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ABSTRACT For a given software enhancement report, identifying its possible approval status could help
software developers by suggesting feature enhancements to compete in the software industry. An auto-
matic solution for the approval prediction of enhancements could assist all the participants in resolving
enhancements. The key challenges are the preprocessing of noisy textual information and the state-of-
the-art feature models to combine the syntactical and semantic word information available in the given text.
To this end, we propose a deep learning based approach for the approval prediction of enhancement reports
that incorporates the users’ sentiments involved in the text. First, we preprocess the textual information
of all enhancement reports to avoid noise. Second, we compute the sentiment of each enhancement report
using Senti4SD. Third, we combine the bag-of-words (BOW) representation and traditional word2vec based
representation to learn the novel deep representation (a recurrent neural network (RNN) with attention based
representation) of preprocessed text. Using an attention mechanism enables the model to remember the
context over a long sequence of words in an enhancement report. Fourth, based on sentiment and deep
representation, we train a deep learning based classifier for the approval prediction of enhancement reports.
Finally, we reuse the 40, 000 enhancement reports from 10 real software applications to evaluate the proposed
approach. The cross-application evaluation suggests that the proposed approach is accurate and outperforms
the state-of-the-art. The results of the proposed approach improve the precision from 86.52% to 90.56%,
recall from 66.45% to 80.10%, and f-measure from 78.12% to 85.01%.

INDEX TERMS Deep learning algorithms, classification, enhancement reports, approval prediction.

I. INTRODUCTION
The users of software applications usually encounter issues
and report such issues for maintenance. The reported issues
describe bugs (defects) or enhancements (suggestions to
improve existing features or to include new features). The
enhancement reports (noted as enhancements for short in the
rest of this paper) are quite extensive in number for abundant
software applications, e.g., enterprise resource planning soft-
ware. Therefore, companies employ issue tracking systems
(e.g., Bugzilla) for the management of enhancements.

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

The management of enhancements involves human
resources (e.g., developers, maintainers, and quality assur-
ance specialists) to read through all enhancements, respond
to the essential and meaningful enhancements, and verify and
approve their solutions. The manual checking of enhance-
ments to identify the possible approved enhancements
is a tedious and time-consuming process. According to
Umer et al. [1], 76% of the enhancements are rejected
due to different reasons, e.g., improper description of
the enhancements. Therefore, an automatic solution to
identify the approval of enhancements can help all the
participants in the management process. To this end, a cou-
ple of automated approaches have been proposed for the
approval prediction of enhancements [1], [2]. However,
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the performance of both approaches requires significant
improvement.

An enhancement usually contains structured (e.g., priority
and severity) and unstructured information (e.g., summary
and detailed description). Such information is collected
through issue tracking systems. Although state-of-the-art
approaches exploit recent preprocessing approaches to filter
out the noise (e.g., URLs, hex codes, special characters, and
stop-words) from the unstructured text, the adopted feature
models (e.g., bag-of-words (BOW) feature representation
and word2vec feature representation) do not combine the
syntactical and semantic word information available in the
text. The concatenation of such information may improve
the performance of prediction models [3].

To this end, we propose a deep learning based approach
for the approval prediction of enhancements that incorpo-
rates the users’ sentiments involved in the text. We also
propose a novel deep representation of enhancements as a
key step of the proposed approach that combines syntactic
and semantic information for feature modeling in an unsu-
pervised manner. First, we preprocess the textual information
of all enhancements to avoid noise. Second, we compute
the sentiment of each enhancement report using Senti4SD.
Third, we combine the BOW feature representation and tra-
ditional word2vec feature based representation to learn the
deep representation of preprocessed text. It uses the attention
mechanism that enables the model to learn the context rep-
resentation over a long word sequence in each enhancement.
Fourth, we train a deep learning based classifier for approval
prediction of enhancements. Finally, we reuse the history
data from real software applications to evaluate the proposed
approach. The cross-application evaluation suggests that the
proposed approach is accurate and outperforms the state-
of-the-art. The results of the proposed approach improve
the accuracy from 77.90% to 82.15% and f -measure from
74.53% to 82.12%.
The paper makes the following contributions:
• A deep learning based approach for approval prediction
of enhancement is proposed. To the best of our knowl-
edge, we are the first to exploit a deep learning algorithm
in the approval prediction of enhancements.

• A novel deep representation is proposed to represent
enhancements for feature modeling that combines
the BOW feature representation and traditional
word2vec representation. It considers the syntactic
and semantic features in an unsupervised manner
that remembers the context over a long sequence of
words.

• The cross-application evaluation of the proposed
approach on ten open-source software applications sug-
gests that the proposed approach is accurate and outper-
forms the state-of-the-art.

We organize the rest of the paper as follows: Section II
provides the details of the proposed approach. Section III
defines the evaluation process and the evaluation results of the
proposed approach. Section IV explains the threats to validity.

Section V discusses the related work. Section VI concludes
the paper and suggests future directions.

II. APPROACH
A. OVERVIEW
The problem of automatic approval prediction of enhance-
ments can be formulated as a classification problem. The
proposed approach categorizes the enhancements into two
classes: approved and rejected. Fig. 1 highlights the key steps
of the proposed approach, explained as follows:
• First, we collect and reuse the enhancement corpus that
contains the summary, description, and status of each
enhancement.

• Second, we remove noisy information like URLs, hex
codes, and special characters from the text. Because
handling such information causes overhead during the
training of deep learning model, we also remove the
English stop-word and perform spell-check, inflection,
and lemmatization.

