
Received August 9, 2021, accepted August 18, 2021, date of publication August 27, 2021, date of current version September 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3108427

Detecting Asset Cascading Failures Using
Complex Network Analysis
JAYMIN MOFFATT 1, AYHAM ZAITOUNY 2,3, MELINDA R. HODKIEWICZ 1,3, (Member, IEEE),
AND MICHAEL SMALL 2,3,4, (Senior Member, IEEE)
1School of Engineering, The University of Western Australia, Crawley, WA 6009, Australia
2Department of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia
3ARC Industrial Transformation Training Centre (Transforming Maintenance through Data Science), Curtin University, Bentley, WA 6102, Australia
4CSIRO, Kensington, WA 6151, Australia

Corresponding author: Ayham Zaitouny (ayham.zaitouny@uwa.edu.au)

This work was supported by the Australian Government through the Australian Research Council Centre for Transforming Maintenance
through Data Science (Industrial Transformation Research Program) under Grant IC180100030.

ABSTRACT Experienced process plant personnel observe that corrective maintenance work on one asset
may often be followed by corrective work on the same asset or connected assets within a short amount of
time. This problem is referred to as a cascading failure. Confirming if these events are chronic is difficult
given the number of assets and the volume of maintenance and operation data. If cascading events can be
identified, preventative measures can be implemented to prevent those cascades, eliminating unnecessary
corrective work. This project uses complex network analysis to identify cascading events and where co-
occurrence of work is most frequent, in a process plant. Data is drawn from over 50,000 work orders for
5,655 pumps in a mining company over a five-year period. A complex network is produced by connecting
assets based on the frequency of co-occurrence of work. Beside the advantages of the visualisation of
complex networks, the method produces quantified measures, normalised degree, eigenvector centrality
and betweenness centrality, which are used to identify assets with significant impact on other assets.
Affected pumps are apparent as communities in the network. This analysis identifies pumps that are ‘‘super-
spreaders’’: pumps who experience corrective maintenance events which lead to corrective maintenance
events on other pumps. The model can be tuned to different time windows, for example events within one or
seven days. From these insights, changes can be made to operational, maintenance and recording practices
to prevent re-occurrence. Of particular note in this data was the occurrence of self–loops in certain pumps
and the prevalence of hidden failures in standby pumps.

INDEX TERMS Complex networks, cascading failures, network science, eigenvector centrality,
betweenness centrality, community detection, asset management, corrective maintenance.

I. INTRODUCTION
Maintenance is a collection of actions, intended to retain an
item in, or restore it to, a state in which it can perform a
required function [1], [2]. Maintenance work is critical to
ensure assets within a company are repaired when a failure
occurs, and to implement preventative measures to prevent
failures from occurring. Maintenance personnel will inspect,
modify, replace and repair different assets, or parts of assets,
with the goal of returning the asset to a state in which it can
perform its required function.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

Maintenance work will normally fall under one of two cat-
egories: proactive and reactive maintenance, often referred to
as preventative and corrective maintenance respectively [3].
Proactive maintenance includes tasks such as scheduled
inspections or fixed interval replacement. This type of work
is implemented to prevent future failures from occurring.
Proactive maintenance is generally preferred as it normally
results in a lower total cost, and minimal downtime on
equipment [4]–[6]. Corrective maintenance is required when
a failure occurs, or is imminent, and a restoring function is
needed immediately [7].

Maintainers and operators often observe that a corrective
work order on a specific asset is followed by the generation
of a corrective work order on the same asset or another
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asset within a short amount of time. In situations where
this cascading of failures exist, the failure of one asset can
causemany failures amongst other assets. Confirming if these
events are chronic is difficult given the number of assets and
the volume of maintenance and operation data generated.
If cascading events can be identified, preventative measures
can be implemented to prevent the cascades, eliminating
unnecessary corrective work.

Detecting and preventing cascading events is not a simple
task. Besides the conventional approaches of engineering and
risk management, the most current methods for preventing
such cascading events rely on redesigning equipment to be
less likely to cause other equipment to fail, such as resilience
engineering that is based on designing resilient systems so
that they can quickly recover their functions from failure or
damage conditions [8], [9]. Other methods rely heavily on
the engineering context of the system being analysed [10]
and as such cannot be applied to different contexts without
a significant change to the method. This is where complex
network analysis is proposed to be applied to analyse a system
which has cascading events present.

