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ABSTRACT The onboard traction transformer is a critical equipment of high-speed trains, its running state
directly affects the safety and stability of a train’s operation. Given the complexity of the running condition
of the onboard traction transformer, this paper proposes a running state diagnosis algorithm based on kernel
principal component analysis (KPCA) and fuzzy clustering. To fully extract the status information of the
onboard traction transformer, the aging characteristics of insulating oil and main insulation are analyzed
under different running mileage as the first step. Thereby, to eliminate the signal redundancy, the status
feature set of the onboard traction transformer is analyzed by KPCA combined with the characteristic
quantities of the traditional dissolved gas analysis (DGA), and the eigenvalues with the contribution rate
of over 95% are used as new eigenvectors. Finally, a status diagnosis model is established by using fuzzy
clustering analysis, considering the limitations of fault data of onboard traction transformer. The results
from field collected data show that the proposed method is effective in diagnosing the running status of the
onboard traction transformer.

INDEX TERMS Onboard traction transformer, running status diagnosis, insulation aging, kernel principal
component analysis, fuzzy clustering.

I. INTRODUCTION
Onboard traction transformer is an important component of
the power supply system of high-speed trains. According
to statistics, among the railway power supply equipment
failures, the faults caused by traction transformer account
for more than 87.3% [1]. To ensure the safety and stable
operation of trains, the railway department mainly adopts two
strategies: daily maintenance and fault maintenance. How-
ever, some problems still exist, such as low maintenance effi-
ciency, lack of human experience, and high safety risk [2], [3].
With the increase of the operation speed and operation den-
sity of high-speed railways, higher requirements are put for-
ward for the operation and maintenance levels as well as
detection means of onboard traction transformers. Recently,
scholars have paid much attentions on oil-immersed power
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transformers [4]–[7]. However, considering the onboard trac-
tion transformer in the particularity of the internal structure
and external environment [8], the fault diagnosis and run-
ning status analysis algorithm of power transformers is no
longer suitable for onboard traction transformers. The intelli-
gent fault diagnosis of onboard traction transformers mostly
remains in the analysis and positioning after the problem
occurs [9], [10], and there are few diagnostic algorithms in the
running states of ‘‘Good’’, ‘‘Fair’’, ‘‘Poor’’, and ‘‘Faulty’’.

To realize the status diagnosis of an onboard traction trans-
former in its whole operation life, the extraction of status
information is the primary premise. Jiang et al. [11], based
on the partial discharge characteristics of the main insulating
bushing, conducted UHF tests for different damaged bush-
ings. Meanwhile, time-frequency domain signal characteris-
tics were taken as state information, but only casing damage
was considered as feature information, resulting in problems
such as inadequate feature characterization and insensitivity
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to weak features. Tao et al. [12] applied the wavelet decom-
position and entropy theory to extract the detail component
of transformer mechanical vibration signal as state feature
information. However, it is not applicable due to the influ-
ence of the external environment and operation conditions.
Liu et al. [13] analyzed the correlation coefficient of dis-
solved gas in transformer insulating oil to determine the fault
type, but it is easily affected by individual differences.

In terms of the transformer’s state diagnosis algorithm,
Li et al. [14] proposed establishing the transformer fault
diagnosis model using a neural network and decision tree.
However, due to the limited real data of transformer fault sam-
ples and the need to train the diagnosis algorithm in advance,
there were some problems, including ‘‘poor’’ practicability
and difficult selection of training parameters. Lee et al. [15]
established an expert system using the fault state mapping
data set of oil-immersed transformers. However, considering
the influence of individual differences of transformers, it is
lack of promotion significance. Zhang et al. [16] proposed an
improved multivariable support vector algorithm to diagnose
the five fault states of transformers, but it is relatively difficult
to optimize the parameters by using dissolved gas analysis
(DGA) as its feature.