• Third, we extract a set of unique words from the pre-
processed enhancement that have a frequency of at least
k-times in the enhancement corpus.

• Fourth, we compute the sentiment of each enhancement
using Senti4SD.

• Fifth, we learn each enhancement representation using
a deep RNN with attention by combining summary and
description as a sequence of words (tokens).

• Sixth, we train deep learning based classifier for
approval prediction of enhancements. We pass the sen-
timent and a novel representation of each enhancement
as an input for training.

• We perform cross-application validation to avoid bias
for the evaluation of the proposed approach.

B. PROBLEM DEFINITION
An enhancement e from a set of enhancements E can be
defined as,

e =< d, s > (1)

where, d represents the textual information (summary and
description) of e and s represents the resolution attribute of e.
The proposed approach suggests the approval of the new

enhancement as either approved or rejected . Consequently,
the automatic approval prediction of a new enhancement e
can be defined as a function f :

f : e→ c (2)

c ε {approved, rejected} , e ε E (3)

where, c is suggested approval status either approved or
rejected .

C. SENTIMENT ANALYSIS
The users of the software applications usually suggest
enhancements in writing. Ramay et al. reported that the
written text involves the sentiment of writers [4]. Therefore,
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FIGURE 1. Overview of the proposed approach.

we compute the sentiment of each enhancement to identify
whether the sentiment involved in the text is positive or
negative. Different tools are available to calculate the senti-
ment from text documents e.g., SentiWordNet [5]. However,
a number of researches have been proposed to compute the
sentiment from the software engineering text e.g., EmoTxt
[6], SentiCR [7], Senti4SD [8], SentiStrengthSE [9], and
DEVA [10], whereas the performance of Senti4SD is accurate
and outperforms the other software engineering text classifi-
cation tools. We select Senti4SD for the sentiment analysis
due to its significant performance for software engineering
text classification.

To compute the sentiment of each enhancement, we input
the textual information to Senti4SD. It calculates and returns
the sentiment involved in the enhancement based on emotion-
words, modifier, and negation in the enhancement [8].
We save the computed sentiment with the corresponding
enhancement. An enhancement e with its sentiment can be
defined as,

e =< d, t, s > (4)

where, d , t , and s represent the textual description, sentiment,
and resolution attribute of e, respectively.

D. PREPROCESSING
Fig. 2 highlights the key steps of preprocessing. The textual
information of enhancements contains noise (e.g., URLs,
hex code, special characters, and stop-words) which requires
extra processing during the execution of algorithms. Process-
ing of noisy information is an overhead. Therefore, we pre-
process each enhancement using Python NLTK package.
First, we remove the URLs and hex code, and convert the
text into lowercase. Second, each enhancement report is taken
to perform tokenization. The tokenization process converts
the given text into tokens and assigns them NLP tags. Third,
we employ spell-check and remove stop-words (e.g., is, am,
and are) and special characters (e.g., @ and -) from the
tokenized text. Finally, we apply inflection and lemmatization
where inflection transforms plural words into their singular

FIGURE 2. Overview of preprocessing.

words (e.g., inflection transforms the words algorithms into
algorithm) and lemmatization transforms the comparative
and superlative words into their base-words (e.g., lemmati-
zation transforms the word converted into convert). A pre-
processed enhancement e with its sentiment can be defined
as,

e =< d ′, t, s > (5)

where, d ′, t , and s represent the preprocessed textual descrip-
tion, sentiment, and resolution attribute of e, respectively.
Moreover, we construct a unique words repository using

the entire preprocessed enhancement corpus. We remove
the words from the repository having a frequency less than
k-times in the corpus. Notably, we experiment to figure out
the value of k . We observe that the performance of the
proposed approach is significant when the threshold of the
frequency of unique words is 3.

E. DEEP REPRESENTATION MODEL
A traditional BOW feature representation of an enhancement
gives a boolean array or word frequency for each repository
word in the enhancement [11]. The BOW does not consider
the order of words and semantic similarity among synonyms
of the words in the enhancement. Even the bag-of-n-words
model feature representation faces the problems of high
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FIGURE 3. Comparison of the deep representation model and the traditional feature representation model.

dimensionality and sparse data [12]. To learn the semantic
similarity of the words, a skip-gram based neural network
model (word2vec) [13] is proposed. It considers words having
the same context in the text have the same semantic meaning.
However, word2vec learns a semantic representation of indi-
vidual words instead of a sequence of words which is themain
drawback of word2vec. Consequently, paravec [3] which is
an extension of word2vec is proposed. It learns the sequence
of words but only for a small context [3]. We observe that
a significant improvement is needed in text representation to
preserve the sequence of words, the syntax of words, and the
semantic relationship of words.

To this end, we proposed a deep representation model for
enhancement. Fig. 3 shows the deep representation model
of enhancements for feature learning. We use Long Short
Term Memory (LSTM) cells [14] in the hidden layer as
a memory unit. These cells can memorize the sequence
of words and resolve the vanishing gradient problem [15].
Moreover, the proposed deep representation model attends
to only extracted words (mentioned in Section II-D) for
learning during the classification as an attention mecha-
nism [16]. Notably, the deep representationmodel memorizes
the sequence of words in both forward and backward direc-
tions to make the representation more effective for feature
learning.

