

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

FIGURE 6. SplitNN with two entities.

communication with each other. The SplitNN model is
distributed between ED and ES in such a manner that
all top layers are kept at ED and the bottom most layer
along with labels are kept at ES. ED feeds input data
to the sequential executions of layer1, layer2, . . . , layern
and shares the layern output (outputn) with ES which
feeds the outputn and labels to a cost function C(outputn,
Labels). As Fig. 6 suggests, this strategy does not involve
a split layer and the functionality of ES is limited to
cost function implementation and initialization of back-
propagation. To initiate the back-propagation, σ (Eq. 12) is
calculated at ES and shared with ED where remaining partial
derivatives (Eq. 13) are calculated. This process continues
until the model converges. In real time processing, this
scenario can be used to initialize the split learning process
and gradually move towards SplitPred2 deployment strategy.

σ =
∂C
∂an

(12)

∂C
∂an−1

= σ.
∂an
∂zn

.
∂zn
∂an−1

. . .
∂C
∂w1
=
∂C
∂a1

.
∂a1
∂z1

.
∂z1
∂w1

(13)

2) SplitPred2
In scenarios with more raw data and fast depleting com-
putational and energy resources, ED may opt to off-load
the partial execution of neural network to the ES. As per
the workflow presented in Fig. 7, SplitPred2 involves ED
executing the front end (layer1, layer2, . . . , layerk) of the
neural network and shares the activations and gradients
corresponding to layerk with ES while the ES executes
the back end (layerk+1, layerk+2, . . . , layern) of the neural
network. SplitPred2 provides the flexibility for ED to retain
the labels as well which further strengthens the raw data
privacy aspect. To this end, the output of the last layer (layern)
executed at ES; outputn, is sent back to ED and the cost
function C(outputn, labels) is executed. Unlike SplitPred1,
layerk is considered as the split-layer in SplitPred2which also
enables ES to equally participate in the training process and
hence the functionality of ES is not limited to cost function
implementation. Back-propagation is initiated by computing
the σ (Eq. 12) at ED and sending it to ES where following

FIGURE 7. SplitNN with edge device retaining labels.

partial derivatives are calculated.

∂C
∂an−1

= σ.
∂an
∂zn

.
∂zn
∂an−1. . .

∂C
∂ak
=

∂C
∂ak+1

.
∂ak+1
∂zk+1

.
∂zk+1
∂ak

(14)

ES shares ∂C
∂ak

with ED in order to complete the back-
propagation. ED calculates the remaining partial derivatives
as shown in Eq. 15. This process continues until the model
converges.

∂C
∂ak−1

=
∂C
∂ak

.
∂ak
∂zk

.
∂zk
∂ak−1. . .

∂C
∂w1
=
∂C
∂a1

.
∂a1
∂z1

.
∂z1
∂w1

(15)

As off-loading the back end of the NN to a distant edge
server may consume the limited resources of an ED, it may
also opt for off-loading the part of its NN to a neighbouring
edge device (ED2) using SplitPred3.

3) SplitPred3
SplitPred3 enables the resource sharing among multiple
edge devices. As per the workflow presented in Fig. 8,
SplitPred3 involves more than one EDs sharing different
segments of the SplitNN model while labels are placed with
ES. The execution of forward pass and back-propagating
the gradients remains similar to the architecture shown
in Fig. 6. The first edge device (ED1) executes the first
segment (layer1, layer2, . . . , layerk) of the neural network
and shares activations and gradients corresponding to layerk
with another edge device (ED2) that executes the second seg-
ment (layerk+1, layerk+2, . . . , layerj). The activations and
gradients corresponding to layerj are shared with ES where
the last segment (layerj+1, layerj+2, . . . , layern) is executed
andC(outputn, labels) is executed. Here, layerk and layerj are
two split layers. For back-propagation, ES calculates the fol-
lowing partial derivatives (Eq. 16) and shares ∂C

∂aj
with ED2.

∂C
∂an−1

= σ.
∂an
∂zn

.
∂zn
∂an−1

. . .
∂C
∂aj
=

∂C
∂aj+1

.
∂aj+1
∂zj+1

.
∂zj+1
∂aj

(16)

VOLUME 9, 2021 120373

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

FIGURE 8. SplitNN model segmentation on edge devices.

