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ABSTRACT Driven by increasing in the demand for cloud computing, cloud providers are constantly seeking
configuration mechanisms designed to simply install a reliable and easy-to-manage cloud architecture—
similar to installing an operating system on a computer using a thumb drive. Accordingly, cloud software
components can be packaged into lightweight and portable containers, and then be easily deployed and
managed through orchestration tools such as Kubernetes. Similarly, load balancers can also be deployed
in containerized cloud environments and managed as a container, simplifying the process of scaling in
or out according to the network status or amounts of incoming traffic. In this study, we implemented a
containerized high-performance load balancer that distributes traffic using eBPF/XDP within the Linux
kernel, which can easily be managed via Kubernetes. We compared the performance of the proposed load
balancer with iptables DNAT and loopback based on the RFC2544 performance standard, and also performed
tests simulating real-world traffic patterns by using IMIX traffic streams. Our experimental results indicate
that the throughput performance of the proposed load balancer is considerably better than that of iptables
DNAT; the difference in performance increased with decreasing packet size. The difference in performance
between the loopback (representing the theoretical maximum performance limit) and the proposed load
balancer was minimal.

INDEX TERMS Cloud, datacenter, direct server return, load balancer, multitenant networks.

I. INTRODUCTION
A cloud computing system [1] can be seen as composed
of various IT resources including physical machines, virtual
machines, etc. and various components such as computing
applications, networking, etc. running on them. Owing to
the abundance of management targets, it remains difficult
to build and control cloud infrastructure in terms of cloud
service providers (CSPs), and the construction of datacenters
providing infrastructure as a service (IaaS) involves many
complex considerations. Any human intervention required to
manage cloud resources or components inevitably introduces
high costs in solving operational problems, leading to diffi-
cultly in consistently restoring the managed system elements.
For this reason, CSPs should carefully strategize to automate
cloud deployment and operation to minimize the required
human intervention. Owing to the nature of cloud computing
systems, heterogeneous hypervisors inevitably comprise the
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operating system (OS) of the components; that is, a compo-
nent runs for hypervisors across generations. If a dependency
on a hypervisor where each component is executed exists,
automating the deployment and operation of the components
becomes difficult owing to the number of cases that must
be considered. The same applies to the construction of new
datacenters (or regions); additional datacenters are inevitably
required for increasing numbers of users. When a CSP builds
a new datacenter, significant efforts are required to operate
components dependent on a specific OS if the environment
in which components are run differed from that of existing
datacenters. For this reason, in most clouds, components are
packaged into containers to remove dependencies on specific
OSs. A cloud-native architecture refers to an environment
in which each component is packaged and can be deployed
independently on any infrastructure. On the CSP side,
we emphasize the need to incorporate a cloud-native archi-
tecture in datacenter operations. Because containerized
components can be easily reproduced and ported to any
infrastructure, containers have become an essential tool
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for automated deployment and operation. For containerized
components, a container orchestration tool can be used to
manage the components together, as opposed to separately.
In addition, container orchestration tools include features
for automatic container placement and replication, container
failover recovery, scaling in and out by adding or remov-
ing containers, etc. The well-known container orchestration
tools [2] include Docker Swarm [3], Kubernetes [4], and
Apache Mesos [5]. In particular, through Kubernetes, which
specializes in container service deployment and manage-
ment, cloud administrators can automate the deployment and
operation of components in a cluster unit by declaring a
state without directly commanding the operation. In other
words, resources can be defined, and their state maintained
as desired. A cluster is defined as a clustered set of nodes to
run these resources. Components can be grouped according to
their roles and dependencies and can be operated in multiple
clusters.

Clouds configured by CSPs with multiple clusters involve
concerns, with reliable and automatic deployment as well as
management of multiple clusters. In this study, we refer to our
cloud architecture as an installable cloud, in which multiple
clusters capable of IaaS services can be easily deployed and
managed in an environment where only bare metal devices
and the switch fabric to which they connect are provided. Our
proposed LB is deployed and run on this architecture.

The control of network traffic in the cloud is just as
important as automation. Designing a datacenter network
able to handle exponentially increasing traffic as well as
rapid changes in traffic patterns is a challenge for cloud ser-
vice providers. Owing to the steep increase in certain traffic
streams, loads may become concentrated on certain func-
tions, causing operational abnormalities and affecting other
related functions sequentially. Therefore, to cope with rapidly
changing traffic patterns without difficulty, datacenters must
provide reliable and scalable cloud services. When using the
container orchestration tool, containerized cloud components
can be easily deployed and scaled in and out on demand;
in addition, duplicate containers ensure reliable operation.
In container-based clouds supporting IaaS, applications can
easily be created and removed for user services to cover their
incoming traffic. Accordingly, the datacenter requires a load
balancer (LB) that distributes traffic to multiple containers
or VMs with traffic assigned a representative IP, namely
a virtual IP (VIP), for a specific service as a destination.
In particular, LBs should be able to deliver incoming traffic to
multiple containers/VMs whose number and location change
frequently. In addition, they should be scalable and able to
reliably deliver traffic in any situation. To meet these require-
ments, LBs can also be containerized and deployed through
container orchestration tools. The use of a container-based
LB enables the appropriate deployment and management of
the cloud resources according the choice of the designers.

Among several load-balancing modes. the most well-
known include proxy, inline, and direct server return (DSR).
In particular, DSR is mostly classified as L2DSR and L3DSR

depending on whether the destination MAC address or the
destination IP address is changed. The proposed LB uses the
L2DSR mode, which modulates a destination MAC address
and a VLAN ID to reduce the load on LBs and increase
the response speed by responding to clients directly without
passing through the LB. Therefore, the LB does not require
any state information about the traffic. The proposed LB does
not treat UDP and TCP packets differently. Stateful imple-
mentations exhibit performance differences for each protocol,
but because L2DSR is stateless, the role and behavior of the
LB are exactly the same even if the protocol is different.