To build the deep representation of each enhancement,
we first use the repository to extract the |R|-dimensional rep-
resentation. Second, we learn the |S|-dimensional word2vec
representation using the extracted |R|-dimensional represen-
tation. Finally, we determine the deep representation with
LSTM cells using the learnt |S|-dimensional word2vec repre-
sentation. It provides the |T |-dimensional deep representation

of the given enhancement. The deep representation has a
RNN which is a sequence network having a hidden layer
with n hidden units (h = h1, h2, . . . .., hn). The input of
RNN is the |S|-dimensional word2vec representation (y =
y1, y2, . . . .., yn) and its output is the |T |-dimensional deep
representation (z = z1, z2, . . . .., zn). Each hidden unit hi
converts the previous state si−1 and a word yi into the next
state si and output word zi. In the RNN, each hidden unit
recurrently performs the same function f :

f : {si−1, yi} → {si, zi} (6)

Each state si keeps the information of i previous words in
the hidden layer h. The output zn of the last hidden layer hn
represents the complete enhancement. Notably, the function f
retains the context of the words in sequence due to the LSTM
function [17] that contains built-in memory units to store the
contextual information for long text.

Moreover, we employ attention to learn from the important
words of the enhancement. We derive the attention vector
with the weighted summation of all outputs zi that can be
defined as,

an =
n∑
i=1

αizi (7)

where, αi represents the weight of each word yi that defines
the importance of yi for classification. A bidirectional RNN
learns feature representation with input word sequence for-
ward and backward. A complete deep representation of an
enhancement (re) can be defined as,

re = zn + an + an + zn (8)

where, + represents the integration of vectors.
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The proposed deep representation model contains 300
LSTM units, 0.2 dropout probability, 0.001 learning rate,
and binary cross-entropy based loss function with Adam
optimizer . We set 100 epochs for the training. In contrast to
term frequency basedBOWrepresentation andword2vec rep-
resentation, deep representation is much smaller in size. It is
reported that the size of deep representation (T ) is less than
word2vec representation (4|S|) (< 1200) when we choose
the size of repository as 300 [13] for BOW representation.
For example, BOW model produces a feature matrix of size
40, 000 ∗ 200, 000 where the enhancements are 40, 000 and
the size of the repository is 200, 000. In contrast, the proposed
deep representation of the enhancements produces a feature
matrix of size 40, 000 ∗ 1, 200. Notably, we implement the
proposed model in Python Keras Library [18]. To the best of
our knowledge, we are the first to apply deep representation to
learn the enhancements representation that is further used to
learn a deep learning based classifier for approval prediction
of enhancements.

F. DEEP LEARNING CLASSIFIER
Fig. 4 shows the composition of the deep learning classi-
fier. We exploit the convolutional neural network (CNN) for
approval prediction of enhancement. We choose CNN for
the two following reasons. First, CNN is capable of learning
the deep semantic relationship between words [4]. Second,
it applies different filter sizes to avoid the gradient problem
of RNN [19].

We first input the deep representation and sentiment of
each enhancement to CNN into two parts. The deep learning
classifier contains 3 layers of CNN, filter (number of the
neurons) 128, kernel size (size of the filter) 1, loss function
binary-crossentropy, and activation (the final value of a neu-
ron) tanh. Second, we pass the output of the CNN to a flatten
layer [20] as input to convert the input into a 1- dimensional
vector. Notably, we input the sentiment into a separate CNN
with the same setting. Its output is forwarded to a separate
flatten layer. Third, the results of both flatten layers are
finally merged with merge layer [21] to integrate the results.
Finally, we fully connect the neurons between layers using
the dense layer and map both inputs (deep representation and
sentiment) into a single prediction (output) using the output
layer. The output predicts the approval status of the given
enhancement.

III. EVALUATION
In this section, we evaluate the performance of the proposed
approach (CNN based approval prediction of enhancement
(CAAP)) on enhancements from the 10 open-source applica-
tions of the Mozilla ecosystem.

A. RESEARCH QUESTIONS
We evaluate the CAAP by investigating the following
research questions:

• RQ1: Does CAAP outperform the state-of-the-art
approaches in the approval prediction of enhancements?

FIGURE 4. Overview of the deep learning based classifier.

• RQ2: How do different inputs (the proposed repre-
sentation and sentiment) influence the performance of
CAAP?

• RQ3: How does preprocessing influence the perfor-
mance of CAAP?

• RQ4:Does the proposed deep learning classifier outper-
form machine/deep learning classifiers in the approval
prediction of enhancements?

The first research question (RQ1) investigates the
performance improvement of CAAP against the state-of-
the-art approaches. We select three approaches: 1) an
automatic approval prediction for enhancements (AAP) [2];
2) a sentiment-based approval prediction for enhancements
(SAAP) [1]; and 3) a machine learning based approval pre-
diction of enhancement reports (MAP) [22] because of the
following reasons. First, both AAP, SAAP, and MAP are
proposed for the approval prediction of enhancements as our
approach CAAP is. Second, to the best of our knowledge,
both approaches are proposed recently and are the only
approaches that represent the state-of-the-art.

The second research question (RQ2) examines the impact
of both inputs (the proposed representation and sentiment).
We pass one information at a time to investigate its effect on
the performance of CAAP.

The third research question (RQ3) evaluates the perfor-
mance of CAAP with/without preprocessing to investigate
the influence of preprocessing on CAAP.

The fourth research question (RQ4) provides a compar-
ison between the proposed classifier against alternatives.
We choose CNN as our classifier because Umer et al. [23]
recently declared it as the best machine learning algorithm
for software engineering documents.

B. DATASET
An overview of the dataset is presented in Table 1. We exploit
the only available dataset for enhancements created by
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TABLE 1. Description of dataset.