In terms of the latest transformer’s fault diagnosis
technology, Ghoneim et al. [17] introduced gas concen-
tration percentage limit and gas ratio as characteristic
quantity based on transformer dissolved gas analysis, and
combined with teaching-learning based optimization model
to diagnose transformer fault. To improve the diagnos-
tic accuracy, the comprehensive index of DGA features
is considered. Ward et al. [18] combined DGA features
with partial discharge features to analyze the fault types of
power transformers, which overcomes the shortcoming of
insufficient individual fault character. Aarathy et al. [19]
carried out a spectral analysis on the insulating oil of
power transformers and established a connection between
the spectral change results and the running state, which
helps to establish the aging characteristic index of power
transformers.

Unlike traditional power transformers, onboard traction
transformer has a high coupling degree in its internal structure
and is often affected by harsh environment, which finally
results in high accident rates and significant security risks [9].
With above deficiencies, a single characteristic index is
unable to fully characterize the running status character-
istics, an comprehensive analysis of the status feature is
needed. Considering fuzzy clustering analysis is based on
the similarity between sample objects [20], and it has the
characteristics of small sample analysis and does not require
advanced training, which has also been widely applied
to the status diagnosis of aero-engine and rolling bearing
equipment [21], [22].

Based on the above analysis, this paper proposes a diag-
nosis algorithm of an onboard traction transformer’s running
status by combining the kernel principal component analy-
sis (KPCA) theory and fuzzy clustering analysis. Firstly, to

extract the effective state characteristics of onboard traction
transformers, the relationship between the conductivity of
insulating oil, furfural of insulating oil, electrical strength
of insulating oil, moisture in insulating oil, the temperature
of insulating oil, and train operating mileage is analyzed.
Once a linear relationship is found, it will be selected as the
status feature. Secondly, the time-domain characteristics of
the main dielectric spectrum are taken as the status feature,
and the initial status feature set is constructed with DGA as
feature. After processing by KPCA, the eigenvalue with a
contribution rate of more than 95% is selected as the running
state feature vector without the loss of signal characteristics.
Finally, the fuzzy clustering analysis algorithm is used to
input the feature vectors under different running status into
the onboard traction transformer’s state diagnosis model, and
the dynamic clustering diagram is formed to realize real-time
state diagnosis. The verification and analysis results show
that the proposedmethod can accurately diagnose the running
status of the onboard traction transformer.

The main contributions of this paper are as follows: 1) the
diagnostic algorithm for classifying the onboard traction
transformer in the state of ‘‘Good’’, ‘‘Fair’’, ‘‘Poor’’ and
‘‘Fault’’ is established, which can not only judge the ‘‘Fault’’,
but also has the ability to distinguish the state between
‘‘Good’’ and ‘‘Fault’’. 2) By combining the aging character-
istics of insulating oil and main insulation with DGA charac-
teristics, someweak features of onboard traction transformers
in the different running statuses can be fully characterized.
3) The advantage of fuzzy clustering analysis in small sample
analysis and intuitive expression is applied to effectively and
accurately diagnose the running status of onboard traction
transformer without training.

II. STATE DIAGNOSIS ALGORITHM
A. KERNEL PRINCIPAL COMPONENT ANALYSIS
To solve the problem of feature sets composed of nonlin-
ear data, such as low correlation and large dimension, the
KPCA is used to map the data set into linear space [23].
After linear principal component analysis (PCA), the data
features are filtered and sorted. The specific steps of the
KPCA algorithm are as follows:

1) Suppose the nonlinear mapping matrix is ϕ, and the
column vector of the data feature set Q is xi(i = 1, 2, . . .N ),
then the covariance matrix S corresponding to feature set Q
can be expressed as:

S =
1
N

N∑
i=1

ϕ(xi)ϕ(xi)T (1)

2) In a high-dimensional linear space, the feature set R is
processed by PCA, and the mapping matrix ϕ is multiplied
by both ends of the equation:

λV = SV (2)

λ[ϕ(xi)V ] = ϕ(xi)SV , i = 1, 2, · · ·N (3)
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where V is the eigenvector of the high-dimensional space,
λ is the corresponding eigenvalue.
3) Linear correlation is used to express the feature vector V

as (4), where a is the correlation coefficient matrix.