There are several challenges in terms of container-based
cloud computing systems. First, a policy on the deployment
of a containerized LB (API for creation and deletion, status
monitor, etc.) should be defined along with the establish-
ment of packet-matching rules. Second, because containers
typically run on Linux, the load-balancing performance on
Linux must be sufficient to the same extent as commer-
cial physical equipment. In this study, we present an LB
architecture addressing these challenges. We automate the
LB deployment, and the rules of load balancing based on
custom resource definition (CRD), where CRD is a custom
object provided by the Kubernetes API. We implement LB
using the extended Berkeley Packet Filter and eXpress Data
Path (called eBPF/XDP) to ensure sufficient load-balancing
performance for the cloud.

The contributions of our work are as follows. First,
we define a suitable cloud-native environment to deploy
and run our proposed load balancer. Second, in this study,
we present a container-based L2DSRLB architecture that can
be deployed and operated using Kubernetes. Third, we imple-
ment an eBPF/XDP-based high-performance LB. Fourth, our
LB and its architecture support a variety of network protocols
(e.g., VLAN, VXLAN, and Geneve) that enable a multitenant
environment by logically dividing the network.

The remainder of this study is organized as follows.
Section II describes the background of the technologies that
underlie the proposed architecture. In Section III, we discuss
the relevant literature related to LBs in cloud architectures.
Section IV describes the cloud-native architecture supporting
our proposed load balancer. Section V proposes not only a
method of deploying LBs as containers and the establish-
ment of packet-matching rules, but also the implementation
of high-performance LBs. Section VI discusses the perfor-
mance of the proposed LB. Finally, Section VII presents our
conclusions and indicates some potential avenues for future
research.

II. BACKGROUND
Before examining the proposed architecture in detail, we pro-
vide some background on the components and tools used
herein. At present, companies or organizations operating
cloud systems are struggling to implement their own com-
ponents for IaaS. They also commonly adopt OpenStack [1],
an open-source project, which is becoming a standard for
IaaS components. More than 150 companies have been
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participating in this project since 2010. OpenStack consists
of several sub-projects with the purpose of controlling avail-
able resources [7] such as computing (called Nova [8]),
networking (Neutron [9]), object storage (Swift [10]), block
storage (Cinder [11]), identity (Keystone [12]), dashboard
(Horizon [13]), database (using MariaDB [14] by default),
advanced message queue protocol (using RabbitMQ [15]
by default), load-balancing (Octavia [16]), provisioning
(Ironic [17]), etc.

Nova supports compute instance (virtual machine) provi-
sioning services. It requires Keystone, which authenticates
users, and Neutron, which provides virtual and physical net-
works used by VMs, and Glance, which provides a compute
image repository. Swift provides a block storage service to
add/remove disks of instances, and Cinder provides a ser-
vice to independently store user account data. Among the
methods of managing OpenStack resources and services, two
typical methods are commonly used: OpenStack Client (a
command-line interface tool) and Horizon, which is a web
interface allowing cloud administrators and users to man-
age various OpenStack resources and services. A relational
database management system such as MariaDB can be used
as an OpenStack database. OpenStack uses message queues
such as RabbitMQ to exchange and coordinate operations
and state information among services. Octavia provides users
with APIs to create, modify, and delete LBs, and supports
multiple provider drivers (plugins for various entities that
actually perform load balancing). It is possible to hierarchi-
cally define which traffic loads are balanced to which back-
ends with a logical model consisting of LBs, listeners, pools,
and members. In the LB created in Octavia, one or more
listeners with the specified port number (e.g., 80 for HTTP) of
the traffic to be received can be registered. Each listener can
specify a pool along with the load balancing method (e.g.,
round-robin) and the members that will finally receive the
balanced traffic can be registered in the pool with their IP
and port information. Because the proposed LB uses L2DSR
mode, it needs a MAC address of backends. Therefore, if a
member is added to Octavia along with its IP and subnet
information, Octavia queries Neutron with the information
and receives the relevant MAC address. While Nova supports
the provisioning of virtual machines, Ironic is a service for
provisioning baremetal physical devices and includes plugins
that can interact with the bare metal hypervisors. With Ironic,
heterogeneous hardware devices can be managed like virtual
machines through a unified interface.

OpenStack provides IaaS by harmonizing various services,
assuming that more than one service may encounter prob-
lems simultaneously. In clouds with several services like
OpenStack and dependencies between them, it is not easy
to reproduce previous sets of services. As noted in the pre-
vious chapter, the deployment of components can be auto-
mated via orchestration. Specialized orchestration tools such
as Kubernetes [4] are indispensable in orchestrating con-
tainerized cloud components. Kubernetes features the ability
to update or modify applications without interrupting the

service, as well as a self-healing function that creates a dupli-
cate container immediately and maintains the service even
if a specific container fails. A pod, the smallest unit, con-
tains containers, has an IP address, and shares a namespace,
network, etc. A deployment defines how Kubernetes should
create and update pods. In addition, Kubernetes includes
various resources such as Services and Ingresses for external
communication of pods, jobs and DaemonSets that control
conditions or number of pods, and ConfigMaps and Secrets
corresponding to metadata.