Nizamani et al. [2] and reused by Umer et al. [1] and
Nafees and Rehman [22]. We collect the enhancements
from the history data. They extracted enhancements from
Bugzilla using the severity attribute of enhancement. They
marked severity attribute as enhancement as an input to the
Bugzilla Native REST API to separate enhancements from
bugs.We collect enhancements from 10 software applications
where each application has more than 2.5% enhancements
of the dataset. The total number of collected enhance-
ments in our dataset is 40, 000 in which 12.45%, 4.00%,
3.15%, 18.98%, 2.69%, 18.00%, 5.35%, 20.59%, 10.34%,
and 4.45% belong to Bugzilla, Calendar, Camino Graveyard,
Core, Core Graveyard, Firefox, MailNews Core, SeaMonkey,
Thunderbird, and Toolkit, respectively. Notably, the baseline
approaches [1], [2], [22] use the same dataset for the evalua-
tion of their approaches.

C. PROCESS
To evaluate the performance of CAAP, we first preprocess
each enhancement as mentioned in Section II-D, compute the
sentiment (as mentioned in Section II-C) of each enhance-
ment, and learn its proposed representation as mentioned in
Section II-E. Second, we perform cross-application evalua-
tion to reduce the threats to validity in which all enhance-
ments E are divided into 10 portions Pi according to
their application where i = 1, 2, . . . .., 10. For the ith

cross-application evaluation, we collect E that are not from
Pi as training set TS and enhancements from Pi as evaluation
set ES.
The steps of each ith cross-application evaluation are

following:
1) We collect TS from E but Pi.

TSi =
⋃

j∈[1,10] ∧ j 6=i

Pj (9)

2) We train a support vector machine (SVM ) on TS.
3) We train a long short term memory (LSTM ) on TS.
4) We train a proposed classifier (convolutional neu-

ral network (CNN )) on TS.
5) We train the classifiers from AAP [2], SAAP [1], and

MAP [22] on TS, respectively.
6) We predict each enhancement from ES using

the trained SVM, AAP, SAAP, MAP, and CNN,
respectively.

7) We compute the accuracy (Acc), precision (Pre), recall
(Rec), f-measure (FM), Matthews correlation coeffi-
cient (MCC), and odds ratio (OR) for each classifier.

To evaluate the performance of CAAP, we select the
well-known and most adopted metrics (Acc, Pre, Rec, and

FM) that can be defined as:

Acc =
TP+ TN

TP+ TN + FP+ FN
(10)

Pre =
TP

TP+ FP
(11)

Rec =
TP

TP+ FN
(12)

FM =
2× Pre× Rec
Pec+ Rec

(13)

where Acc, Pre, Rec, and FM are the accuracy, precision,
recall, and f-measure of the approaches to predict the approval
status of enhancements. TP is the total number of enhance-
ments that are correctly classified as approved, TN is the
total number of enhancements that are correctly classified
as rejected, FP is the total number of enhancements that are
incorrectly classified as approved, and FN is the total number
of enhancements that are incorrectly classified as rejected.

To check the quality and effectiveness of each classifier,
we respectively compute MCC and OR.

MCC =
TP× TN−FP× FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(14)

OR =
TP/FP
FN/TN

(15)

D. RESULTS
1) RQ1: COMPARISON AGAINST BASELINE APPROACHES
To answer the research question RQ1, we compare the per-
formance results of CAAP, SAAP, AAP, and MAP. To this
end, we perform cross-application validation and present the
average evaluation results of all approaches in Table 2. The
first column presents the approaches. Columns 2-7 present
the Acc, Pre, Rec, FM, MCC, and OR of the approaches,
whereas the rows of the table present the performance of
CAAP, SAAP, AAP, and MAP, respectively.

We present the FM distribution of cross-application evalu-
ation for CAAP, SAAP, AAP, andMAP in a beanplot (Fig. 5).
We plot one bean for each approach to compare the FM
distribution of the approaches. In a bean, each horizontal
lines represents the FM of the corresponding application,
whereas the average FM is presented by a comparatively long
horizontal line.

From Table 2 and Fig. 5, we make the following
observations:
• CAAP outperforms SAAP, AAP, and MAP. The
improvement of CAAP upon SAAP, AAP, and MAP
in Acc, Pre, Rec, and FM is up to (5.46% = (82.15%
− 77.90%) / 77.90%, 4.98% = (90.56% − 86.26%) /
86.26%, 20.54% = (80.10% − 66.45%) / 66.45%,
14.06% = (85.01% − 74.53%) / 74.53%), (15.80% =
(82.15% − 70.94%) / 70.94%, 88.20% = (90.56% −
48.12%) / 48.12%, 52.31% = (80.10% − 52.59%) /
52.59%, 75.28% = (85.01% − 48.50%) / 48.50%),
and (−10.03% = (90.39% − 82.15%) / 82.15%,
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TABLE 2. Performance of CAAP, SAAP, AAP, and MAP.

4.67% = (90.56% − 86.52%) / 86.52%, 21.38% =
(80.10% − 65.99%) / 65.99%, 8.82% = (85.01% −
78.12%) / 78.12%), respectively. The possible reasons
of the significant improvement in performance are as
follows: 1) the deep representation model (mentioned
in Section II-E) that does not only learn the semantic
representation of individual word but also memorizes
the sequence of words to make the representation more
effective for feature learning; 2) the proposed deep learn-
ing classifier (CNN) is better at extracting local/position
invariant features; and 3) Naive Bayes (NB) and SVM
proposed by Nizamini et al. [2] and Umer et al. [1] do
not work with variable-high input dimensions.