ED2 calculates the following partial derivatives (Eq. 17)
and shares ∂C

∂ak
with ED1 where the remaining partial

derivatives are calculated as per Eq. 15. This process
continues till the model converges.

∂C
∂aj−1

=
∂C
∂aj

.
∂aj
∂zj
.
∂zj
∂aj−1

. . .
∂C
∂ak
=

∂C
∂ak+1

.
∂ak+1
∂zk+1

.
∂zk+1
∂ak

(17)

Each of the deployment strategies outlined limits the
sharing of rawmanufacturing data among on-premise devices
(edge devices and edge server). The participatory edge
devices share only the output of their last layer of neural
network with each other. This not only ensures data privacy
but also reduces the number of message exchanges in the
on-premise network. The deployment strategy is determined
by the ED specific local parameters such as residual
energy, workload etc. There are various offloading decision
mechanisms proposed in the literature such as [29], however,
this discussion falls outside the scope of the work presented
in this paper.

V. PERFORMANCE EVALUATION
This section investigates the efficiency of SplitPred by
simulating a collaborative prognosis scenario using publicly
available benchmark C-MAPSS data-set [9]. We use a multi-
agent system architecture as described in [19] since the
architecture has been shown to be well suited for real world
industries. Here, the notion of ‘agent’ refers to a digital
agent representing amanufacturing asset and is equippedwith
storing historical failure data and processing capabilities.
From a collaborative prognosis perspective, agents repre-
senting similar types of manufacturing assets working under
similar operating conditions as other participatory network
agents. Hence, the collaborative prognosis is executed among
an established group of agents containing independent and
identically distributed (IID) data.

The performance of SplitPred is evaluated in terms of its
prediction accuracy, model convergence time and the number
of messages exchanged between devices. A comparative
analysis with traditional FL based mechanisms without the
provision of resource sharing is also discussed.

A. DATA-SET MAPPING FOR COLLABORATIVE PdM
The problem observes an aircraft engine that starts with initial
operating values captured from various sensors. As the engine
operating time (in terms of operation cycles) increases,
it begins to degrade. This degradation is captured by the
sensor values used to train a predictive model. The lifetime
of an engine is estimated in terms of the number of operation
cycles before the engine runs to failure. The engine run-to-
failure time-series data is available for training and testing.
The goal is to predict the RUL based on the time-series data
which ends some cycles prior to the last operation cycle (i.e.
failure).

The benchmark data-set [9] is composed of simulated
engine degradation time-series observations. Each time-
series (FD001, FD002, FD003, FD004) contains training
data, testing data and RUL values (ground truth). Each
tuple of the training/testing time-series consists of engine
failure trajectory-id, cycle count, three operating setting
and twenty one sensor observations. An engine failure
trajectory is composed of various operation cycles. The
sensor values at the beginning of each operation cycle
in a trajectory are similar. The time-series FD001 &
FD003 contain data of turbofans operating under the same
condition throughout [19], it fits well to a cross-device FL
setting with asset failure data horizontally partitioned across
multiple IoT edge devices. Thus similar to existing FL based
solutions such as [19], time-series FD001 is used throughout
the experiments. In practice, time-series FD001 data is
distributed equally among intelligent agents hosted by IoT
edge devices constituting a collaborative PdM scenario. Each
agent can train the global model using it’s local time-series
data of failure trajectories. The experiments performed in
this section pertain to the applicability of SplitPred as a
framework to enable participatory agents off-load a part of
their global model training task to the nearest agent on its
local network.