A network is a mathematical abstraction of a group of
objects, in which some of the objects are related in some
way. Typically, the objects are represented by nodes (also
called a vertex or a point) in the network. The objects
that exhibit the specified relationship will have an edge
between their corresponding nodes within the network. The
relationship between the nodes can be a unidirectional
connection or bidirectional connection, these different types
of relationships can be modelled in a network using directed
or undirected edges [11]. A complex network is a graph
that departs substantially from regular or statistically regular
graphs [12]. A regular graph is a network where each node
has the same number of edges, referred to as the degree of
the node [13]. While a complex network is a graph that does
not have a simple structure. Typically, complex networks
have a large number of nodes and edges and do not contain
repeating structure. A similar network approach has been
utilised to model and analyse different systems, to name a
few, modelling train routes [14], modeling the world wide
web [15], modeling the mobile communication between peo-
ple [16], analysing the transmission of a virus through a social
network [17], modeling a social network for actors [18],
modelling and predicting failure of a metropolitan water
distribution network [19], and in neuroscience, functional
networks are used to identify anomaly functional patterns
after a brain stroke [20]. A comprehensive review of using
complexity science and complex networks to model several
complex systems such as crowd disasters, crime, terrorism,
war, and the spread of disease can be found in [21].

A network can be represented visually by drawing the
nodes and the edges connecting them, however, these
networks are derived mathematically by an adjacency matrix.
An adjacency matrix is a square matrix with each element
in the matrix representing if an edge is present between two
nodes in the network [11]. The elements of the adjacency

matrix are defined as follows:

Aij =

{
1 if an edge exists from node i to node j,
0 otherwise

(1)

The benefits of using an adjacency matrix are that it allows
for storage of networks, and can be used to calculate network
properties which infer hidden information about the system
under consideration.

Complex networks of nodes and edges can be constructed
using different methods. The simplest of these methods
is when the structure of the network is predetermined.
An example of this is a power network [22]. The power
network has a known structure, where all the nodes and
edges are predetermined by the layout of the power grid.
The opposite of this situation is when a complex network
needs to be discovered. In cases where network discovery is
used, no existing network structure, or underlying network is
known. For instance, network discovery was used to construct
a complex network based on the number of passes between
players in Australian Rules Football [23]. In this case the
nodes represented the players and were known, whereas the
edges of the network were discovered throughout a match
when the ball was passed between two players. At the end
of the match the whole network had been discovered and
properties of the network were found and used to predict the
outcomes of future games.

Typical complex network approaches for simulating or
detecting cascading events include examining the existing
network structure or testing how the network structure reacts
to certain changes [22], [24], [25]. These approaches rely
heavily on the engineering context of the system being
analysed. These methods, when applied to a different system,
even when similar, normally require a redesign to match the
new context. A new network will need to be used, which
can pose challenges if the network being analysed is not
fully understood or if the elements of the network differ in
abstraction. If the engineering context differs significantly,
the method may not be applicable, due to factors such as
how the assets interact. For example, the methods used
to analyse cascading events on a power grid [22], cannot
easily be adapted to analyse cascading failures on a road
network. Road networks typically exhibit edge failures (roads
being closed), whereas the power grid network analyses the
impact on the network in the event of node failure (power
substation failing). This lack of adaptability is undesirable as
the underlying structure of the network is not always known
and the method of failure propagation is not always obvious.

Cascading events have been modelled using complex
networks. However, these networks all have a predefined
structure. This predefined structure allows case specific
methods to be utilised. In a system without a predefined
relationship between nodes, a discovery method must be used
to construct a complex network. This is where the literature
is lacking. Cascading failures have not been analysed using
a discovery method to construct a complex network. In this
study, we are proposing a discovery complex network
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FIGURE 1. Distribution of the number of work orders per 24 hour period.
Between the period of January 2015 and December 2019 seem normal but
before this period only a few work orders exist. These work orders were
removed as they do not include all the work done during that period.

approach that uses maintenance work order categorical data
to construct a mathematical framework–complex network,
which is analysed visually and quantitatively to infer hidden
information and connections within the system, and detect
cascading events in a process plant.

II. CASE STUDY DATA
The data in this project is provided by a mining company for
work orders describing maintenance work on their pumps.
As described in [3], [26], Maintenance work orders are
records with a number of fields including creation date,
work required, type of work (corrective, preventative etc.),
desired start and end dates, costs and other information
relevant to the planning and execution of maintenance work.
All maintenance work should be associated with a work
order. There are 88,545 work orders in this database for
5,655 different pumps. These work orders come from a period
of eight years between December 2011 and December 2019.
However, as can be seen in Figure 1 most of the work
orders are between 1/1/2015 to 31/12/2019. Work orders
not in this five year period are removed from the data as
it appears to be incomplete data. This removed 1,175 work
orders from the data leaving 86,370 to be used for analysis.
Consequently, we restrict our analysis to data recorded
between the period 1/1/2015 and 31/12/2019. We exclude
data prior to 1/1/2015 because the frequency of recording is
low and we infer that the company did not have the work
order system in full operation. That is, we believe that we
have complete (as far as possible) data for the period of
analysis from 1/1/2015 to 31/12/2019. There are many results
concerning the sampling of scale free networks. Our data
excludes approximately 1% of the data provided to us (on
the basis that it falls outside the census interval), this will
not significantly affect our conclusions as they do not directly
depend on the scale–free nature of the data.