In many cases, components are built with containers and
deployed in clusters of different environments. However,
many operators struggle with the complexity of the setup and
procedures involved in deploying components in different
environments. To solve this problem, Helm charts [18] are
a collection of files that describe a related set of Kubernetes
resources. Only configuration values that vary depending on
the deployment environment are defined in advance, and
components can be deployed to the Kubernetes cluster by
combining the template and configuration values. OpenStack,
which consists of various components, also has a Helm chart
under the name of OpenStack-Helm project that allows it
to be easily, resiliently, and flexibly deployed in various
Kubernetes environments. OpenStack packaged as a Helm
chart ensures stable cloud operation by ensuring that com-
ponents are restored to the same state in the same cluster
through Kubernetes even if a problem occurs. In addition,
when the load on components increases, it is easy to scale out
the components by simply changing the setting values of the
Helm chart. For example, if we want to increase the number
of Neutron Server processes providing APIs for networking
control, we can increase the pod.replicas.server value in the
values.yaml file for the Neutron helm chart.

III. RELATED WORK
The cloud computing field is currently undergoing active
and extensive research. Recent studies have implemented
architectures or test environments using a combination
of OpenStack (to support virtualization and control of
cloud resources) and Kubernetes (to manage applications in
the form of containers). With OpenStack and Kubernetes,
Kristiani et al. [19] implemented an edge computing archi-
tecture and configured test environments for an availability
manager [20], distributed cloud applications using network
function chains [21], and conducted a performance analysis
of a container networking interface (CNI) [22]. Yang and
Huang [23] implemented a microservices-based OpenStack
monitoring system by utilizingKubernetes. In contrast, in this
study, we provide a practical cloud architecture that enables
IaaS services using these two tools.

Several researchers have also attempted to develop Kuber-
netes itself in terms of availability [24]–[26] and QoS [27].
Through the findings of Abdollahi Vayghan et al. [24], we can
check the availability of container-based applications in some
scenarios by using Kubernetes. For high availability and
integrity with strong consistency, Netto et al. 25] proposed
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a layer called Koordinator between the client and stateful
containers. Similarly, Abdollahi Vayghan et al. [26] pro-
posed a state controller allowing for state replication and
automated redirection to service available entities. Research
efforts have also been conducted with a focus on increasing
the size of clusters while guaranteeing QoS and efficiently
using resources [27]. The present work does not deal with
the enhancement of the functionality of Kubernetes itself, but
instead focuses on using its functions to create the desired
IaaS cloud functionalities.

Load balancing can be categorized as (i) link load balanc-
ing (for balancing traffic across links [28]) and (ii) server load
balancing (for balancing traffic between servers). The scope
of this work is limited to server load balancing. In the early
period of the evolution of cloud computing, the performance
and scalability of load balancing also attracted the attention
of researchers [29], [30]. Along these lines, Fayoumi [29]
presented a simulation model designed to verify load balanc-
ing performance, and Patel et al. [30] provided a function to
modify packets in every host to improve the scalability of
LBs. In addition to the basic role of an LB in distributing
traffic, research has also been conducted on algorithms that
enable resource-efficient [31] or energy-efficient [32] traffic
distribution. Load-balancing algorithms may be classified
into two types, including (i) static load-balancing algorithms
(which distribute traffic equivalently among all available tar-
get servers (e.g., round robin) or VMs) and (ii) dynamic load-
balancing algorithms (which distribute traffic according to
the capacity of all available servers or VMs (e.g., least con-
nections) [31]–[33]). Static LB algorithms [31] are stable and
resource-efficient, but they do not respond properly in case of
failure. Conversely, dynamic LB algorithms respond appro-
priately in case of failures, but they are less stable when using
a relatively large number of resources. Thus, the use of each
algorithm involves advantage and disadvantages. However,
Mohammed et al. [31] managed to combine the advantages
of both algorithms. In terms of important metrics of LB such
as average response time, the well-known load-balancing
algorithms (round robin, throttled, and equally spread current
execution, etc.) have been compared [34]–[36]. Our proposed
LB is a type of static LB algorithm because the target is
determined based on a hash function without considering the
current state or behavior of targets while selecting the target.

Table 1 is the summarization of existing works compara-
ble to the proposed LB. A few studies [37]–[39] have been
conducted in which LBs were deployed in the form of a
container. An LB was implemented at the Internet Proto-
col Virtual Server (IPVS) level of the Linux kernel [37] or
as a containerized Nginx proxy [38], [39]. As the perfor-
mance requirements to handle packets in Linux are becom-
ing progressively more demanding, solutions such as eBPF
have emerged [40], [41]. Whereas BPF [42] is a lightweight
VM that runs programs injected from the user space and is
attached to specific hooks in the kernel, eBPF is an extended
version of the same that supports maps (key/value stores with-
out any restriction on size) and an expanded set of registers

TABLE 1. Summary of comparison of works related to the proposed LB.

and instructions, among other additions. XDP is a type
of eBPF hook, which is a set of commands that operate
within the device driver (DD). Thus, eBPF and XDP are
generally used together in many cases (e.g., for network
functions such as firewalls [43] or as a network traffic visu-
alization tool [44]). For an even better performance than
eBPF/XDP-based LBs, Firestone et al. [45] designed Smart-
NIC to offload host networking to hardware.

IV. CLOUD-NATIVE ARCHITECTURE WITH LOAD
BALANCER
A. KUBERNETES CLUSTERS
In this section, before describing the LB architecture in
further detail, we describe the cloud-native environment in
which the LB is deployed and operated. Fig. 1 shows how
each cluster with different roles is created and which pods
are deployed to the related clusters. Note that we show only
the essential clusters in this figure: Ring 0, OpenStack, LB,
and Shared clusters. For each physical machine (server) in
the datacenter, one port (eth0) is connected to the top-of-
rack (TOR) switch, also called a leaf switch, of the service
network, and the other port (eth1) is connected to the TOR
switch of the management network. Fig. 1 shows a cloud
environment with greater emphasis on the service network
side; although all servers are connected to the management
network, they are omitted in this figure.