B. PRE-PROCESSING AND GLOBAL MODEL
ARCHITECTURE
A linear degradation approach [20] is used for RUL
estimation. Although, it is acknowledged that a piece-wise
degradation approach results in better accuracy, it requires a
number of experiments prior to determine the optimal initial
RUL value. This is not feasible in real-time edge based
collaborative learning such as SplitPred and thus more suited
for centralised learning. From exploratory data analysis,
measurements from sensor 1, 5, 6, 10, 16, 18 and 19 have been
observed to be constant throughout the engine operation time
and thus viewed as less useful in providing insight regarding
their effect on engine lifetime. Hence, these features are not

120374 VOLUME 9, 2021

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

TABLE 1. Predictive model architecture.

considered for the training and testing. To avoid bias in the
learning process, MinMax scaler is used to normalise the
sensor values (features) [19]. As a result of this, all features
are transformed into values between 0 and 1.

A simple multi-layer NN model (Table 1) is used for
training and prediction. The rationale behind choosing a
simple NN model is the limited computational resources
available with edge gateways. Moreover, optimal learning
model selection is not in the scope of this proposal as
it attempts to investigate the applicability of SplitNN on
edge. NN is also the benchmark predictive model used
to implement FL based solutions. The model used in this
work has 2 hidden layers, 1 input and 1 output layer. InN
and OuN (Table 1) are the number of input and output
neurons respectively. Root Mean Square Error (RMSE) loss
function (Eq. 18) is used to train the NN and Rectified
Linear Unit (ReLU) is the activation function used for initial
layers. Whereas, the output layer uses sigmoid activation
function. RMSE is particularly used against Mean Absolute
Error (MAE) loss function since it helps magnify the
large errors which are important in time-critical scenarios.
Moreover, it has been reported in the literature [30] that model
convergence is smoother with RMSE when compared with
MAE.

RMSE =

√√√√ 1
m

m∑
i=1

l2i

ReLU(z) = max(0, z)

Sigmoid(z) =
1

1+ e−z
(18)

where m is the number of examples in the data, li is the
loss in ith example and computed as PredictedRULi −
ActualRULi. The same predictive model is used to implement
both centralised and FL based solutions also for comparative
analysis.

C. EXPERIMENT DESIGN
The experiments are simulated using Pysyft [31] where
digital agents work as Pysyft virtual workers. In a local
network, field device layer of the experimental set-up consists
of twenty one sensors capturing the machine parameters
and {trajectory-id, cycle count, three operating settings}
capturing the ambient & operational parameters. These
values are fed to the edge device layer that employs two
edge gateways (ED1 and ED2) hosting virtual workers
communicating with one server (ES) employed at the Edge
server layer.

1) MODEL TRAINING SCHEDULE
Initial experiments are performed based on SplitPred1 with
ED1 executing all three layers of the NNmodel (sectionVI.B)
whereas the labels (RUL values) are kept at ES. To enable
SplitPred2, ED1 offloads the last layer (16, 1) of the NN
model to the ES and keeps the labels to strengthen the data
privacy aspect. In SplitPred3, ED1 offloads the second layer
(16, 16) to ED2 whereas the labels and the last layer (16, 1)
are kept at ES. Global model training is performed on all
three scenarios to test their ability to capture the failure
pattern, observe convergence time and the number ofmessage
exchanges in the training process.

D. RESULTS AND COMPARATIVE ANALYSIS
This section investigates the performance of FL client for
the model convergence time, test data accuracy, number of
data-points exchanges in one round of federated training and
memory consumption. The discussion on results pertain to
the performance of FL client with the following implemen-
tation scenarios: (1) conventional FL; when a FL client is
considered as a standalone edge device without the provision
of resource sharing and its direct interaction with global
server is in place. (2) SplitPred; when a FL client utilises
SplitPred(1, 2 &3) to off-load part of its global model training
to another edge device/server in the local network and utilises
allocated bandwidth to the edge server to interact with the
global server.