TABLE 1. Summary of work order data acquired from a mining company
for work on pumps. 5,655 pumps from three different sites are used in
this investigation and only corrective maintenance work orders are
considered for the failure cascading application.

On average each asset has 15.27 work orders in the five
year period. Table 1 outlines a brief statistical description of
the work order data at hand and the associated data which
is used. It is notable that the work orders are log–normally
distributed, that is, there is a high probability for any given
asset in the system to have a low number of work orders and
there is a low probability of an asset having a high number
of work orders. Observe from the table how the range of the
number of work orders per asset is between 1 and 130, while
the number of the assets with more than 50 work orders is
only 87 out of 5,655 assets, however, there are 2,949 assets
with less than 5 work orders.

III. METHOD
This project uses complex network analysis techniques to
analyse maintenance work orders with the aim to reveal
cascading failure events within the system. For this project,
Assets (in our application, pumps identified by their asset
numbers) were chosen to be represented by the nodes,
and an edge is placed between the nodes (pumps) if the
corresponding assets are operationally (mechanically or
physically) correlated and a work order was created for both
assets, within a specified time window (co-occurrence of
work). Additionally, edges are assigned weights based on
the number of times co-occurrence of work is present in
the data. For example, if the time window for connection is
set to 24 hours and if asset A and asset B both had work
orders created within 24 hours of each other on two different
occasions, then the edge between the two nodes, representing
these assets, have a weight of two. This is a discovered
network as the nodes (pumps) are known and an edge is
placed between the nodes when an event (co-occurrence of
work) occurs.

This method uses discovery approach to build a network
from data and as such can be applied to any context where
failures occur and where there is the potential for a cascade
of these failures to happen. The case study seen in this paper
is for work order data for pumps, but the same method can
be used to analyse other maintenance operations without
redesigning the process.
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The general model of constructing a complex network to
infer hidden failure correlation between different assets and
identify cascading events is defined as follows:

Two assets are connected ⇐⇒ ‘‘operationally correlated’’

AND ‘‘temporally correlated’’

In our case for the pumping system and the provided
information:

‘‘operationally correlated’’ ≡ ‘‘geographically co–situated’’

Mathematically this process can be represented as:
• Let N be the number of assets (nodes).
• Let M be the number of work orders.
• Let A = {αi : i = 1, . . . ,N } be the Asset Space.
• Let T = {ti : i = 1, . . . ,K ≤ M} be the Time Space of
the work orders.

• WO(αi, tm) denotes to the work order of asset αi at time
tm.

• L(αi) denotes to the geographical location (site) of asset
αi.

Accordingly, we define a Cascading Event (CE) between two
work orders as follows:

CE
(
WO(αi, tm),WO(αj, tn)

)
=

{
1; L(αi) = L(αj) ∧ 0 ≤ (tn − tm) ≤ ε
0; otherwise

(2)

where ε is the time-window threshold.
Consequently, we define the weighted adjacency matrix as

follows:

Aij =
∑

tm∈Tαi ,tn∈Tαj

CE
(
WO(αi, tm),WO(αj, tn)

)
(3)

where Tαi ⊂ T is the time subspace of work orders on
asset αi.

Different networks are created using this approach1 by
altering the criteria of connection to include a longer or
shorter length of time, or by looking at only work orders
from a specific point in time, for example, only looking
at work orders from 2019. Furthermore, the networks can
be altered by removing weak connections. By removing
connections with a weight less than a defined threshold,
the aspect of random chance can be minimised. Assuming
there is no relationship between the occurrence of work
between two assets, the connection approach discussed above
still has a chance to produce a connection between the two
assets if work co-occurs by chance. This random chance
should have a low probability of occurring and so the
connection will be comparatively weak. By removing the
weaker connections in the network, this random chance can
beminimised. For example, if a complex network is produced
for the whole data set and then all edges with a weight

1The networks are constructed using the NetworkX package in
Python [27]. The figures are obtained using Gephi [28] and its associated
layouts [29], [30].

less than one are removed, this results in over one million,
or approximately 83% of the connections being removed.
This has the added benefit of making the graph easier to
visualise.