We assumed that each server in the initial datacenter has
no configuration and OS, and is connected to only one TOR
in the service fabric.

1) RING 0 CLUSTER
At specific servers, the cloud administrator manually installs
a cluster called Ring 0 (name taken from the Linux kernel).
This cluster not only installs and manages other clusters
on other servers but also manages itself. Three open-source
projects were used for cluster creation and management. The

VOLUME 9, 2021 123707



J.-B. Lee et al.: High-Performance Software LB for Cloud-Native Architecture

FIGURE 1. Various clusters in the cloud and their relationships.

first project is the Cluster API [46], which is a Kubernetes
sub-project providing APIs to create and manage a cluster
with various cloud providers such as Amazon Web Services
(AWS), Google Cloud Platform (GCP), as well as bare-metal
hosts. The second project is the Metal3 [47] project, which
acts as a plug-in for the Cluster API to provision bare metal
hosts. Using Metal3, servers to be provisioned can be defined
and managed as a CRD, which is a custom object provided by
the Kubernetes API. The third project, Ironic, provides APIs
that join physical machines to the cloud. When the custom
resource (CR) related to the bare metal is modified through
the Cluster API, it is detected by the operator inMetal3. Then,
the provisioning is reflected on the corresponding physi-
cal machine by the Ironic API. During this process, a pre-
designated OS image is installed on each server with labeling
jobs, indicating the intended usage of each server. Physical
machines can be provisioned in a Kubernetes environment.
As shown in Fig. 1, various clusters were created according
to their purpose. The Ring 0 cluster uses a Kubernetes pro-
visioning script (called Anchor, which we have defined in
advance) for the installation of other clusters. These scripts
in Ring 0 include information on host images to be installed,
host labels, etc. The Kubernetes applications for each cluster
are defined as Helm charts. Kubernetes applications for each
cluster are deployed by Helm in bare metal systems provi-
sioned by Ring 0. Applications deployed in each cluster are
managed as separate repositories.

Cluster API, which installs and manages other clusters,
is installed only on the Ring 0 cluster. This begs the question

of which cluster deploys and manages Ring 0. Ideally Ring
0 would deploy and manage itself, but this behavior is not
supported by the Cluster API. Therefore, we set Ring 0 to
see itself as a different cluster and manage it. To make this
possible, several steps are necessary. First, manually con-
figure the initial network related to Ring 0. This network
provides communication between nodes of a Ring 0 cluster.
Second, install Ring 0 cluster manually on one PMwhich is a
first master node of Ring 0 in the form of a cluster installed by
Ring 0 through Cluster API. Third, install Metal3 and Cluster
API in the installed Ring 0 cluster. Fourth, create CRD for
itself in Ring 0 cluster to be managed through Metal3. Fifth,
after provisioning another PM as the second master of the
Ring 0 cluster, join it to the Ring 0 cluster. Sixth, move the
Metal3 and Cluster API from the first master to the second
master. As a final step, remove the first master from the
cluster.

If this process is performed, the Ring 0 cluster correspond-
ing to the remaining master can not only provision other
clusters, but also manage itself.

2) SHARED CLUSTER
The shared cluster contains applications related to storage
and monitoring, which require common access from other
clusters. Services that are commonly used in multiple clusters
are deployed and run on a shared cluster.

3) OPENSTACK
The OpenStack and LB clusters warrant greater attention.
Specifically, the OpenStack cluster includes two groups of
workers. In the first group, OpenStack API servers such
as Nova, Neutron, Keystone, Cinder, Glance, Horizon, and
Octavia are operated as pods. We deploy pods by changing
configuration values (user account, node label, IP informa-
tion, number of pods, etc.) of OpenStack-Helm [48] to suit
our cluster environment. The second worker group involves
VMs created by users, and agents such as a DHCP-agent,
OpenVSwitch (OVS)-agent, and Nova-compute support the
VMs. In the terminology used in OpenStack, the workers in
the second group are regarded as compute nodes.

4) LB AND LB CONTROL CLUSTERS
The proposed approach includes two clusters related to LB.
The first cluster is the LB cluster containing pods for load
balancing. Herein, we refer to pods that actually receive and
distribute traffic as LB nodes (LBNs). Each worker node in
the LB cluster runs only one LBN as a DaemonSet. When a
node is added to the cluster to which a DaemonSet is applied,
a pod related to the DaemonSet is also newly created and
runs on the added node. Conversely, when a node is removed
from the cluster or a DaemonSet is deleted, the pod created
by the DaemonSet is cleaned up. The second cluster is the
LB control cluster, which contains the API server and LB
operator acting as the controller of LBNs located in the LB
cluster, which are described in detail in Section VI.C. The
proposed architecture uses two clusters related to LB so that
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the controllers remain unaffected even if a problem occurs in
the LB cluster that handles service traffic. Conversely, even
if a problem occurs in the controller pods in the controller
cluster, not only does the LB cluster remain unaffected, but
the number of controllers is maintained declaratively based
on the template defined in the LB controller cluster, to enable
the failure to be overcome.