1) HYPER-PARAMETER TUNING
Fig. 9 and 10 depict the effect of learning rate (lr) and the
model optimizer (Adam and SGD) on the convergence time
and accuracy of SplitPred(1, 2 & 3). The convergence time
of a predictive model represents the number of iterations
required for it to converge to an optimal loss value. This
parameter becomes crucial in edge based collaborative
learning as each iteration of the predictive model not only
consumes computational resources of edge devices, but also
involves a number of message exchanges between them. The
number of iterations to reach an optimal loss value is a valid
indicator for the convergence time. Since RUL prediction is a
regression problem, RMSE was chosen as the measurement
of prediction accuracy. A low RMSE value represents better
accuracy. As evident from Fig. 9, SplitPred2 exhibits the
lowest RMSE value and fastest convergence with hyper-
parameters: lr =.005 and Adam optimizer. Similar optimal
hyper-parameters can be observed for SplitPred1 and Split-
Pred3 also. The subsequent results used for comparative
analysis correspond to the optimal hyper-parameter values for
SplitPred1, SplitPred2 and SplitPred3. The results shown for
conventional FL client also correspond to the optimal hyper-
parameters; lr =.005 & optimizer = Adam. The federation
rounds are kept as 10 while the local iterations are varied
between 10-40. The accuracy and model convergence time
is shown in Fig. 11 and 12, in addition a centralised approach
is implemented using the same global model parameters

VOLUME 9, 2021 120375

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

FIGURE 9. Convergence time and RMSE values of SplitPred1, SplitPred2 & SplitPred3 with different learning rates for Adam Optimizer.

FIGURE 10. Convergence time and RMSE values of SplitPred1, SplitPred2 & SplitPred3 with different learning rates for SGD Optimizer.

TABLE 2. Effect of activation functions on model (Table 1) training time.

presented in Table 1. This allows a comparison against a
centralised approach with the added benefit of data-privacy.
However, to ensure the fairness in comparative analysis,
the centralised approach results are not compared in terms
of the number of message exchanges.

The parameters in Table 1 are also varied to investigate
their effect on model training time and accuracy. The
rationale behind using ReLU activation function is to
minimize the training time as ReLU is computationally
efficient when compared with Sigmoid. Table 2 shows the
effect of using different activation functions at different layers
of the predictive model whereas Table 3 shows the effect
of varying number of neurons in the hidden layers. It was
observed that choice of activation function has no effect on

TABLE 3. Effect of number of neurons in hidden layers.

RMSE value. On the other hand, the number of neurons
in each layer affected RMSE values. The results shown
corresponds to SplitPred2 with Adam optimizer, learning rate
of.005, 25 iterations.

2) CONVERGENCE TIME
The results shown in Fig. 11 depicts the number of iterations
took by an FL client to converge to an optimal loss value
with SplitPred. As evident from Fig. 11, the convergence time
for SplitPred1, SplitPred2 & SplitPred3 overlap with each
other and is very close to the centralised approach whereas

120376 VOLUME 9, 2021

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

FIGURE 11. Convergence time comparison with conventional FL.

FIGURE 12. RMSE value comparison with conventional FL.

conventional FL client takes more time to converge to an
optimal loss value. The explanation for slower convergence
of conventional FL client is the lack of sufficient compu-
tational and communication resources to train the global
model whereas SplitPred deals with this issue leveraging
computational off-loading and minimizing the number of
messages in global model update exchange. From application
point of view, faster convergence in SplitPred can also reduce
RUL estimation response time which can prove to be crucial
for time-critical manufacturing applications.

3) ACCURACY
The RMSE values shown in Fig. 12 correspond to the local
model accuracy achieved by the FL client. For representation
purposes, SplitPred2 is used for this comparison as it
exhibits minimum RMSE values (Fig. 9, 10). The RMSE
values achieved with SplitPred2 are closer to the centralised
processing with the same global model (shown in Table 1).
On the other hand, due to the increased model convergence
time, conventional FL client takes more iterations to reach to
an optimal RMSE values when compared with SplitPred2.
In order to further compare SplitPred’s performance in
terms of accuracy, other sophisticated centralised machine

TABLE 4. RMSE value comparison with other centralised ML approaches.

learning algorithms such as Support Vector Machine (SVM),
Convolutional Neural Network (CNN) and Deep LSTM [32]
were executed. Table 4 suggests that SplitPred outperforms
centralised MLP and support vector regression (SVR) based
techniques whereas Deep LSTM results in the best accuracy
among all. It is to be noted that there are no efficient
means yet to implement split-learning using LSTM or
RNN [34]. Moreover, if the computational complexity is
to be represented as O(W), then W = 4IH+4H2

+3H+HK
for Deep LSTM [35]. On the other hand, for SplitPred,
W = IH+HK. Where I, H and K represent the number
of input units, hidden units and output units, respectively.
Using more complex measures such as CNN, LSTM with
split-learning or increasing the number of layers come
with additional computational burden which is not suitable
for resource-constrained edge devices and diminishes the
purpose of utilising split-learning [34] for training global
model at FL client. The overall objective of cross-device
FL mechanisms is to support agile data analytics which is
usually enabled by executing lightweight learning models on
the edge.