Only corrective work orders are included in this
approach. This is because not all work that is recorded
contributes to cascading failures amongst assets. Work such
as inspections are unlikely to result in work on a different
asset than the one inspected. Corrective work was identified
as having the highest chance of causing cascading failures and
as such, is the focus for this investigation. Saying that, it is
needed to emphasise the fact that a corrective work order is
generated when an event has occurred or is likely to occur in
the future. For instance, if an asset’s condition is degraded
then a corrective work order would be generated while it
may still be functioning. Therefore, the proposed model in
Eq. 3 is identifying the connection between the creation
of corrective maintenance work orders not between actual
failure events. However, co-occurrence events are analysed
between the work orders to infer potential actual cascading
failures between assets. Options for including different types
of work orders or revealing other questions are discussed
further in Section VI.

IV. RESULTS
A. COMMUNITY DETECTION
A community in a network is a subset of nodes which
are densely connected to each other whilst being sparsely
connected to nodes outside the community [11]. For the
context of this project a community in the network represents
a group of assets that commonly have co-occurrence of
corrective work within a specified time window of each other.

The communities of the networks are determined by using
an iterative modularity–based algorithm [31]. Modularity of
a community partition compares the density of edges inside
the communities with the density of edges between the
communities [11] and it is defined as follows:

Q =
1
2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci,Cj), (4)

where Aij is the edge weight between assets αi and αj as
expressed in the network’s adjacency matrix, ki =

∑
j Aij is

the degree of node αi (the sum of the weights of the links
connected to asset αi), m is the total number of the weights
of the edges in the network, Ci denotes the community
to which the asset αi is assigned to, finally, the function
δ(Ci,Cj) = 1 if nodes αi and αj are within the same
community and 0 otherwise. The algorithm starts by making
a community for each node. For each node in the network,
the algorithm checks if merging that node into a community
of a node it is connected to, increases the modularity of
the network. Each node is merged with a community
of a neighboring node until no increase in modularity
occurs. At this point a new network is constructed. The
communities in the network are treated as individual nodes
withweighted links between these nodes based on the number
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FIGURE 2. Community structure of the network produced by using data from the first three months
of 2019 and using a 24 hour connection criteria. Nodes refer to assets (pumps) and edges indicate that the
two assets are geographically co–located and have failure correlation, edges with a weight less than two
have been removed. Colours indicate different communities, the network shows 13 communities within the
network. If a failure occurs to an asset from a community then it would potentially cascade this failure to a
neighbour asset within the same community.

of connections between nodes in the two corresponding
communities. Self–loops existed with a weight showing the
total sum of the nodes inside the community. The process is
then repeated for this new network, merging nodes until no
increase in modularity occurs. These two steps of merging
communities and then creating a new simplified network,
are repeated until no increase of modularity occurs. At this
point the communities present are the final communities of
the network.

Figure 2 shows a subset of the work order data taken
from the first three months of 2019, from 1/1/2019 to the
30/3/2019. The time window for connection was set to
24 hours. Edges of weight one are removed to account for
random low weight edges. The different communities within
the network have been individually coloured. In total, there
were 13 communities of assets detected with an average
of 78 assets in each community. An example of a single
community from Figure 2 can be seen in Figure 3. It can
be seen in Figure 2 how the community detection method
has grouped the assets into three large clusters related to the
sites (due to the geographical location constraint from Eq. 3),
and within these clusters it assigned the nodes into smaller
communities.

If the timewindow for connection is increased, the network
constructed will contain many more connections. Due to
this reason, the community detection method produces fewer
communities of assets. Figure 4 shows the communities
present for the same network seen in Figure 2 where the
altered connection criteria of seven days is used. The com-
munity detection algorithm has detected only 3 communities
(related to the different sites due to the geographical location
constraint) within this network, as opposed to the 13 seen
in Figure 2. To reveal the inner structure within these large
communities, one can investigate the sub–communities by
analysing the data of each site separately. Alternatively,
the number of communities can be altered by adjusting the
resolution of the community detection algorithm used [31],
however, in this project a constant resolution of 1.0 was used.

Using a larger connectionwindow increases the probability
that two work orders are in the same time window, hence
the number of connections each node has is increased.
This results in more connections between assets that exhibit
corrective work unrelated to each other. This limits the
capability of the community detection to adequately group
the nodes, as unrelated nodes can be connected due to random
chance. This is still a potential outcome in the original case
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FIGURE 3. Single community from Figure 2 containing 26 nodes and 31 edges. Contains some
nodes (assets) with a high number of connections, such assets play an essential role in cascading
the failure to other assets within the community.

FIGURE 4. Community detection on the network made using a connection
window of seven days from work orders during the first three months
of 2019. Nodes are assets (pumps) and edges indicate geographical and
failure correlation between assets. Edges of weight two or less have been
hidden for clarity. Colours indicate different communities, this graph is
much more interconnected and exhibits only 3 communities that are
related to the site geographical location of the assets.

examined in Figure 2, however these random connections
occur less often when a shorter time window is used, resulting
in more distinct communities. Alternatively, when a longer
connection window is used, edges with a relatively low
weight can be removed before community detection is done to
reduce the number of unrelated, random connections between
assets.