B. MULTITENANT NETWORKS
For multitenant networks, we logically segment networks of
different tenants using VLAN ID (VID). Even if the VMs of
different tenants have the same IP, the traffic of different net-
works can be distinguished by their VIDs. As shown in Fig. 1,
each compute node has a hypervisor installed, and VMs of
users are run on its hypervisor. When VM-related traffic goes
out of a node, it is delivered to the TOR physically connected
to the compute node. The user traffic travels on a two-tier
leaf-spine fabric that consists of leaf, border leaf, and spine
switches. The external router is omitted here. When a packet
generated in a compute node exits the node, a VLAN header
is attached along with the VID of the corresponding network.
Because the leaf-spine fabric is setup with VXLAN-EVPN,
a VXLAN header is attached to a packet instead of a VLAN
header. Each leaf switch has a VXLAN tunnel endpoint
(VTEP), which is the start/end point of a VXLAN tunnel.
Thus, each leaf switch encapsulates and decapsulates the
original user data frames. In a leaf switch, a specific VID
is mapped to a specific VNI value of VXLAN by VTEP.
Through VXLAN-EVPN, each leaf shares the learned MAC
addresses; thus, traffic flooding to all the leaf switches can
be minimized. This leads to minimization of the broadcast,
unknown-unicast, and multicast (BUM) traffic within the
network, thus eliminating various problems that may occur
owing to a broadcast storm.

C. LB SETUP PROCEDURE AND L2DSR
For an LBN to perform load balancing, some tasks need to
be performed in advance. When a server that is not in use
and is connected to a leaf node is joined to the LB cluster
with LBN labeling, an LBN is installed as a pod on the server
and assigned to one of the LBN groups. Three LBNs are
grouped together to handle the same VIP. Therefore, when
the LBN is initially installed, a group ID is assigned, and
the operator knows which LBN groups exist. In other words,
when one LB object is created by Octavia, three LBNs are
provided by default. Currently, three LBNs are included in
one group. However, this number is not fixed, and changes
can be considered depending on the traffic situation of the
network. To change the scale of LBNs when the incoming
traffic is too bursty, two approaches should be prepared in
advance. First, a policy to increase or decrease the num-
ber of LBNs should be established referring to the number
of VIPs or bandwidth. Second, a component that checks
whether the state conforms to the policy is needed. Methods
related to these considerations are left for future research as
being beyond the scope of the present work. The external

FIGURE 2. Process of setting up LBNs and L2DSR by LBN.

router distributes traffic evenly across the three LBNs through
the equal-cost multi-path (ECMP) routing protocol. Because
each LBN and the external router are configured to establish a
BGP peer, the inbound traffic can be routed from the external
router to each LBN.

Fig. 2 shows the components associated to LBNs and the
scenario in which LBNs are deployed and used in the cloud.
The drivers, API server, operator, and LBNs represent the
components we implemented for the proposed architecture.
When one or more LBN groups are ready for load balancing,
the LBNs must apply prepared rules that specify which pack-
ets to send and where.We describe the procedure in which the
rules are applied to LBNs and the procedure in which L2DSR
is performed by the LBN for service packets as follows.

1) LBN CONTROL PATH
The red arrows in Fig. 2 indicate the series of steps in which
packet-matching rules are applied to the LBNs. LB creation
begins when Octavia receives a request to create an LB. This
request can be made through the OpenStack client or Open-
Stack horizon. When Octavia receives the request, it sends
a request to Neutron to create a port to be used by the LB.
When the port is successfully created, Neutron returns a VIP
to be used by the LB in response. When the LB creation
API is called, the driver sends the LB creation request with
the generated port information, including the VIP, to the API
server in the LB cluster. The API server creates, modifies, and
removes a custom resource (CR) on the basis of the CRD,
which is predefined for an LBN group. One CR refers to
one LBN group, and CRs are maintained in etcd, which is
a key-value store used as the backing store of Kubernetes for
all the cluster data. The operator monitors the CR for the LBN

VOLUME 9, 2021 123709



J.-B. Lee et al.: High-Performance Software LB for Cloud-Native Architecture

group in etcd and controls the corresponding LBNs according
to the contents of the CR creation, modification, and deletion.
This process is called reconciliation. The operator can change
the state of the CR according to the state of the LBN. When
the operator recognizes the creation of a new CR, the same
rules for traffic destined for the VIP information included
in the CR are applied to all the LBNs belonging to the
corresponding LBN group. Subsequently, the inbound traffic
flows in the order indicated by the blue arrows.

2) DATA PATH OF LBN
Fig. 2 shows an example in which LBN-A, an LBN in
group A, distributes traffic to VM-A1, VM-A2, VM-A3, and
VM-A4. In particular, the blue arrows indicate a case in
which the inbound traffic destined for the VIP of LBN-A
is forwarded to VM-A1 by a hashing algorithm in LBN-A.
The details of the algorithm are discussed in the next section.
The traffic destined for a VIP corresponding to a specific
LBN group passes through an external router and a border
leaf, and finally arrives at one of the LBNs belonging to the
LBN group. The LBN performs hashing based on the header
information of the received packet using pre-configured hash
tables. Through this hashing, a MAC address and VID are
obtained from the related target VM pool. Then, the desti-
nation MAC and VID of the received packet are replaced by
the obtained information, and the packet is transferred to the
nearby leaf switch. In the leaf switch, the packet is encap-
sulated with VXLAN. Because leaf switches share learned
MAC addresses with each other, packets with the destination
MAC of VM-A3 are delivered to the TOR switch connected
to the server with VM-A1, and the VXLAN header is then
decapsulated. At VM-A1, the VIP of LBN-A accepts these
packets destined for the VIP of LBN-A because it is set as a
loopback IP. The VM responds by swapping the source and
destination IPs after processing the packet. Similarly, the leaf
node receiving the packet performs VXLAN encapsulation,
and VXLAN decapsulation is performed at the border leaf.
Subsequently, it is delivered to the external router and exits.
As we adopted L2DSR, in which outbound traffic does not
flow through LBNs, this leads to a nominal load on the LBNs.