V =
N∑
k=1

αkϕ(xk ) = αϕ (4)

The kernel matrix K is defined:

K ij =
[
ϕ(xi)ϕ(xj)

]
(5)

Combining Equations (1), (4), and (5) and substituting
Equation (3), one can obtain:

NλKα = KKα ⇒ Nλα = Kα (6)

Thus, the eigenvalue of the kernel matrix K is the
eigenvalue of the covariance matrix S, and the direction
of the principal component of the linear space can be
obtained.

4) In this paper, the radial basis kernel function is selected
to construct the kernel matrix, and the cumulative contribu-
tion rate of eigenvalues np is defined:

k(xi, yj) = exp[−
∥∥xi − yj∥∥2 /(2σ 2)] (7)

np =
p∑
j=1

λj/

11∑
i=1

λi (8)

The eigenvalues of the kernel matrix K are sorted in
descending order, and the cumulative contribution rate of
more than 95% is taken as the new eigenvector. Thus, the sig-
nal redundancy and characteristic dimensions are reduced
without the loss of signal features.

B. FUZZY CLUSTERING ANALYSIS
Fuzzy clustering analysis is based on fuzzy mathematics,
which uses the membership similarity between samples
to complete their clustering analysis. It has the advan-
tages of intuitive expression, small sample analysis, and
no need for training in advance. The specific steps are as
follows:

1) FUZZY MATRIX X
In the sample set U = {x1, x2 . . . xn}, the fuzzy matrix X is
established with m feature indexes in each sample:

xi = (xi1, xi2, · · · , xim) (i = 1, 2, · · · n) (9)

X =


x11 x12 · · · x1m
x21 x22 · · · x2m
...

...
...

xn1 xn2 · · · xnm

 (10)

C. FUZZY STANDARD MATRIX X′′

Under the influence of different dimensions and properties
of characteristic indexes, the fuzzy matrix X needs to be
standardized in the following two ways:

Translation • Standard deviation

x ′ik =
xik − x̄k
sk

(i = 1, 2, · · · , n; k = 1, 2, · · · ,m) (11)

where x̄k = 1
n

n∑
i=1

xik , sk =

√
1
n

n∑
i=1

(xik − x̄k )2.

Translation · Range

x ′′ik =
x ′ik − min

1≤i≤n
{x ′ik}

max
1≤i≤n
{x ′ik} − min

1≤i≤n
{x ′ik}

(k = 1, 2, · · · ,m) (12)

Through the above transformation, the fuzzy standard
matrix X′′ is obtained, which satisfies all the characteristic
indexes x ′′ij ∈ [0, 1].

1) FUZZY SIMILARITY MATRIX R
The similarity coefficient between characteristic indexes is
defined as rij = R(xi, xj). Generally, the fuzzy equivalent
matrix is established by the method of quantity product, angle
cosine, and correlation coefficient, as shown in (13). In this
paper, the fuzzy similarity matrix R is established by the
exponential similarity coefficient method with more obvious
features:

rij =
1
m

m∑
k=1

exp[−
3
4
·
(xik − xjk )2

s2k
] (13)

where sk =
1
n

n∑
i=1

(xik − x̄ik )2, x̄k =
1
n

n∑
i−1

xik (k =

1, 2, · · ·m).

2) FUZZY EQUIVALENCE MATRIX R∗

To make the fuzzy similarity matrix R transitive, when the
transfer packet t(R) = R2K has a natural positive integer K
such that R2K

= R2(K+1), t(R) is the corresponding fuzzy
equivalent matrix R∗. The transfer packet algorithm is shown
in (14).