• Although the accuracy of MAP is higher than the pro-
posed approach, the proposed approach outperforms
MAP in Rec as the misclassification rate of MAP is
21.38% = (80.10% − 65.99%) / 65.99% higher the
proposed approach.

• The average results of MCC (0.492) > 0 and OR
(17.005)> 1 are true for CAAP and confirm the quality
and effectiveness of CAAP.

• The FM results of CAAP do not drastically fluctuate in
contract to SAAP, AAP, and MAP (shown in Fig. 5) and
suggest CAAP is more reliable.

Moreover, we perform one-way analysis of variance
(ANOVA) andWilcoxon test to investigate the significant dif-
ference between CAAP, SAAP, AAP, and MAP. We employ
ANOVA as we apply all approaches to the same set of appli-
cations, whereas Wilcoxon test is performed to double-check
the significance. Both ANOVA and Wilcoxon test confirm
whether the only difference (single factor, i.e., different
approaches) leads to the difference in performance. Notably,
we compute ANOVA and Wilcoxon test on Excel and Stata
with their default setting and do not adjust any parameter. The
ANOVA returns the f-ratio value = 49.06987 and p-value =
.00001, whereasWilcoxon test returns p-value= 0.0025. The
results of both ANOVA and Wilcoxon test suggest that the
factor (using different approaches) has a significant differ-
ence at p < .05.
Although the CAAP is accurate, we observe many false

positives and false negatives. For example, CAAP falsely
predicts the rejected enhancement ‘‘Option to disallow scripts
from hiding toolbars’’ as approved and accepted enhance-
ment ‘‘Automatically decode MacBinary and BinHex files
like Mac IE’’ as rejected. We consider a randomly selected
set of 1000 enhancements to investigate the false posi-
tives/negatives. We observe that CAAP ignores some of the
unique words from the selected enhancements due to the

FIGURE 5. Distribution of FM.

threshold of the frequency of unique words that is 3. For
example, the frequency of words (e.g., disallow, MacBinary
and BinHex) is less than 3. Notably, we set the frequency
threshold 3 because CAAP works best at the frequency
threshold 3. However, we have not fully understood the ratio-
nale for false classifications. In future, we should investigate
the rationale for false classification and find out the ways to
reduce false classifications.

Based on the preceding analysis, we conclude that CAAP
attains a significant improvement in performance upon
SAAP, AAP, and MAP.

2) RQ2: IMPACT OF DIFFERENT INPUTS
To answer the research question RQ2, we compare the perfor-
mance of CAAP with and without different inputs (sentiment
and deep representation (DR)). Evaluation results of CAAP
by enabling and disabling different inputs are presented
in Table 3. Input settings are given in the first column.
Columns 2-7 present the Acc, Pre, Rec, FM,MCC, and OR of
CAAP with different input settings, whereas the rows of the
table present the performance of CAAP against each input,
respectively.

From Table 3, we make the following observations:

• Deep representation (DR) alone is not sufficient for the
approval prediction. AlthoughDR alone slightly reduces
the performance of CAAP (DR + Sentiment), it helps
CAAP in significant improvement in performance upon
SAAP and AAP. It reduces the Acc, Pre, Rec, and FM
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TABLE 3. Impact of different inputs.

up to 0.26% = (82.15% − 81.94%) / 81.94%, 3.46% =
(90.56% − 87.53%) / 87.53%, 0.07% = (80.10% −
80.04%) / 80.04%, and 1.66% = (85.01% − 83.62%) /
83.62%, respectively. One of the possible reasons for
this reduction is that negative written reports more focus
on bugs/problems instead of suggestions/enhancements.
Umer et al. [1] reported that 71.63% negatively written
reports are rejected where the rejection rate of negatively
written reports is 152.48% = (71.63% − 28.37%) /
28.37%. This finding serves as the rationale to introduce
sentiment into the proposed approach.

• Disabling DR (i.e., sentiment only) from the input
significantly reduces the performance of CAAP. It sig-
nificantly reduces the Acc, Pre, Rec, and FM up to
106.56% = (82.15% − 39.77%) / 39.77%, 76.26% =
(90.56% − 51.38%) / 51.38%, 111.40% = (80.10% −
37.89%) / 37.89%, and 94.89%= (85.01%− 43.62%) /
43.62%, respectively. It suggests that sentiment alone is
not appropriate for the approval prediction. One of the
possible reasons of this reduction is that DR memorizes
the semantic relationship among n-words (sequence of
words) and learns the features in an effective way which
is the key of the proposed approach.

To further investigate the impact of inputs in approval
prediction, 300 enhancements are randomly selected and
manually classified. The manual classification is performed
by a team of four software developers and a Ph.D. student.
Notably, all participants have rich experience in the man-
agement of SE reports. First, they independently classify
the enhancements and share their experience to finalize the
results. Second, they compare the manual classification with
CAAP classification (sentiment only) and observe that 60%
and 40% approved enhancements are positive and negative,
respectively. Finally, they compare the manual classification
with CAAP classification (DR + sentiment) and observe
that 18% of approved enhancements (sentiment only clas-
sification) are misclassified. For example, rejected enhance-
ment ‘‘Patch: pref to prevent accidental following of links of
blocked images’’ is classified as approved by CAAP with DR
+ sentiment. The possible reason is the selection of negative
words, e.g., accidental (having frequency 10> 3) and prevent
(having frequency 41 > 3) as unique words. The modifi-
cation in the selection of unique words should be based on
the frequency of words and include word polarity (positive/
negative). Such modification may provide an effective mea-
surement to reduce misclassification.