V. IMPLEMENTATION OF LBN
Owing to the nature of cloud datacenters, numerous VMs are
generally used, and they can be easily created and removed.
LBs that perform load balancing of traffic to these constantly
changing VMs should also be easily created and removed
according to the network conditions. Physical LBs do not
allow flexible handling depending on the amount of traffic
and thus entail high financial costs. Therefore, we developed
an LB in the form of a container on Linux, which can be easily
controlled at the software level. A container-based LB incurs
a lower financial cost compared to a physical LB because a
general server that is cheaper than a commercial physical LB
can be used. Hence, we are actually replacing a part of the
commercial physical LB that we are using in a production
datacenter with the LB presented here.

A. PERFORMANCE CONSIDERATIONS
The considerations for implementing a software LB com-
parable to a commercial LB in a Linux environment are as
follows. The first is the location of the LB implemented in
Linux, and the second is the implementation method. If we
look at Linux on the network side from the bottom to the
top levels, the layers are usually considered as follows: net-
work interface controller (NIC), DD, traffic controller (TC),
Netfilter, TCP stack, socket layer, and Userspace. The lower
the layer of the data path in which a packet is processed, the
better is the performance. In particular, transferring packets
from the DD to the network stack, it is necessary to allocate
the packets to the sk_buff structure along with the memory
copy, which creates some overhead in terms of performance.
We refer to a study [49] that has solved this problem at a
low level of the Linux operating system; the performance
was improved using the eXpress Data Path (XDP) [50], [51]
and extended Berkeley Packet Filter (eBPF) virtual machine
for the forwarding plane that processes packets in the kernel.
We implemented the LB by exploiting eBPF/XDP to handle
packets in the DD layer before they are delivered to the
networking layer of the kernel.

B. CONTROLLER AND CORE OF LBN
Fig. 3 shows the LBN core in the Linux kernel and the LBN
controller in Userspace. The LBN controller aims to inject the
program of the LBN core and update the hash tables that can
be used by the LBN core. The proposed approach uses two
types of hash tables. The first type is used to check whether
there a hash table exists for the VIP of the incoming packet,
and the result of hashing for the first type of the hash table
is the physical memory address of the VIP. The second type
is a hash table composed of backend VM information (VID,
MAC address) related to a specific VIP. These hash tables
are maintained in BPF maps, which are key/value stores that
reside in the kernel, and they can only be updated using an
LBN controller. When hash tables need to be changed owing
to the addition of a rule, the controller takes the hash tables
in the kernel, updates them, and then overwrites them in the
kernel BPF maps. Therefore, the hash tables handled by the
LBN controller are the same as those handled by the LBN
core. As in the example presented in Fig. 3, when a packet
enters the LBN server, two hash functions are run to obtain
the target information (the destination MAC and VID) for
fast matching. A hash table corresponding to the second type
exists for each VIP. Therefore, the hash table for the corre-
sponding VIP is found through the first hash function, which
requires the destination IP (VIP), destination port, protocol,
VID, and segment type (=VLAN) as parameters. A segment
type is defined such that other protocols can be used instead
of a VLAN. The VLAN is now set as default. A specific VIP
table is filled with information about the target VMs to which
traffic is to be delivered. For example, the tables for VIPs 1, 2,
and 3 are full of entries for three (A, B, C), two (D, E), and two
(F, G) VMs, respectively. After finding a hash table for the
corresponding VIP through the first hash function, the VM
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FIGURE 3. LBN architecture across linux user space and kernel space, and
hash table format and rule matching description of incoming packets.

information to which the packet is to be delivered can be
obtained through the second hash function, the parameters of
which comprise five tuples and the VID of the packet header.

C. HASHING CONSIDERATIONS
Here, we consider how to arrange the entries in each hash
table. As is known, a VM can easily join and leave the real
target pool; hence, the rules in each hash table can be replaced
frequently. Even if only one VM entry is added or deleted
from the hash table, the positions of the other existing entries
may be changed for reasons such as maintaining the ratio
of entries in the hash table. This is called hashing disrup-
tion, in which the target VM for a specific VIP is changed
because the entry hashing value changes. In other words, an
unrelated connection is terminated unintentionally owing to
hashing disruption. Eventually, the process of establishing a
connection with another target is required. Therefore, studies
have investigated hash table mechanisms that support mini-
mal disruption. To solve these problems, we use the Maglev
hashing mechanism [52], which is an improved version of the
existing consistent hashing algorithm [53]. Maglev hashing
allows the locations of existing entries to change as little as
possible when new entries are added to the hash table or
existing entries are deleted. According to Eisenbud et al. [52],
entries are positioned in the hash table through two processes,
namely permutation, which creates a two-dimensional array
by obtaining a non-overlapping order for each entry and pop-
ulation which rotates from entry to entry and places entries
fairly. The number of VM entries that our hash table supports
is MAX_VIPS × (MAX_VMS × FR). MAX_VIPS is the
number of VIPs supported by one LBN. The default value is
4096, and it can be changed according to network conditions.

MAX_VMS represents the number of VMs that can be han-
dled by each VIP. The reason for multiplying MAX_VMS by
FR, which stands for the free ratio of the number of VMs,
is that hashing disruption decreases as the size of the table
increases, and sufficient space is required when a weight is
assigned for each VIP.

VI. EXPERIMENTS
In this section, we describe the performance of the proposed
LBN. It is important to determine how close the performance
of LBN implemented as software is to the rate at which
packets flow on a link. The LB proposed here is a com-
mercial model used in actual datacenters. To prove that the
performance of our LB could replace the existing physical
commercial LB, the performance was measured using the
RFC2544 standard [54], which is widely used for measuring
the performance of physical equipment such as firewalls and
routers. By specifying the experimental conditions, it is possi-
ble to accurately compare the performances of the products of
different manufacturers. In addition, to meet the requirements
of a datacenter, we performed tests that simulated real-world
traffic patterns by using IMIX (Internet Mix) [55] traffic
streams, in which several frames are mixed in a specific ratio
corresponding to their frame size. The IMIX traffic imitates
the traffic patterns that may occur in an actual cloud network.
We first detail the experimental setup and then show the
performance of the RFC2544 and IMIX tests.