B. NORMALISED DEGREE RANKING
A common way to rank a node’s importance in a complex
network is by ranking them by degree. The degree of a vertex

in a graph is the number of edges connected to it. In a
weighted graph the degree of a node is the sum of the weights
of all the edges connected to that node [11]. In a directed
network the degree can be separated into two categories,
in–degree and out–degree, which is the sum of the weight
of edges entering and leaving the node respectively. More
formally this is defined as:

Dout(αi) =
∑
j

Aji (5)

Din(αi) =
∑
j

Aij (6)

In our application, the out–degree reflects how an asset
impacts on neighbour assets when it fails, while the in–degree
indicates how an asset could be affected by failures of
neighbour assets. If degree ranking is applied to the context
of asset maintenance, the measure will rank nodes based
on the sum of the number of work orders created within a
time window, when a work order is created for that asset.
This identifies the hubs of the network. This approach gives
a bias to assets that frequently have corrective work done,
as the total sum is generally large, simply due to random
connections. To overcome this a normalised approach can be
used. This is done using the following equations:

Dout
n (αi) =

∑
j Aji

N (αi)
(7)

Din
n (αi) =

∑
j Aij

N (αi)
(8)

where Dout
n (αi), Din

n (αi) are the normalised out–degree and
in–degree of asset αi respectively, and N (αi) is the number
of times that asset αi occurs in the work order data.
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FIGURE 5. In–normalised–Degree (full size network) and out–normalised–degree (small size
figure in the right top corner) of the network produced by using data from the first three
months of 2019 and using a 24 hour connection criteria. Nodes are assets (pumps) and
edges indicate geographical and failure correlation between assets, edges with a weight less
than two have been removed. Nodes ranked highly by normalised degree appear to be
grouped in communities.

TABLE 2. Summary of network centrality measures showing the top 5 most important nodes in each network described. The assets are ordered from
most important to least important in descending order.

Using these formulas results in normalised degrees for
each node, ranking assets based on the average number of
other assets that have work at the same time as the asset
in question. The highest ranked assets are the normalised
hubs of the network. These hubs are the potential assets in
which a failure typically results in numerous other failures
at the same time (in the case of out–degree ranking),
or they are the potential assets which have higher probability
to fail when failures occur on other assets (in the case
of in–degree ranking). The identification and ranking of
these hubs are summarised in Table 2 for different network
settings.

The results of getting these normalised degrees for the
work order data can be seen in Figure 5. This network
is identical to the one seen in Figure 2 with the colour
representing the normalised degrees ranking as opposed to
the community structure. In comparing Figure 2 and 5 an
interesting relationship can be seen. Nodes that have a high
normalised in–degree (or out–degree) in Figure 5, tend to
be grouped together in the communities of Figure 2. This
is beneficial as the community detection method indicates
which assets potentially fail together but does not indicate in
which assets this co-occurrence of failure is most common.
By combining the two methods, insight is found as to which
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FIGURE 6. The distributions of the normalised degrees ranking of nodes within the network produced using three months of data from
2019. Both types of degree have a log–normal distribution with mean ≈18.

nodes potentially fail together and which nodes within each
group are correlated with many other events. This identifies
the assets that should be looked at first when attempting to
correct the cascading of failures within this system.

Figure 6 shows the distribution of the normalised degrees
((a) for in–degree and (b) for out–degree) amongst the
nodes in the respective network. These appear to follow a
log–normal distribution with a mean of approximately 18.
This means on average when there is corrective work on
one asset then there is 18 different corrective work orders
made within 24 hours. Obviously most of these work orders
will be unrelated to the initial work, only in cases where
repeated co-occurrence of work is frequent we can say there
is likely cascading work occurring. This method of analysing
the strongest connections in the network is discussed further
in Section IV-C.

C. STRONG CONNECTIONS
In this section, we analyse the constructed network visually
by looking at sub–networks with strong connections. This is
done by removing edges below a threshold weight and then
removing nodes that are isolated (nodes with no connections),
hence, a sub–network can be formed that shows the assets in
the data which have the highest frequency of co-occurrence
of work.