R2
= R ◦ R,R4

= R2
◦ R2, · · · , (14)

3) FUZZY BOOLEAN MATRIX
As shown in (15), the confidence factor λ ∈ [0, 1] is used
to determine the 0 and 1 distributions of each characteristic
index in the fuzzy equivalence matrix R∗, and then the corre-
sponding fuzzy equivalence matrix Rλ is formed.

rij =

{
1, rij ≥ λ
0, rij < λ

(15)

The sample set mentioned above can be summarized as
X→ X ′′→ R→ R∗→ Rλ. In the fuzzy Boolean matrixRλ,
when λ is given a specific value, the same column vector of
the sample set object is classified into one class. As λ changes
from 1 to 0, the number of classifications gradually decreases.
Finally, the sample objects are grouped into one category, thus
forming a dynamic clustering diagram to intuitively express
the classification situation.
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D. DIAGNOSTIC EVALUATION CRITERIA
To realize the evaluation of the status diagnosis results,
the status recognition rate is used as the evaluation standard,
and the algorithm is shown in (16).

Accuracy =
p
t
× 100% (16)

where t is the number of samples in the test set, and p is the
number of samples with a correct diagnosis.

III. RUNNING STATE DIAGNOSIS OF ONBOARD
TRACTION OF STATE CATEGORIES
A. SELECTION OF STATE CHARACTERISTIC QUANTITIES
AND CLASSIFICATION OF STATE CATEGORIES
As the power source of the high-speed train, the onboard
traction transformer is mainly used to convert the
25 kV catenary voltage to a low voltage. Its running state
is the basis to ensure the efficient, safe, and stable running of
the train. Restricted by the code for design of railway lines
(GB 50090-2006) [24], the onboard traction transformer
installed at the bottom of the train is affected not only by the
external adverse environment, such as mechanical vibration,
climate conditions, and running time, but also by internal
operating conditions, such as voltage fluctuation, excitation
current, and poor heat dissipation, which make it different
from the general power transformer. The onboard traction
transformer is composed of a high-voltage winding and four
windings, and the coupling degree between the components
is high. To realize the extraction of its running state charac-
teristics, a single DGA is used to diagnose the state, which
does not apply to the onboard traction transformer.

Given the structural particularity of onboard traction trans-
formers, this paper analyzes the aging characteristics of
insulating oil and main insulation, analyzes the correlation
between the characteristics and the running status of a test
transformer, and uses DGA to characterize the state charac-
teristic quantity of an onboard traction transformer. In the
aging characteristics of the main insulation, the characteristic
quantity is obtained by the frequency domain analysis of its
dielectric spectrum. In the aging characteristics test and DGA
analysis of insulating oil, the state characteristics included are
shown in Table 1, in which f1 ∼ f5 are the aging characteris-
tics of insulating oil, while d1 ∼ d8 stands for dissolved gas
in the oil.

According to the above state characteristic indexes of an
onboard traction transformer and the state-level classification
standard in IEC60422-2013 [25], the state level of an onboard
traction transformer is divided into four statuses: ‘‘Good’’,
‘‘Fair’’, ‘‘Poor’’, and ‘‘Fault’’.

B. STATUS DIAGNOSIS PROCESS
Given the different aging characteristics of insulating oil and
the main insulation of the onboard traction transformer in
different running states, this paper proposes combining DGA
to extract state features. After processing by KPCA, fuzzy
clustering analysis is used to complete the running status

TABLE 1. The characteristic quantity of the aging of insulating oil of an
onboard traction transformer.

diagnosis of the onboard traction transformer. The specific
diagnosis flow chart is shown in Figure 1.

FIGURE 1. Flow chart of an onboard traction transformer’s running state
diagnosis.