On the other hand, SplitPred uses a simple NN with
only two hidden layers to make it suitable for resource-
constrained IoT devices. A simpler NN model is used for
this case study since the model prediction accuracy is not the
prime concern of this proposal which attempts to introduce
privacy preserving resource sharing for FL when applied
for collaborative PdM. Centralised techniques also have
their limitations in terms of data-privacy and huge number
of message exchanges. Thus, it can be concluded from
Table 4 that SplitPred not only ensures data privacy but
also maintains a reasonable level of accuracy while being
computationally lightweight as compared with CNN and
Deep LSTM.

4) NUMBER OF MESSAGE EXCHANGES AND MEMORY
OVERHEAD
Fig. 13 shows the number of data-points exchanged among
network devices against the number of examples (samples)
in the data-set for one iteration of the training process. It
shows that when compared with conventional FL, SplitPred
exhibits more than a 10 fold decrease in the amount of data
exchanged. This is because the edge devices in SplitPred only
interact with the local edge server which is not the case in FL.
Moreover, in SplitPred, edge devices share only the output of
the last layer executed on them while collaboratively training
the global model in the local network which minimizes the
number of data-points to be shared. This result also reveals
that although different deployment scenarios result in the

VOLUME 9, 2021 120377

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

FIGURE 13. Comparison of number of data-points shared in one iteration.

TABLE 5. Memory overhead comparison.

same accuracy values, they may affect the number of data-
points to be shared among edge devices. The increased
number of data-points in SplitPred3 is the direct outcome
of message exchanges while offloading the number of layers
from ED1 to ED2.
Table 5 shows the comparison among the SplitPred

scenarios and FL in terms of their collective (for all devices
involved) memory requirement. It is evident from the results
that FL consumes much less memory when compared with
SplitPred. The reason for this is that in one iteration of FL
each participating edge device shares its model updates with
the global server which aggregates them and shares the update
with each edge device. Neither edge device nor server has to
remember/store the model parameters learnt in the previous
iteration. Whereas in SplitPred, since the model is distributed
among multiple edge gateways, all of these devices have
to store the model parameters until the back-propagation is
complete. This storage of themodel parameters at each device
contributes to the collective memory requirement. As evident
from Table 5, the memory requirement for SplitPred grows
with the number of devices involved in the training process.
However, while the collective memory requirement is greater
than FL, it is viewed as acceptable and managable within
modern IoT edge devices. Moreover, the ability to off-load
allows for the provision to share this memory burden among
edge devices involved.

VI. CONCLUSION
In this article, a resource sharing framework known as
SplitPred was proposed to enable local edge devices within
a FL client’s network, to collaboratively train a global model
applied in the context of collaborative PdM application.
Various split-learning based distributed model deployment
strategies were also applied and tested for their convergence
time, accuracy, number of message exchanges and memory
requirements. Comparison with state-of-the-art FL based

mechanism revealed that the utilisation of SplitPred results
in improved convergence time, accuracy along with reduced
number of message exchanges during the training process.
However, FL outperforms SplitPred in terms of memory
requirement to train the global model.