Examples of these strong connection sub–networks can
be seen in Figures 7, 8, and 9. These three Figures show
different scales of the network with the only difference
being the minimum weight of the edges shown. In Figure 7
several chains of connections exist that indicate long cascade
events (among several assets) and some assets behave
as super–spreaders as they start different cascades (e.g.
see assets S2–025–MPP031, S2–025–MPP021), whereas,

in Figures 8 and 9 these chains disappear and only dual
connections or self–loops exist. This shows that it is important
to check many different minimum weights and investigate
different scales, when looking at the strong connections of
the network. The failure of the super-spreader (hub) asset may
lead to cascading events amongst many other assets, but if a
minimum weight that is too large is used, the asset will seem
relatively unimportant. An alternative and somewhat related
approach to identify super-spreader events, that is similar to
the strong connection analysis, is the k–shell decomposition
approach [32]. However, in our application the weight of
the connection also plays a significant role in identifying the
cascading event rather than the degree of the node alone.

One interesting observation is the presence of chains of
connected assets in the sub–network with minimum weight
10 (Figure 7). These chains indicate that when corrective
work is done on one asset in the chain, the next asset in
the chain is likely to have a corrective work order created
within the set time window. This cascades on until the end of
the chain. By identifying these chains, preventative measures
can be implemented to interrupt this process and reduce the
amount of future work.

An argument can be made that this method does not
necessarily detect where cascading failures are occurring,
but just the assets that tend to fail at the same time. The
presence of a connection does not imply that the failure
in the preceding asset causes the failure of the proceeding
one. It is possible that an external aspect causes the failure
in both pumps. However, if assets are affected in this way,
a connection would be made that has an equal strength in
both directions and not be weighted heavily in one direction.
Additionally, if an external force is causing a failure on three
ormore assets, the graphwould be expected to contain cliques
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FIGURE 7. Strong connections, all work orders are considered with a 24–hour Connection window. Nodes are assets (pumps) and
edges indicate geographical and failure correlation between assets. Thickness of the edges indicate the edge’s weight, minimum
weight considered is 10. Some long cascade events are identified as chains of connections and some potential super–spreader assets
are detected.

of third order or higher.2 Typically, when an external aspect is
causing the failures, the assets fail at the same time, creating
the clique structure. There are no such cliques of third–order
or higher present in these networks (Figures 7, 8, 9). The
absence of cliques in the network supports the cascading
structure suggested in this paper, as the failures appear to
occur in stages. Note should be taken that the presences of
high order cliques does not necessarily imply that a cascade
is not occurring. Fast moving cascades also create clique
structures, as many assets fail within a short period of time.

The strong connection results seen in this Section were
presented to themining company that supplied the data, to see
if the identified connections matched up with expectations.

2A clique in a network is a subset of nodes, in which all the nodes in the
subset are connected to all the other nodes in the subset. A clique of size
two is simply a line, which is frequent in the strong connection networks.
A clique of size three is a triangle in the network.

The company identified that some of the connections present
were already known and corrective action has been taken.
Furthermore, the strong connection present in Figure 9
between pump S3-035-MMP001 and S3-035-MMP002 was
of particular interest. TheMMP002 pump is the backup pump
for MMP001. This means that when pump MMP001 fails,
the backup pump is put into use. Soon or immediately after
pump MMP002 is used, the pump exhibits a failure as well.
This is known as a hidden failure. The pump has been unused,
and whilst it is not in use a failure has occurred. This failure
remained undetected, until pump MMP001 failed at which
point its failure wasmade apparent.Without using knowledge
that these pumps were related, using only the work order
data provided, complex network analysis identified a strong
connection between the work done on these two pumps.

A further interesting observation is that a large proportion
of the edges correspond to self–loops (see Figure 8).
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FIGURE 8. Strong Connections, similar to Fig. 7, all work orders, 24–hour Connection window, but
minimum weight is 15. Only strong dual connections appear here that indicate potential failure
cascade events from one asset to another.

FIGURE 9. Strong connections, all work orders, 24–hour Connection
window, Minimum Weight is 20. A larger minimum weight scale than
in Figures 7 and 8 to emphasise the stronger connections that indicate
higher potentiality of cascading events.

This means that these assets have co–occurrence of work with
themselves. An example of a self–loop is the node S1-050-
CFP004 in Figures 8 and 9. There are three likely possibilities
as to why these self–loops occur. The first is that the asset has
many parts that need repairing by different teams of people,
hence multiple work orders were created at the same time
for the one asset. This causes the network created to contain
self–loops. The second possibility is that duplicate work

orders are being created. This is not a desirable thing from a
management point of view as it makes it hard to view accurate
statistics from maintenance data. The third possibility is that
the work that is completed on these assets does not solve the
problem, and as such a secondary corrective work order is
created after the initial one is completed. If this is occurring
then a quality issue in the performance of the maintenance is
likely present. This aspect is furtherly discussed in Section V.

D. CENTRALITY MEASURES
There are many other measures in network analysis, to rank
the nodes by their importance. These ranking methods, often
referred to as centrality measures, do not always have a
clear relationship with physical properties. These measures
provide useful insights into the important nodes of the
network. Although there are several centrality measures,
in our application to investigate failure cascading events in
a complex network, we emphasise static network properties
and use eigenvector and betweenness centrality measures.