1) STATUS FEATURE INFORMATION
Insulating oil and windings are important components of
onboard traction transformers. The characteristics of the
insulating oil and windings of the traction transformers of
high-speed trains under different maintenance levels are
tested, consistency between their state characteristics and
maintenance levels is also analyzed. The information that can
reflect the status of onboard traction transformers is obtained
by combining with DGA.
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2) STATE FEATURE EXTRACTION
During studying on the aging characteristics of insulating oil,
the conductivity, furfural, electrical strength, moisture, and
temperature of insulating oil aremainly tested. Through curve
fitting of insulating oil characteristics of onboard traction
transformers under different maintenance levels, the state
characteristics are analyzed and extracted. Based on the
dielectric spectrum of onboard traction transformer winding,
the time-domain characteristics are extracted to represent the
transformer’s status. Combined with the dissolved gas in
insulating oil, the state feature sets of the onboard traction
transformer are established. To solve the problem of signal
redundancy and correlation analysis, KPCA is used to process
the state feature set. Then the feature vectors of the onboard
traction transformer in different states are established.

3) RUNNING STATE DIAGNOSIS
In this paper, the sample set of onboard traction transformers
in ‘‘Good’’, ‘‘Fair’’, ‘‘Poor’’, and ‘‘Fault’’ states is estab-
lished, and the initial fuzzy matrix is established combined
with the test set. The fuzzy matrix is normalized, and a
dynamic clustering diagram is formed by fuzzy clustering
analysis. When the confidence factor λ is given a specific
value, the sample set and the test set are matched and clas-
sified, to express the state diagnosis results intuitively in the
case of small samples.

C. EVALUATION OF DIAGNOSIS RESULTS
To evaluate the effectiveness of the clustering algorithm, the
evaluation indexes include accuracy rate (P), recall rate (R),
and F-measure (F), and the calculation methods of the three
indexes are shown in Equations (18) ∼ (20). TP is the actual
cluster of the data set, and FP is the cluster obtained after
clustering.

P =
|TP ∩ FP|
|FP|

× 100% (17)

R =
|TP ∩ FP|
|TP|

× 100% (18)

F =
2× P× R
P+ R

(19)

Among the three evaluation indexes, F-measure is a com-
prehensive index of accuracy rate and recall rate, and the
larger its value, the better the clustering effect will be.

IV. VALIDATION AND ANALYSIS
A. STATE FEATURE EXTRACTION AND ANALYSIS
1) AGING CHARACTERISTICS OF INSULATING OIL
To study the relationship between the aging characteristics of
insulating oil and onboard traction transformers, this paper
carries out oil sample detection on different levels of main-
tenance trains in Changke Maintenance Center. Taking the
onboard traction transformers of new trains and 4.8 million
km level-5 maintenance trains as examples, the oil sample
detection results of the aging characteristics of insulating oil
are shown in Tabs. 2 and 3.

TABLE 2. Aging characteristics of insulating oil of onboard traction
transformers in new trains.

TABLE 3. Aging characteristics of insulating oil of onboard traction
transformers in level-5 maintenance trains.

According to the requirements of GB/T 7595-2008 and
DL/T 596-1996 on the characteristics of transformer insulat-
ing oil in Reference [26], the onboard traction transformer
of the new train meets the standard. With the increase of
operating mileage, the conductivity, moisture, and temper-
ature of insulating oil of level-5 maintenance trains exceed
the standard. According to the above analysis, curve fitting
is conducted for conductivity, moisture, and temperature of
insulating oil under different running mileage, and the results
are shown in Fig. 2.

Fig. 2 shows that with the increase of running mileage,
the conductivity, moisture, and temperature of insulating oil
show amonotonous trend, which can also further characterize
the state change of the onboard traction transformer.

2) AGING CHARACTERISTICS OF THE MAIN INSULATION
The insulation aging characteristics of windings of onboard
traction transformers change under different operating condi-
tions. To extract the aging characteristics of the main insula-
tion, the frequency response of the main insulation is tested
using the method of dielectric spectrum analysis. The tested
dielectric spectrums of onboard traction transformers of new
trains and level-4 maintenance trains in Changke Mainte-
nance Center are shown in Fig. 3.

The test results show that in the low-frequency domain,
there is no much different between the impedance of the new
train and the level-4 maintenance train due to the interference
of the environment. However, in the high-frequency stage,
the impedance of the level-4 maintenance train increases
significantly. To characterize the features of the dielec-
tric spectrums in time-domain, dimensionless indexes such
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FIGURE 2. Changes in the aging characteristics of onboard traction
transformers.