Based on the preceding analysis, we conclude that
disabling DR significantly affects the performance of

CAAP. However, both DR and sentiment are critical
for CAAP.

3) RQ3: IMPACT OF PREPROCESSING
The textual information of enhancements contains noise
(e.g., URLs, hex code, stop-words, and punctuation). The
noise is meaningless and can directly affect the abil-
ity to learn any machine/deep learning model. Therefore,
preprocessing of textual information is an integral step
in machine learning. It improves the performance and
reduces the computational cost of the machine/deep learning
model.

To answer the research question RQ3, we perform a
comparison between the performance results of CAAP by
enabling and disabling the preprocessing step. We present the
evaluation results of CAAP with and without preprocessing
in Table 4. The first column presents the preprocessing input
settings. Columns 2-7 present the Acc, Pre, Rec, FM, MCC,
and OR of CAAP, whereas the rows of the table present the
performance of CAAP upon different preprocessing input
settings.

From Table 4, we make the following observations:
• Enabling preprocessing attains significant improvement
in performance. It significantly improves the Acc, Pre,
Rec, and FM up to 0.83% = (82.15% − 81.47%) /
81.47%, 3.00% = (90.56% − 87.92%) / 87.92%,
9.37% = (80.10% − 73.24%) / 73.24%, and 6.38% =
(85.01% − 79.91%) / 79.91%, respectively. The possi-
ble reasons of the improvement are as follows: 1) the
textual information of enhancements contains irrelevant
and meaningless data, e.g., stop-words and punctuation.
Therefore, passing such data to the proposed approach
is an overhead. To this end, applying preprocessing may
help in performance improvement and computation cost
reduction; and 2) the use of Lancaster stemming algo-
rithms instead of Poter stemming algorithm for lemma-
tization. For example, the output (cri) of a word crying
with Poter stemming algorithm has no meaning in sen-
timent analysis, whereas the output (cry) of the same
word with Lancaster stemming algorithm has negative
sentiment in emotion analysis.

• Disabling preprocessing results in reduction in MCC
and OR. Although it reduces MCC from 0.492 to 0.416
and OR from 17.005 to 16.848, the results of MCC =
0.416 > 0 and OR = 16.848 > 1 confirm the quality
and effectiveness of CAAP without preprocessing.

From the preceding analysis, we conclude that the pre-
processing step is critical for the enhancement approval
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TABLE 4. Impact of preprocessing.

prediction, and disabling preprocessing would result in a
significant reduction in performance of CAAP.

4) RQ4: COMPARISON AGAINST
CLASSIFICATION ALGORITHMS
To answer the research question RQ4, we select SVM and
LSTM, because SVM is a best machine learning classifier for
software engineering document [1] and LSTM is proven to
be effective in natural language processing [24], to compare
their performance with CAAP. Notably, we pass same prepro-
cessed enhancements, their sentiment and DR to the selected
classifiers for the comparison. We exploit linear SVM with
default settings and LSTMwith the given settings (dropout=
0.2, recurrent_dropout = 0.2, activation = sigmoid , and loss
function = binary-crossentropy).

We present the evaluation results of classification
algorithms in Table 5. Approaches are presented in the first
column. Columns 2-7 present the Acc, Pre, Rec, FM, MCC,
and OR of the classifiers, whereas the rows of the table
present the performance of each classifier, respectively.

From Table 5, we make the following observation:
• The proposed approach CAAP outperforms both
machine learning classifier SVM and deep learning clas-
sifier LSTM. The performance improvement of CAAP
upon SVM in Acc, Pre, Rec, and FM is up to 2.37% =
(82.15% − 80.25%) / 80.25%, 5.52% = (90.56% −
85.82%) / 85.82%, 4.60% = (80.10% − 76.58%) /
76.58%, and 5.03% = (85.01% − 80.94%) / 80.94%,
respectively, whereas the performance improvement of
CAAP upon LSTM in Acc, Pre, Rec, and FM is up to
1.76% = (82.15% − 80.73%) / 80.73%, −1.09% =
(90.56% − 91.56%) / 91.56%, 7.07% = (80.10% −
74.81%) / 74.81%, and 3.24% = (85.01% − 82.34%) /
82.34%, respectively.

• The performance of CAAP is better than LSTM. The
reason for the decrease is that our input text is long
and does not demand sequential preprocessing due to
the attention mechanism (mentioned in Section II-E).
Another reason is that CNN is better at extracting
local/positioninvariant features in contrast to LSTM, and
also works well with long input text [25].

• The performance of CAAP is better than SVM. The
reason for the decrease is that SVM does not work
with variable-high input dimensions as compared to
CNN. Although DR (mentioned in Section II-E) greatly
reduces the length of feature set, SVM has to deal
with variable-high input dimensions which require
high computation. Another reason is that CNN does
not require feature modeling, which is tedious and
time-consuming.

Based on the preceding analysis, we conclude that CNN
outperforms other classifiers in the approval prediction of
enhancements.