1) EIGENVECTOR CENTRALITY
Eigenvector centrality ranks the nodes based on the number
of important nodes they are connected to [11]. This is done
by computing the eigenvector that corresponds to the largest
eigenvalue of the adjacency matrix of the network. The
eigenvector for this largest eigenvalue is then computed. Each
element of this eigenvector corresponds to a node in the
network, based on how the adjacency matrix was defined.
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FIGURE 10. Python code for constructing the network from the work orders. Representing steps 4, 5, 6, 7, and 8.

These elements of the specific eigenvector are the values
for the eigenvector centrality of each node. Mathematically,
the eigenvector centrality is expressed by:

x(αi) =
1
λ

∑
k

Akix(αk ) (9)

where x(αi) is the eigenvector centrality of asset αi and λ is
the largest eigenvalue of the adjacency matrix A. This can be
rearranged and expressed in matrix form as the eigenvector
equation:

Ax = λx (10)

where x = (x(α1), x(α2), . . . , x(αN ))T .
Hence, highly ranked nodes are connected to other highly

ranked nodes within this network. Nodes ranked as important
may exhibit cascading events to other nodes that have a high
chance of continuing the cascade. A list of the most important
assets in the data based on the eigenvector centrality can be
seen in Table 2

2) BETWEENNESS CENTRALITY
Betweenness centrality ranks nodes as important based on
the sum of the number of times that node is on the shortest

path between any two other nodes in the network [33]. To do
this, the minimum distance between any pair of nodes in
the network must be calculated. Then, for each node in
the network, the number of times this node appears on the
shortest path between two other nodes must be counted. The
algorithm detailed in [34] is used to do this. The algorithm
completes this task with a minimised complexity, reducing
the overall time of the calculation. Note that the unweighted
betweenness centrality is being measured as the weighted
version considers the weights as delays, whereas weights in
these networks are representative of connection strength.

Betweenness centrality is given by:

g(αi) =
∑
{j,k}6=i

=
σjk (αi)
σjk

(11)

where g(αi) is the betweenness centrality of node αi, σjk is
the number of shortest paths between nodes αj and αk , and
σjk (αi) is the number of shortest paths between nodes αj and
αk that contain node αi.
In the network described in this paper, a node with a

high betweenness centrality would likely be in the middle
of a cascading event chain. By preventing the cascade from
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reaching this node, it is more likely that the chain is prevented
from continuing. This may not always be the most desirable
action to take however, as betweenness centrality does not
give an indication as to how far through the cascading chain
the failures are. A high betweenness node could be the second
last asset in a long cascading chain of failures.

It is often seen that there are multiple parallel failures
occurring, each of which has the potential to continue
the cascading events to other assets. The benefit of using
betweenness centrality to target preventative work is that the
nodes with high betweenness centrality have the least parallel
failures, thus, by interrupting the cascade on these assets,
a large number of failures can be prevented with minimal
work.

In Table 2, a list of the most 5 important assets in the data
based on the betweenness centrality are outlined for different
time windows (24 hours or 7 days) using 3 months as well as
the entire data set.

V. DISCUSSION
The proposed complex network discovery–approach has
been implemented to infer hidden relations among assets
by using maintenance work order data. The constructed
complex networks are interpreted in two aspects: 1) As a
visualisation tool that demonstrated results on communities
within the system as well as strong connections for variant
scales. 2) Quantitative analysis that allowed ranking of the
assets based on their importance in different perspectives.
The results have been checked by the company providing
the data, as they confirmed that they are aware of some
of the detected correlations, while they were not attentive
to some other inferences which were reasonable for them
and worth further investigations. It can be observed how
the results summarised in Table 2 are relatively consistent
between the different ranking metrics. For example, in the
3 month–24h connection window network, the asset S1–
045P–FFP001 was detected as the most important asset by all
of the four measures. Similarly, asset S2–025–MMP031 was
the most important by all of the measures for both all data
networks of 24h and 7 day connection windows. For each
network, most of the other assets were detected by all of
the measures but with different ranking levels, and only a
few assets were detected by some ranking measures but not
the others; for instance, see asset S–S3–110 for the 3 month
network and asset S2–025–MPP72 for the all data network.
These consistency and variation are expected as the metrics
rank the nodes based on different importance perspectives.
On the other hand, the results show significant variation
when only 3–month data is used in comparison to using all
of the data, moreover, less significant variation is observed
when using different connection window thresholds even
though all of the data has been used (see columns 2 and 3 in
Table 2). We suggest this is due to the amount of information
included or lost, and the level of randomness involved
according to the size of the data. For instance, 3 months of
the data includes less information especially as operational