FIGURE 3. Dielectric spectrum curve of the main insulation of onboard
traction transformers.

as RMS, peak factor, and kurtosis factor are selected as the
feature parameters. They are calculated as follows:

RMS r1:

r1 =

√
1
N
x2i (20)

Peak factor r2:

r2 =
N

max
i=1

(xi)/

√√√√ 1
N

N∑
i=1

x2i (21)

Kurtosis factor r3:

r3 =
E[(X − µ)4]

σ 4 (22)

where xi is the signal sequence, µ is the mean value, and σ is
the root mean square value.

The RMS reflects the energy of the dielectric spectrum,
the peak factor measures the impact characteristics of the
curve, and the kurtosis factor describes the probability density
of the signal sequence and reflects the complexity of the
waveform.

3) CHARACTERISTICS OF DISSOLVED GASES
IN INSULATING OIL
To fully characterize the status feature of the onboard traction
transformer under different running statuses, the DGA of the
onboard traction transformer is added to the status feature
set. In this paper, a traction transformer under level-4 mainte-
nance in ChangkeMaintenanceCenter is taken as an example,
the DGA data is shown in Tab. 4.

TABLE 4. DGA characteristics of the onboard traction transformer of the
level-4 repair vehicle.

According to GB/T 7252-2001 [27], the standard value of
the onboard traction transformer C2H4 in the normal state
should be zero ppm. In Table 4, the content of C2H4 signifi-
cantly exceeds the standard, which further reflects the status
change of the onboard traction transformer.

B. KPCA PROCESSING OF THE STATE FEATURE SET
Based on the aging characteristics of insulating oil and main
insulation, combined with the consistency between DGA
characteristics and the running state of the onboard trac-
tion transformer, the original feature matrix Q4×4 is estab-
lished. The aging characteristics of insulating oil are {f1, f2,
f3, f4, f5}, the aging characteristics of main insulation are
{u1, u2, u3}, and the DGA characteristics are {d1, d2 . . .d8},
there are a total of 16 characteristic indexes, and the original
feature set Q4×4 established is shown as follows:

Q =


f1 f2 f3 f4
f5 u1 u2 u3
d1 d2 d3 d4
d5 d6 d7 d8


Considering the cooling system of the onboard traction

transformer, the CO and CO2 dissolved in insulating oil can-
not be regarded as status characteristics. To eliminate signal
redundancy and ensure the correlation between status features
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and the running status, further analysis of the feature set is
needed. Through the above analysis, the state of an onboard
traction transformer of a new train is taken as an example,
the original feature set Q4×4 established is:

Q =


1.29e11 0.001 76.5 3

17 1.2 5 101
1 0 0.1 0
1 2.045 2.124 218.272


Some status features have poor relevance to changes in run-

ning statuses and cannot be used as inputs for fuzzy clustering
analysis. To eliminate signal redundancy, feature sets need to
be further analyzed. Based on the KPCA theory and the linear
mapping relationship, the feature set Q is analyzed using
KPCA, and the parameters with the cumulative contribution
rate of more than 95% of the feature values are selected as the
new feature set Q̄. After KPCA processing, the state feature
vector of the onboard traction transformer of the new train
is Q̄:

Q = [1.190e11 16.58314.111 3.694]

The feature vector Q̄ can satisfy the requirement of no
loss of signal features and eliminate information redundancy,
which greatly reduces the calculation of state diagnosis.

C. RUNNING STATE DIAGNOSIS OF ONBOARD TRACTION
TRANSFORMERS
1) ESTABLISH A DIAGNOSTIC MODEL FOR THE RUNNING
STATUS OF THE ONBOARD TRACTION TRANSFORMER
Based on the analysis of the status features of the onboard
traction transformer, a set of characteristic vectors of different
running statuses are taken as the sample object, and the char-
acteristic vectors of ‘‘Good’’, ‘‘Fair’’, ‘‘Poor’’, and ‘‘Fault’’
are defined by w1 ∼ w4. The fuzzy clustering algorithm is
used to perform clustering analysis to establish a diagnosis
model of the onboard traction transformer’s running state.
The specific implementation steps are as follows:
Step 1: Build the initial fuzzy matrix X.