VII. FUTURE SCOPE
Finally we present the following open issues for the future
research:
Trade-off between global model accuracy and computa-

tional overhead: This work employs a simple NN model
with two hidden layers as the global learning model for
collaborative PdM. The simplicity ofNN attempts tomaintain
the trade-off between accuracy and the computational over-
head on resource-constrained edge devices. However, other
centralised models such as LSTM and CNN result in better
accuracy but are computationally intensive. This makes these
models not suitable for resource-constrained edge devices
and can prove to be counter-productive in scenarios which
attempt tominimize network and edge resource consumption.
Thus, the trade-off between accuracy and computational
overhead is still an open issue. Although split-learning cannot
be used along with LSTM, lightweight CNNmodels (both 1D
& 2D) can be explored to further improve the accuracy.
Privacy leakage at the local network and model exchange:

The possible privacy leakage [34] at the split-layer is
often handled with (1) increasing the number of hidden
layers at the off-loading device and (2) use of differential
privacy. However, both of these techniques and especially
differential privacy can suffer from reduced global model
accuracy. Therefore, reducing the risk of privacy leak while
maintaining the global model accuracy needs to be addressed.
Technologies such as Blockchain can be utilised to enable
secure and reliable model exchanges as the consensus
mechanism involved can help identify the potential malicious
FL client(s).
Memory overhead for local edge devices: Global model

training using Split-learning involves storage of gradients by
each device involved in the training process which in turn
results in increased memory overhead on edge devices on the
local network. Data compression techniques can be explored
to reduce the memory requirement while making sure that
the compression/decompression process does not contribute
to the model convergence time.

REFERENCES
[1] J. J. M. Jimenez, S. Schwartz, R. Vingerhoeds, B. Grabot, and

M. Salaün, ‘‘Towards multi-model approaches to predictive maintenance:
A systematic literature survey on diagnostics and prognostics,’’ J.
Manuf. Syst., vol. 56, pp. 539–557, Jul. 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0278612520301187

[2] M. Sharp, R. Ak, and T. Hedberg, ‘‘A survey of the advancing
use and development of machine learning in smart manufacturing,’’
J. Manuf. Syst., vol. 48, pp. 170–179, Jul. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0278612518300153

[3] M. Mohr, C. Becker, R. Möller, and M. Richter, ‘‘Towards collaborative
predictive maintenance leveraging private cross-company data,’’ in Proc.
GI-Jahrestagung, 2020, pp. 1–6.

120378 VOLUME 9, 2021

S. Bharti, A. Mcgibney: Privacy-Aware Resource Sharing in Cross-Device Federated Model Training

[4] Z. Balogh, E. Gatial, J. Barbosa, P. Leitao, and T. Matejka, ‘‘Reference
architecture for a collaborative predictive platform for smart maintenance
in manufacturing,’’ in Proc. IEEE 22nd Int. Conf. Intell. Eng. Syst. (INES),
Jun. 2018, pp. 299–304.

[5] International Data-Space Association. Accessed: Mar. 2021.
[Online]. Available: https://www.fraunhofer.de/content/dam/zv/en/fields-
of-research/industrial-data-space/IDS-Reference-Architecture-Model.pdf

[6] E. B. P. Kairouz and H. B. Mcmahan, ‘‘Advances and open problems in
federated learning,’’ Found. TrendsMach. Learn., vol. 14, no. 1, pp. 1–210,
2021, doi: 10.1561/2200000083.

[7] Q. Yang, Y. Liu, T. Chen, and Y. Tong, ‘‘Federated machine learning:
Concept and applications,’’ACMTrans. Intell. Syst. Technol., vol. 10, no. 2,
pp. 1–19, Feb. 2019, doi: 10.1145/3298981.

[8] L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han, M. N. H. Nguyen,
and C. S. Hong, ‘‘Federated learning for edge networks: Resource
optimization and incentive mechanism,’’ IEEE Commun. Mag., vol. 58,
no. 10, pp. 88–93, Oct. 2020.

[9] PHM08 Challenge Data Set. Accessed: Mar. 2021. [Online]. Available:
http://ti.arc.nasa.gov/project/prognostic-data-repository

[10] B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang, ‘‘Edge
computing in IoT-based manufacturing,’’ IEEE Commun. Mag., vol. 56,
no. 9, pp. 103–109, Sep. 2018.

[11] P. Bellavista, R. D. Penna, L. Foschini, and D. Scotece, ‘‘Machine learning
for predictive diagnostics at the edge: An IIoT practical example,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–7.