strategy can be adjusted and changed during time. Although
considering a longer connection window (i.e. 7 days) adds
more information, it increases the randomness level as more
unrelated connections can appear, as there is always a chance
that some connections are created between unrelated assets
due to random chance. If there is no true connection between
two assets, the network still has a chance to connect them.
This connection typically has a low weight, however, in some
circumstances, random chance can cause this weight to be
above the threshold weight chosen. If this occurs for two
assets, the recommendations made to investigate this may not
produce any meaningful results and may cost the company
money. These highweighted, false connections should be rare
but care must be taken, as this method does not guarantee
a relationship between corrective work events when a high
weighted connection exists in the network. Such limitations
do not undervalue the performance and the significant results
of the proposed method, they have been discussed to open the
doors for future investigations.

As Eq. 3 states, the model does not strictly utilise failures
to connect between assets, instead the frequency of co-
occurrence of work is used to produce a complex network.
High weighted chains of connected assets does not guarantee
cascading work is present, only that co-occurrence of work
between two connected pairs is frequent, however, such
identification could be of high value to the company as they
can investigate and confirm cascading event or not. It is
entirely possible in a high weighted chain of three assets,
the first and the third asset will have a high frequency of co-
occurrence of work with asset two, but work never occurs on
asset one and three at the same time in the data. Although
there appears to be a connection between assets one and three
via their connections to asset two, there are no events that
cascade between the assets.

Another interesting observation is the present of self–loops
in the network as there are many self–loops exhibit in
all of the graphs produced. They are particularly obvious
in Figures 7, 8 and 9. These correspond to where multiple
corrective work orders are created for the same asset within
the time window set for that network. This could be another
area for future research as further analysis should be done to
identify the nature of these self–loops. Questions should be
asked such as:
• Are these self–loops an inspection followed by a repair?
• Are these self–loops a repair followed by a repair?
• Are these self–loops repeat work orders?

VI. CONCLUSION
In a case study, complex network analysis identified assets in
which cascadingworkwas frequent. This is done by discover-
ing a complex network from maintenance work orders, with
connections representing the frequency of co-occurrence of
work. By performing different network analysis techniques
in both visual and quantitative perspectives, insights into the
nature of the assets are obtained. Communities of assets that
commonly had co-occurrence of work together are identified.
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Assets (experiencing corrective maintenance events) with
a large number of connections with other assets (also
experiencing corrective maintenance events) were found
using the normalised degrees (in–degree and out–degree) of
each asset. These two measures are compared to give insight
into which communities had the most co-occurrence of work.
The network is then used to show where cascading corrective
work is most frequently occurring, by looking at the highest
weighted edges in the network. This method highlights assets
that commonly exhibited cascading events, hidden failures,
and repeated corrective work. Finally different centrality
measures of the network are used to rank the most important
assets in the network. This method is not limited to the
context analysed and can instead be applied to many different
contexts. For example, corrective maintenance is not the only
type of maintenance to exhibit cascading work. A similar
approach to the one done in this project should be performed
using corrective and preventative maintenance. Particularly
looking at where preventative work is followed by corrective
work. This would indicate that the preventative work was
unsuccessful in preventing the failure of the asset or even
caused the failure of the asset.

A continuation of this project is to consider a variable
connectionwidow to overcome the harsh threshold limitation,
and to do a temporal analysis of the data and see how
it evolves over time. The mining company confirmed that
some of the connections identified had already been found
and corrective action was taken, however by looking at a
long period of time, these connections were still present.
Analysing how the network changes with time will allow the
reliability engineers to see if their actions are reducing the
occurrence of cascading events.

APPENDIX
PROCESS WORKFLOW
The procedure is as follows:

1) Import the work order data to Python.
2) Remove work orders with missing data in the fields of

interest for the network.
3) Sort the remaining work orders in time by their creation

date.
4) Create an empty NetworkX graph.
5) Add a node to the network for each asset and label the

node with the asset number.
6) Select the first work order in the list and find all other

work orders that were created within a set time interval
of the original work order.

7) Create edges in the NetworkX graph to connect all of
the nodes corresponding to the assets in the identified
work orders to the node representing the asset in the
original work order. If an edge already exists between
two assets, increase the edges weight by one.

8) Repeat steps 7 and 8 for all work orders to identify all
connections.

9) Use NetworkX functions to acquire the relevant
network measures needed to produce different

graphs, such as community structure and degree
centrality.

10) Export the network as a GEXFfile for Gephi to produce
a graph.

11) Open the file and select a layout algorithm to plot the
network.

The Python code for constructing the network from the
associated work orders data is presented in Figure 10.
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