X = [w1;w2;w3;w4] (23)

Step 2: Use Equations (11) and (12) to obtain the standard
fuzzy matrix X ′′.

X
′′

=


1 0 0 0

0.131 1 1 1
0.026 0.297 0.557 0.759
0 0.565 0.771 0.946


Step 3: The fuzzy similarity matrix R is established by

using Equation (13).

R =


1 0.340 0.527 0.429

0.340 1 0.703 0.826
0.527 0.703 10.866
0.429 0.826 0.866 1



Step 4:The fuzzy equivalent matrixR∗ is constructed using
Equation (14).

R∗ =


1 0.527 0.527 0.527

0.527 1 0.826 0.826
0.527 0.826 1 0.866
0.527 0.826 0.866 1


Step 5: Establish a diagnostic model of running status
Equation (15) is used to establish the corresponding equiv-

alent Boolean matrix Rλ. When the confidence factor λ
changes from large to small, the same columns of the equiv-
alent Boolean matrix Rλ are grouped into one class, and
a dynamic clustering diagram is formed, to complete the
formation of the onboard traction transformer’s running state
diagnosis model.

2) EXAMPLE DEMONSTRATION AND RESULT ANALYSIS
To verify the effectiveness of the diagnosis model of the
onboard traction transformer’s running status, two groups of
onboard traction transformers in the ‘‘Good’’ and ‘‘Fault’’
state are randomly selected as test sets in the Changke Main-
tenance Center, and the labels are defined as c1 ∼ c2, and
u1 ∼ u2 respectively. Combined with the diagnosis model
of the onboard traction transformer in the previous section,
the status feature vector to be tested is subjected to fuzzy
clustering analysis to form a dynamic clustering diagram,
as shown in Fig. 4.

FIGURE 4. Dynamic clustering diagram of running status to be tested.

As can be seen from the dynamic clustering diagram of
the running status, when the confidence factor λ on the left
side declines from 1 to 0, the number of categories on the
right side decreases and eventually falls into one category.
When λ changes to 0.959 and 0.971, w1 and c1 ∼ c2 are
divided into one category; then the status to be tested c1 ∼ c2
and sample w1 belong to the same running state, so
c1 ∼ c2 are diagnosed as the ‘‘Good’’ state. Similarly, when λ
CHANGES to 0.966 and 0.972, w4 and u1 ∼ u2 are divided
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into one category, and the status to be tested u1 ∼ u2 are
diagnosed as ‘‘Faulty’’, which is consistent with the on-site
detection result.

D. COMPARISON AND ANALYSIS
1) STATE FEATURE EXTRACTION ALGORITHM
Taking the fuzzy clustering state diagnosis model under
the traditional DGA feature as an example, c1 ∼ c2 and
u1 ∼ u2 of the onboard traction transformer in the ‘‘Good’’
and ‘‘Fault’’ states in the previous section are input into
the diagnosis model to form a dynamic clustering diagram,
as shown in Fig. 5

FIGURE 5. Dynamic clustering diagram based on traditional DGA features.

It can be seen from Fig. 5, when λ changes to 0.952,
c2 is misdiagnosed as a ‘‘Fair’’ state, which is inconsistent
with the field test results. Only the DGA feature is used as
state quantity, whichmakes it not sensitive to theweak change
of state.

To further verify the effectiveness of the state feature
extraction algorithm proposed in this paper, the F-measure
of fuzzy clustering analysis is compared under the feature set
without KPCA, the traditional DGA feature, and only with
insulation aging feature. Taking the Changke Maintenance
Center about the running status of the onboard traction trans-
former of different levels as the test set, a total of 40 groups
are input into different diagnosis models, and the diagnosis
results are shown in Tab. 5.