[12] D. Park, S. Kim, Y. An, and J.-Y. Jung, ‘‘LiReD: A light-weight real-
time fault detection system for edge computing using LSTM recurrent
neural networks,’’ Sensors, vol. 18, no. 7, p. 2110, Jun. 2018, doi:
10.3390/s18072110.

[13] L. Li, K. Ota, and M. Dong, ‘‘Deep learning for smart industry: Efficient
manufacture inspection system with fog computing,’’ IEEE Trans. Ind.
Informat., vol. 14, no. 10, pp. 4665–4673, Oct. 2018.

[14] Z. Zhou, J. Hu, Q. Liu, P. Lou, J. Yan, and W. Li, ‘‘Fog computing-
based cyber-physical machine tool system,’’ IEEE Access, vol. 6,
pp. 44580–44590, 2018.

[15] T. M. Fernández-Caramés, P. Fraga-Lamas, M. Suárez-Albela, and
M. Vilar-Montesinos, ‘‘A fog computing and cloudlet based augmented
reality system for the industry 4.0 shipyard,’’ Sensors, vol. 18, no. 6,
p. 1798, 2018.

[16] X. Li, J. Wan, H.-N. Dai, M. Imran, M. Xia, and A. Celesti, ‘‘A hybrid
computing solution and resource scheduling strategy for edge computing
in smart manufacturing,’’ IEEE Trans. Ind. Informat., vol. 15, no. 7,
pp. 4225–4234, Jul. 2019.

[17] Federated Learning: CollaborativeMachine LearningWithout Centralized
Training Data. Accessed: Jan. 2021. [Online]. Available: https://ai.
googleblog.com/2017/04/federated-learning-collaborative.html

[18] M. Liu, S. Fang, H. Dong, and C. Xu, ‘‘Review of digital twin
about concepts, technologies, and industrial applications,’’ J. Manuf.
Syst., vol. 58, pp. 346–361, Jan. 2021. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0278612520301072

[19] M. Dhada, A. K. Jain, M. Herrera, M. P. Hernandez, and
A. K. Parlikad, ‘‘Secure and communications-efficient collaborative
prognosis,’’ IET Collaborative Intell. Manuf., vol. 2, no. 4, pp. 164–173,
Dec. 2020.

[20] R. H. L. Rosero, C. Silva, and B. Ribeiro, ‘‘Remaining useful life estima-
tion in aircraft components with federated learning,’’ in Proc. PHM Soc.
Eur. Conf., vol. 5, no. 1, 2020, p. 9, doi: 10.36001/phme.2020.v5i1.1228.

[21] N. Aussel, S. Chabridon, and Y. Petetin, ‘‘Combining federated and
active learning for communication-efficient distributed failure predic-
tion in aeronautics,’’ 2020, arXiv:2001.07504. [Online]. Available:
http://arxiv.org/abs/2001.07504

[22] R. Kanagavelu, Z. Li, J. Samsudin, Y. Yang, F. Yang, R. S. M. Goh,
M. Cheah, P. Wiwatphonthana, K. Akkarajitsakul, and S. Wangz, ‘‘Two-
phase multi-party computation enabled privacy-preserving federated
learning,’’ 2020, arXiv:2005.11901. [Online]. Available: http://arxiv.
org/abs/2005.11901

[23] Machine Learning for Beginners: An Introduction to Neural Networks.
Accessed:May 2021. [Online]. Available: https://towardsdatascience.com/
machine-learning-for-beginners-an-introduction-to-neural-networks-
d49f22d238f9

[24] Gradient Descent for Machine Learning. Accessed: Apr. 2021. [Online].
Available: https://machinelearningmastery.com/gradient-descent-for-
machine-learning/

[25] O. Gupta and R. Raskar, ‘‘Distributed learning of deep neural network
over multiple agents,’’ J. Netw. Comput. Appl., vol. 116, pp. 1–8,
Aug. 2018. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1084804518301590

[26] L. Kong, X.-Y. Liu, H. Sheng, P. Zeng, and G. Chen, ‘‘Federated
tensor mining for secure industrial Internet of Things,’’ IEEE Trans. Ind.
Informat., vol. 16, no. 3, pp. 2144–2153, Mar. 2020.