E. THREATS TO VALIDITY
The first threat to construct validity is the possible incor-
rect labeling of enhancements. Although it is reported that
labeling of software engineering reports is not reliable
[1], we assume that the reused enhancements are correctly
labeled. However, incorrect labeling of enhancements may
affect the performance of CAAP.
The second threat to construct validity is the selection of

evaluation metrics. The metrics (accuracy, precision, recall,
f-measure, MCC, and OR) are selected for the classification
of enhancements, because they are the well-known and the
most adopted metrics [1], [2], [4].
The first threat to internal validity is the selection of a

sentiment analysis repository. We select Senti4SD for CAAP,
because it outperforms other available repositories as men-
tioned in Section II-C. The use of other repositories may
affect the performance of CAAP.
The second threat to internal validity is implementation

of SAAP and AAP. The implementation and results of the
approaches are double checked to mitigate the threat. Some
unfold errors may affect the performance of CAAP.
The third threat to internal validity is related to the input

settings of the hyper-parameters of CNN. We train the pro-
posed classifier with the setting of a few hyper-parameters
as mentioned in Section II-E. The change in other default
parameters may affect the performance of CAAP.
A threat to external validity is the reliability of CAAP

against other datasets. We evaluate CAAP only on 10 open
source applications as mentioned in Section III-C. The inclu-
sion of other inter/intra domain enhancements may affect the
performance of CAAP.

IV. RELATED WORK
Many researchers studied the automated classification of soft-
ware engineering reports (SE-reports) [26]–[34], however,
only three studies [1], [2], [22] are focused on enhancements.
Most of the state-of-the-art approaches related to the classi-
fication of SE-reports mainly predict the severity/priority of
SE-reports, incorrect classification of SE-reports, and dupli-
cate SE-reports.

A. PREDICTION OF SEVERITY / PRIORITY
The severity/priority of SE-reports plays a vital role in
prioritization. During the last decade, different researches
have been conducted for the severity/priority prediction of
SE-reports.
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TABLE 5. Influence of classification algorithms.

For the severity prediction, Menzies and Marcus [35] pro-
posed a machine learning based novel approach (SEVERIS)
that predicts the severity of SE-reports. Lamkanfi et al. [36]
and Roy and Rossi [37] collected the reports from Eclipse,
GNOME, and Mozilla and found the performance of naive
Bayes classifier best for the severity prediction of SE-reports.
Chaturvedi and Singh [38] applied different machine learning
classifiers on IV and V projects of NASA to predict their
severity. Sharma et al. [34] took info-gain and chi-square for
feature selection and reported that multinomial naive Bayes
and k-nearest neighbor perform better for the severity predic-
tion of SE-reports.

For the priority prediction, Abdelmoez et al. [39] used the
naive Bayes classifier that predicts the priority of SE-reports.
They collected data from three large open-source projects,
i.e., Mozilla, Eclipse, and GNOME. Based on linear regres-
sion, Tian et al. [40] proposed an approach (DRONE) for
the same purpose and achieved the average F1-score up
to 29%. Alenezi and Banitaan [41] used two feature sets
(term frequency weighted words based and attribute based)
and applied naive Bayes, decision tree, and random forest
for the priority prediction. The evaluation results reveal that
decision trees outperform the naive Bayes and random for-
est. Tian et al. [42] adopted the nearest neighbor approach
to more than 65, 000 Bugzilla reports for the identification
of their fine-grained labels. Recently, Choudhary [43] intro-
duced a priority prediction model. The study used a support
vector machine to assign priorities of Firefox crash reports
based on their frequency and entropy.

B. PREDICTION OF INCORRECT CLASSIFICATION
One of the major challenges in bug prioritization is to deal
with the incorrect classification of SE-reports that may delay
its resolution.

Antoniol et al. [44] proposed an automated classification
approach. They used naive Bayes, decision trees, and logistic
regression to classify SE-reports of Eclipse and JBoss. They
reported that the approach accurately classifies the bugs up to
82%. Herzig et al. [45] examined 7000 SE-reports collected
from different issue-tracking systems and reported that 33.8%
reports are incorrectly classified.

C. PREDICTION OF DUPLICATE SE-REPORTS
Users usually report the same issues multiple times. Auto-
matic identification of duplicate SE reports may save the time
and efforts of developers. From this perspective, many studies
have been conducted [46]–[48]; however, the following are
most significant and influential.

Saric et al. [49] proposed a supervised machine learning
technique to identify the textual similarity of SE-reports using
semantics. Later, Lazar et al. [50] improved the performance
of Saric et al.’s work, whereas Lin et al. [33] came up with
a different approach that relies on a support vector machine
for the duplicate detection of SE-reports. Tian et al. [51]
also used the support vector classifier for the identification
of duplicate SE reports. Feng et al. [52] used consumer’s
profile to detect the duplicate SE reports. Thung et al. [47]
proposed a support vector based tool (DupFinder) that mea-
sures the similarity using summary and description attributes
of reports. Notably, Bugzilla uses DupFinder for the identifi-
cation of duplicate SE-reports.

D. SENTIMENT BASED PREDICTION FOR SE-REPORTS
Jongeling et al. [53] presented a comparison study on senti-
ment analysis tools. They examined the Sentiment analysis
tools (SentiStrength, Alchemy, Natural Language Toolkit,
and Stanford NLP) and reported the disagreement between
tools. They duplicated two existing studies to figure out if the
previously published results can be replicated using different
sentiment analysis tools. The results reveal that the same
results cannot be replicated with a different analysis tool. The
study suggests the need for a sentiment analysis tool in the
software engineering domain.

Islam and Zibran [9] developed a tool for SE-reports.
They used 5600 manually annotated JIRA SE-reports to
evaluate the tool. The results reveal that the SentiStrength-SE
(a domain dependent tool) outperforms the existing
domain-independent tools (SentiStrength, Natural Language
Toolkit, and Stanford NLP). Islam and Zibran [10] also
introduced a sentiment analysis tool DEVA. The tool per-
forms sentiment analysis and captures the emotion states
in SE-reports. They used 1795 JIRA SE-reports for the
quantitative evaluation of DEVA. The reported preci-
sion and recall of DEVA is more than 82% and 78%,
respectively.