A. EXPERIMENTAL SETUP
To measure the pure performance of LB by excluding
other factors from this experiment, the experimental environ-
ment suggested by RFC2544 was configured (See Fig. 4).
As defined in RFC2544, we constructed an experimen-
tal environment by connecting two servers using a single
switch. One server acted as a tester and the other server as
a device under test (DUT). For each test scenario, the tester
server generated packets, sent them to the switch, and
received its response to obtain performance metrics such
as throughput. We installed TRex, which is an open-source
traffic generator for stateful and stateless use cases, and real-
ized low-cost and high-speed operation using Intel’s DPDK.
Using this tool, we were able to perform tests conforming
to RFC standards by simply writing a scenario as a Python
script, and their results were comparable to those of com-
mercial physical testing equipment. Note that all CPU cores
of the tester server were set for TRex packet transmission,
except for the minimum cores to run the tester server. In the
DUT server, we installed an LBN that changed the destination
MAC address and VID in the header of the packet received
from the switch and returned to the switch.

For all the reported runtimes, each server was configured
with two 2.10-GHz CPUs (with total of 16 cores, 11 MB L3
cache), and four 32-GB RAM units were used. The Ubuntu
20.04 operating systemwith Linux kernel 5.4 was installed on
each server. A Mellanox Dual-Port 25G NIC card was used
in each server. One port of the testing server was configured
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FIGURE 4. Test block diagram with test information for translation of
header fields and scenarios for VIPs.

to perform RX only, while the other port performed TX only.
Meanwhile, the DUT server had only one port, which per-
formed both RX and TX. To check packets including VLAN
headers at the kernel level, the rxvlan and txvlan offload
functions of the kernel were turned off on both the servers.
In the tester server, we installed the MLX5 poll mode driver,
which is the driver for Mellanox NIC cards to use DPDK.

Iptables belonging to the Linux Netfilter project provides
functions for filtering and controlling (NAT, etc.) packets.
Among these functions, DNAT is a function that can be
used simply for load balancing. In other words, packets can
be distributed according to DNAT rules which change the
destination address of incoming packets. Therefore, we chose
Iptables DNAT as a comparison target to verify the perfor-
mance of the LBN. In addition, a loopback test was performed
to transmit packets by directly connecting the TX and RX
ports of the tester server to obtain the upper limit of the load-
balancing performance.

One LBN in the proposed approach performs load bal-
ancing with multiple VMs per VIP. Therefore, we consider
the number of VIPs and VMs as modifiable parameters in
the experiment. In the scenario in which an LBN was used,
two cases were considered, including a cause with 1 VIP and
255 VMs, and another with 128 VIPs and 4000 VMs. The
destination IP of the traffic sent from the tester was VIP and
it was randomly selected. The range of the selected VIPs is
the same as the range of the list of VIPs of rules added to the
hash table of the LBN. Note that LBNs belonging to the same
group had the same rules. Because this test was for L2DSR,
the destination IP of the matched traffic did not change,
whereas the VID and destinationMAC address were changed
to the VID and MAC address of one of the related real target
VMs. To make Iptables DNAT perform the same operation as
LBN, the rules for 128 VIPs were applied to Iptables DNAT
equally. The switch connecting each server acted as a bridge
that only flooded incoming packets to the port connected to
the other server. For a general L2DSR configuration, each

TABLE 2. Experimental results.

port of a switch attached to an LBN server was set to the trunk
mode to accept traffic attached to various VLANs; however,
in the experimental environment, the ports were set to the
access mode so that only specific VLANs could be sent and
received. Table 2 shows the results of our experiments. Based
on these data, the results are analyzed in the next section.

B. RFC2544 PERFORMANCE TEST
In this section, we specify the parameters of the experiment
conducted according to the RFC2544 standard and show the
test results based on throughput achieved (in bps and pps).

We tested seven frame sizes: 64, 128, 256, 512, 1024, 1280,
and 1510. Specifically, four types of tests were performed
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FIGURE 5. UDP Throughput (in bps at L2 level) per frame size for
RFC2544.

FIGURE 6. UDP throughput (in bps at L1 level) per frame size for RFC2544.

FIGURE 7. TCP throughput (in bps at L2 level) per frame size for RFC2544.

for each frame size: loopback, DNAT of Iptables, scenario
A for LBN (#VIP = 1, #Real-VM = 255), and scenario B
for LBN (#VIP = 128, #Real-VM = 4000). We transmitted
UDP/TCP traffic with each Ethernet frame size for 60 s at
the maximum speed of the 25G NIC card in one trial, and
the average throughput of the three trials was used as the
final result. The interval for each trial was set to 30 s to
avoid interference between trials. In particular, in the case
of TCP packets for experiment, each packet is set to create
a connection by enabling a SYN flag.

Figs. 5, 6, and 7 show the throughput of each scenario when
traffic consisting only of frames of a certain size is trans-
mitted with the full rate of the 25G NIC card. In particular,
Figs. 5 and 6 show the throughput (in bps) at the L2 and
L1 levels, respectively. Fig. 8 shows the throughput (in pps) at
the L2 level. In the results for all the frame sizes, the loopback
performance can be seen as the best performance that the LB
can achieve.