[27] X. Xu, B. Shen, S. Ding, G. Srivastava, M. Bilal, M. R. Khosravi,
V. G. Menon, M. A. Jan, and W. Maoli, ‘‘Service offloading with deep
Q-network for digital twinning empowered internet of vehicles in edge
computing,’’ IEEE Trans. Ind. Informat., early access, Nov. 24, 2020, doi:
10.1109/TII.2020.3040180.

[28] The Shannon-Hartley Theorem. Accessed: Apr. 2021. [Online]. Available:
https://www.ingenu.com/2016/07/back-to-basics-the-shannon-hartley-
theorem/

[29] L. Dong, M. N. Satpute, J. Shan, B. Liu, Y. Yu, and T. Yan, ‘‘Computation
offloading for mobile-edge computing with multi-user,’’ in Proc. IEEE
39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 841–850.

[30] M. Dhada, A. Parlikad, and A. S. Palau, ‘‘Federated learning for
collaborative prognosis,’’ in Proc. Int. Conf. Precis., Meso, Micro, Nano
Eng. (COPEN), 2019, pp. 1–6.

[31] Encrypted TrainingWith Pytorch+ Pysyft. Accessed: Mar. 2021. [Online].
Available: https://blog.openmined.org/encrypted-training-on-mnist/

[32] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, ‘‘Long short-term
memory network for remaining useful life estimation,’’ in Proc. IEEE Int.
Conf. Prognostics Health Manage. (ICPHM), Jun. 2017, pp. 88–95.

[33] G. S. Babu, P. Zhao, and X.-L. Li, ‘‘Deep convolutional neural network
based regression approach for estimation of remaining useful life,’’ inProc.
Int. Conf. Database Syst. Adv. Appl. Cham, Switzerland: Springer, 2016,
pp. 214–228.

[34] S. Abuadbba, K. Kim, M. Kim, C. Thapa, S. A. Camtepe, Y. Gao, H. Kim,
and S. Nepal, ‘‘Can we use split learning on 1D CNN models for privacy
preserving training?’’ in Proc. 15th ACM Asia Conf. Comput. Commun.
Secur. (ASIA CCS). New York, NY, USA: Association for Computing
Machinery, Oct. 2020, pp. 305–318, doi: 10.1145/3320269.3384740.

[35] H. Sak, A. Senior, and F. Beaufays, ‘‘Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition,’’ 2014, arXiv:1402.1128. [Online]. Available: http://arxiv.
org/abs/1402.1128

SOURABH BHARTI (Member, IEEE) received
the Ph.D. degree in information technology from
the Indian Institute of Information Technology and
Management, Gwalior, India. He is currently a
Marie Skłodowska-Curie Research Fellow with
the CONFIRM Centre for Smart Manufacturing,
Nimbus Research Centre, Munster Technological
University, Cork, Ireland. He is also an Asso-
ciate Investigator within the nationally funded
CONNECT Centre, Ireland. His research interests

include predictivemaintenance, wireless networked systems, and the Internet
of Things (IoT).

ALAN MCGIBNEY (Member, IEEE) received the
Ph.D. degree in electronic engineering from Cork
Institute of Technology, Ireland. He is currently a
Group Lead for IoT Systems and User Interaction
with the Nimbus Research Centre, Munster Tech-
nological University, Cork, Ireland. His research
interests include the Internet of Things (IoT),
cyber physical systems, and distributed ledger
technology. He also leads a number of EU and
nationally funded projects with a particular focus

in the areas of distributed optimization, energy efficiency, distributed
software architectures, and IoT platforms. He is also a Funded Investigator
within the nationally funded CONFIRM Centre for Smart Manufacturing
contributing the hub research in the areas of networked systems and the IoT.

VOLUME 9, 2021 120379

http://dx.doi.org/10.1561/2200000083
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.3390/s18072110
http://dx.doi.org/10.36001/phme.2020.v5i1.1228
http://dx.doi.org/10.1109/TII.2020.3040180
http://dx.doi.org/10.1145/3320269.3384740