The field experimental results show that compared with
other state feature extraction algorithms; the F-measure of
the feature set processed by KPCA is 97.5%, which further
verifies the effectiveness of the KPCA algorithm in state
feature extraction of onboard traction transformer.

2) STATUS DIAGNOSIS ALGORITHM
Under the four different levels of running state, a total of
100 groups of datasets of onboard traction transformers are
used as experimental data. Among the 100 groups of sets,

TABLE 5. Diagnostic results under different state features.

the first 60 groups are used as training samples, while the
remaining 40 groups are used as test sets. In this paper, the
algorithms including support vector machine (SVM), back-
propagation neural network (BPNN), and extreme learning
machine (ELM) are added for comparison, with different
sample sizes. Fig. 6 only presents the diagnosis result using
SVM. As is shown in the figure, the state diagnosis accuracy
of the test set of SVM is 82.5%, which is the second highest
among different algorithms, but still inferior to the proposed
method. For comparison, the diagnosis results of the different
algorithms with different sample sizes are provided in Tab. 6.

FIGURE 6. State diagnosis result with SVM.

TABLE 6. Diagnostic results with different algorithms and different
sample size.

The results show that the diagnostic accuracy of either the
proposed method or the SVM is indeed high. In compari-
son, the proposed method is more dominant. This is mainly
because the algorithm of SVM is based on structural risk and
VC (Vapnik chervonenkis) theory. The size of the VC dimen-
sion directly affects the fitting degree, but the fuzzy clustering
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algorithm does not need to be trained in advance to achieve
parameter optimization.

3) DIAGNOSTIC RESULTS WITH PUBLIC DATASET
According to the public dataset in IEC TC-10 (also see in
IEC 60599) of power transformers, the running status of
power transformer is summarized into 8 categories (Normal,
Partial discharge, Discharges of low energy, Discharges of
high energy, Thermal faults of temperature < 300 ◦C, Ther-
mal faults of temperature 300 ◦C < T < 700 ◦C, Thermal
faults of temperature T> 700 ◦C, and mixtures of electrical
and thermal faults), which is different from the status cate-
gories for onboard traction transformer. For verification of
the proposed method, the number of fault categories does not
affect much. To verify the repeatability of the fuzzy clustering
algorithm under the public dataset, a total of 48 groups of
experimental data are taken from each category, in which
30 groups under different fault categories are used to establish
the fault diagnosis model, and the last 18 groups are used
as the test set. The experimental results are given in Tab. 7.
It is shown that theK -measure of power transformer based on
fuzzy clustering analysis is 95.8%, which verifies the appli-
cability of the diagnosis algorithm under the public dataset.

TABLE 7. Diagnostic results with public datasets.

V. CONCLUSION
Given the consistency between the running status of the
onboard traction transformer and the aging characteristics of
insulating oil and the main insulation, this paper proposes
an algorithm to diagnose the running status of the onboard
traction transformer.

a) Onboard traction transformer is different from the power
transformer. The aging characteristics of insulating oil under
different maintenance levels are analyzed, such as conduc-
tivity, furfural, conductivity, moisture, temperature, and so
on. The status features of an onboard traction transformer are
established by analyzing the dielectric spectrum ofmain insu-
lation and combining it with the characteristics of dissolved
gas in oil.

b) The fuzzy clustering is carried out to analyze the running
status of the onboard traction transformer under with DGA
features, without KPCA processing, and only with aging
characteristics, respectively. Results show that theK -measure
can be as high as 80% with traditional DGA features, and
90% for that without KPCA features, and 87.5% for that only

with insulation aging features, while the K -measure of the
algorithm proposed in this paper is high than 95%, which not
only improves the diagnosis accuracy, but also provides a new
guarantee for the equipment maintenance.

At present, the status features can only be extracted when
the train is in maintenance. In the future, how to realize the
full-cycle operation status monitoring of the onboard traction
transformer becomes the future research direction.
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