In Figs. 5 and 6, it can be seen that the smaller the frame
size, the lower the bps rate, owing to the increase in the
overhead of handling frames. Fig. 5 shows the results after
the decapsulation of both the headers of layers 1 and 2 of the
frames, and Fig. 6 shows the results after the decapsulation of
only the header of layer 1 of the frames; thus, the performance
shown in Fig. 6 was better.

Three pertinent questions may arise from the given figures.
First, how close is the performance of the proposed LBN to
that of the loopback interface? Second, how different are the
performances of Iptables DNAT and the LBN? Third, how
much is the difference in performance for varying numbers
of rules applied to the LBN? For the bps rate for L1 and
L2, when the frame size was 64, the difference between
loopback and LBN was less than approximately 5–6 Gbps.
In other words, the performance of the proposed LBN was
only approximately 24% lower than the realistic maximum
performance. When the frame size was 128, the difference
was only approximately 3%, and the performance was nearly
constant at larger frame sizes. Apart from the unavoidable
performance degradation for handling the frame size of 64,
i.e., the smallest frame size, the LBN showed remarkably high
performance. In the worst case (when the frame size was 64),
the performance of the LBN was 16 times better than that of
Iptables DNAT. Even when the difference was the smallest
(when the frame size was 1510), they differed by a factor of
approximately 1.6. When comparing the two scenarios with
different numbers of rules for LBN, the worst-case (when the
frame size was 64) performance decreased by approximately
4.2% as the number of rules increased. However, because
there is nearly no difference at the other frame sizes, we can
see that the number of rules does not affect the performance
significantly. Fig. 7 shows the performance of each frame
size for TCP traffic at the L2 level. We can see that the
performance is almost the same between Fig. 5 and Fig. 7.
This indicates that the LBN is an L2DSR and a stateless LB.
Fig. 8 shows the results of Fig. 5 in terms of pps. In contrast
to the above, it can be seen that the smaller the frame size,
the higher the pps rate, because more packets were sent.
When the frame size was 64, the difference between loopback
and LBN was less than approximately 7–8 Mpps. Of course,
the percentage values for the three questions were the same
as those mentioned in Figs. 5 and 6.

C. IMIX PERFORMANCE TEST
In this section, we describe the parameters of the IMIX
experiment and show the test reports with the throughput
figures. The actual Internet traffic mix changes over time.
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FIGURE 8. UDP throughput (in pps at L2 level) per frame size for RFC2544.

FIGURE 9. Throughput (in bps at L2 level) for IMIX.

FIGURE 10. Throughput (in pps at L2 level) for IMIX.

However, there is widely adopted packet distribution for
quick approximations [55]. The ratio of each frame size
used in our experiment was as follows: 58.333%, 33.333%,
and 8.333% for frames with sizes of 40, 576, and 1500,
respectively. Because the test was conducted bymixing traffic
of various frame sizes, it was similar to the actual network
environment. Figs. 9 and 10 show the bps (at the L2 and
L1 levels) and pps results, respectively, for this IMIX traffic.
The difference in bps measured at the L2 level between
loopback and LBN was less than approximately 0.7 Gbps.

In other words, LBN was only approximately 2% lower than
the theoretical maximum performance. The performance of
the proposed LBN was 27 times better than that of Iptables
DNAT. When comparing the two scenarios with different
numbers of rules for the LBN, there was only a marginal
difference. Similar to the RFC255 test, we can see that the
number of rules did not significantly affect the performance
of the LBN.

D. LBN DEPLOYMENT TEST
First, it was necessary to check whether our proposed LB
was deployed quickly in an environment where the cloud was
composed of components packaged in containers. Accord-
ingly, we first checked how quickly an LBN was prepared.
When the LBN label was attached to the worker of the
LB cluster, Kubernetes installed the LBN to the worker
node. The preparation time of LBN required less than 1 s,
and frequently was occupied by downloading the container
image (about 100 MB) of LBN. Therefore, it required
about 3 s or less for a general server to transform into a
high-performance LB, although the exact time depended on
the network speed. Because the container image contained
libraries used by LB, there was room to reduce the size of the
container image to shorten the deployment time. Addition-
ally, it may be recommended to preload the image into the
node.

Second, we needed to check how quickly the rules made
in Octavia were applied to the LBN. When we added a set of
LB, listener, pool, and member in Octavia, a target rule for
one VIP was created and delivered to LBN. When we tested
this pattern multiple times, it took about 3 s on average, and
most of the bottleneck was identified as the time required for
Octavia, Keystone, Neutron, etc. in OpenStack.

VII. CONCLUSION
In this study, we introduced an installable cloud that enables
IaaS services by utilizing open-source solutions, such as
Kubernetes, Cluster API, and OpenStack. For this architec-
ture, we defined the Ring 0 cluster for deployment and man-
agement of clusters, the OpenStack cluster for IaaS services,
the shared cluster for an accessible area in different clusters,
and clusters for LB. To deploy LBNs and apply rules in
LBNs in this containerized environment, we implemented
drivers of Octavia, the API server, the operator, etc. We were
able to implement an LB with sufficient performance in a
commercial cloud environment by processing packets using
eBPF/XDP in the Linux kernel. Our experimental results
indicate that the throughput of the proposed LBN was signif-
icantly better than that of Iptables DNAT, and the difference
in performance increased as the packet size decreased. As the
difference in performance between loopback (representing
the theoretical maximum performance limit) and LBN was
minimal, it can be concluded that the proposed LB can be
used in commercial applications. The proposed LB is based
on eBPF/XDP and already exhibits excellent performance;
our future goal is to achieve hardware-level performance
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by utilizing SmartNIC. We believe that the LB mechanism
outlined herein will find application outside of cloud com-
puting in the future.
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