Ahmed et al. [7] also introduced a sentiment analysis
tool for the software engineering domain. They used 2000
manually labeled review comments dataset for one hundred
10-fold cross-validation. They exploited eight supervised
learning algorithms (adaptive boosting, decision tree, gra-
dient boosting tree, naive Bayes, random forest, multilayer
perceptron, support vector machine with stochastic gradient
descent, and linear support vector machine) to evaluate the
proposed approach. The evaluation results reveal that gradient
boosting tree outperforms the other algorithms and gives
the highest mean accuracy, precision, and recall up to 83%,
67.8%, and 58.4%, respectively.
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Calefato et al. [6] proposed a toolkit (EmoTxt) for the
identification of emotion from text. The EmoTxt is trained
and evaluated on a gold standard of about 9K question,
answers, and comments. The empirical evidence reveals that
EmoTxt achieves comparable performance with datasets col-
lected from Stack Overflow and JIRA.

A sentiment analysis tool (Senti4SD) is developed by
Calefato et al. [8] that supports developers in their com-
munication channels. The tool is trained and validated with
a gold standard of Stack Overflow questions, answers, and
comments. The dataset is manually annotated for senti-
ment polarity. The evaluation results show that the tool
decreases the misclassification of neutral and positive posts
as emotionally negative.

Werder and Brinkkemper [54] developed a tool called
MEME-a Method for Emotion Extraction to extract emotion
from the software engineering text. The authors collected data
from GHtorrent and GitHub to evaluate the tool. The results
show that MEME is a better tool as compared to Syuzhet R
package emotion analysis.

Marshall et al. [55] carried out an experiment to observe
the effect of emotional post content on project performance.
Three Scrum Sprints consisting of five teams members
produced thirteen hundred forum posts. A manual senti-
ment analysis evaluation technique suggests that emotional
posts in software development team communication need
intervention.

Williams andMahmoud [56] presented a preliminary study
to detect, classify, and interpret emotions in the tweets of
software users. They collected and used 1000 tweets from
a wide range of software systems, e.g., Twitter. The eval-
uation results suggest that naive Bayes and support vector
machine can accurately detect general and specific emotions
expressed in software-relevant tweets. Moreover, a position
paper is presented by Fountaine and Sharif [57] on the effects
of emotional awareness on the progress of developers that
implicates the impact of emotion in software development.

Graziotin et al. [58] shared the experienced consequences
of unhappiness (emotions) among developers and found
49 consequences of unhappiness. Graziotin et al. [59] also
observed the effects of happiness and unhappiness in software
development. The study carried out a qualitative analysis and
reported the consequences of both happiness and unhappiness
that are beneficial to the mental well-being of developers.

Lin et al. [60] built a software library based on the devel-
opers’ opinions collected from Stack Overflow. From the
collected dataset, 40K manually labeled sentences are used
to examine the accuracy of the tools (SentiStrength, Natural
Language Toolkit, Stanford CoreNLP, and EmoTxt) that are
famous for identifying the sentiment of software engineering
text. The results suggest that Stack Overflow does not deal
with emotions; instead, it is a place for developers to discuss
technicalities.

Umer et al. [23] presented an emotion-based automatic
approach (eApp) for the priority classification. They adopted
a distinct method and employed emotion analysis for the

priority classification. They adopted the support vector
machine for the multiclass prioritization of bug reports.
The evaluation results show that the performance improve-
ment in F1-score by more than six percent. Umer et al. [1]
also proposed an approach for the approval prediction of
enhancement. They employed sentiment and exploited the
support vector machine for the approval prediction. They
used cross-application validation for the evaluation of the
proposed approach. The results suggest that the proposed
approach increases the accuracy from 70.94% to 77.90% and
f-measure from 48.50% to 74.53%.
In conclusion, researchers have proposedmany approaches

for predicting different attributes, e.g., severity, priority, and
enhancement approval. However, only three studies [1], [2],
[22] focus on the approval prediction of enhancement. More-
over, the studies exploit machine learning algorithms for the
approval prediction of enhancement. Our proposed approach
differs from the existing approaches in that we are the first to
apply a deep learning algorithm for the approval prediction of
enhancements. Moreover, we also introduce a novel enhance-
ment representation (input) for the deep learning algorithm.

V. CONCLUSION AND FUTURE WORK
This paper proposes a novel representation of enhancements
for feature modeling that considers the syntactic and semantic
feature in an unsupervised manner to remember the context
over a long sequence of words. We learn the representation
of each enhancement using RNN with attention (mentioned
in Section II-E) by combining the summary and description of
the enhancement as a sequence of words. We also incorporate
the sentiment of reporters and compute the sentiment of each
enhancement. Given the proposed representation and senti-
ment of each enhancement, we train a convolutional neural
network based classifier (mentioned in Section II-F) for the
approval prediction of enhancements. In the end, we perform
a cross-application evaluation of the proposed approach on
reused 40, 000 enhancements of 10 open-source software
applications. The results of the proposed approach improve
the precision from 86.52% to 90.56%, recall from 66.45% to
80.10%, and f-measure from 78.12% to 85.01%.

The broader impact of our work is to show that the pro-
posed representation of enhancements could be valuable in
the approval prediction of enhancements. In future, we would
like to exploit deep learning algorithms on a large number of
inter/intra domain enhancements to generalize the results of
the proposed approach.
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