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ABSTRACT Although super-resolution techniques based on deep neural networks (SRDNN) have drawn
significant interest and numerous algorithms have been proposed, they still have reliability problems and
produce artefacts when applied to new datasets. In this paper, theworkingmechanisms of SRDNN techniques
are analyzed in terms of data mapping. Since most SRDNN techniques can be viewed as dynamic linear
projections, we analyzed a large number of projection vectors (over 70 million) and found that the SRDNN
method performs one-to-onemapping-like operations andmay be vulnerable to unknown data patterns. Then,
we applied several SRDNN techniques to real-world images and analyzed the output images. The current
SRDNN methods failed to distinguish the blurred edges/lines due to low resolutions from coding artefacts
and enhanced both, even though the SRDNN methods were trained using compressed low-resolution (LR)
images. These analyses and results indicate that current SRDNN methods may not be able to provide robust
performance and new structures may be necessary for reliable super-resolution performance.

INDEX TERMS DNN, super-resolution, artefacts, real world images, compression error enhancement.

I. INTRODUCTION
Recently, super-resolution based on deep neural networks
(SRDNN) has drawn significant interest and numerous algo-
rithms have been proposed [1]–[15]. Although it has been
reported that these SRDNN algorithms produce much better
performance compared to traditional interpolation methods
such as bi-cubic interpolation, SRDNN methods still tend to
produce unexpected artefacts in some cases and this reliabil-
ity issue can restrict the use of SRDNN methods.

In typical SRDNN methods, a reduced image is enlarged
by an integer factor (e.g., 2, 3 or 4). Recently, the percep-
tual quality of SRDNN methods has been studied [16]–[19].
These SRDNN methods aim to improve perceptual image
quality instead of the conventional PSNR. Furthermore,
applying SRDNN methods to real-world images has been
investigated by assuming that paired HR (high-resolution)
and LR images are unavailable [21]–[23]. Most existing SR
(super-resolution) methods use degradation models that are
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not related to real images. Typically, bicubic down-sampling
is used to generate low-resolution images to train the model.
Using bicubic down-sampling is similar to applying a low-
pass filter, which reduces high-frequency components in
low-resolution images. Consequently, performance may be
degraded when applied to real images. To address this prob-
lem, Ji et al. [25] proposed a degradation method using an
estimation kernel and noise injection. Zhang et al. [26] pro-
posed a degradation model consisting of randomly blended
blur, down-sampling, and noise.

Super-resolution deals with an extremely ill-posed
problem. Once the resolution of an image is reduced, some
information can be permanently lost and never recovered.
In 4x super-resolution, a pixel in the reduced image can be
viewed as an average of 16 pixels (as a 4 × 4 block). For
example, the images shown in Figure 1 will be identical when
they are reduced by 1/4 assuming the average of 16 pixels is
used.

When using 8-bit images, the 4×4 block shows a very large
number of combinations, which are mapped into the same
8-bit value (0-255). Although this is an irreversible process,
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FIGURE 1. Various image patterns whose averages (4 × 4) are identical.
The square of the top left consists of four pixels (2 by 2).

it is conjectured that SRDNN methods can utilize contextual
information to recover the lost detail information. However,
since most SRDNN methods produce unexpected artefacts,
this conjecture should be examined and tested.

In this paper, we examined the working mechanism of
SRDNN methods and showed that SRDNN methods show
one-to-one mapping-like properties as they can be viewed
as a dynamic linear transformation. Then, we analyzed the
images enlarged by some SRDNN techniques as applied to
compressed real-world images.

II. ONE-TO-ONE MAPPING-LIKE PROPERTIES OF SRDNN
A. DYNAMIC LINEAR TRANSFORMATION
A basic building block for SRDNN is a convolution layer
followed by a ReLU layer, though some SRDNN methods
use residual blocks, sigmoid functions, channel attention lay-
ers, etc. [6]. The depth of neural networks determines the
receptive field size. For example, the receptive field of the
VDSR [2] is 41 × 41. For some deep SRDNN methods,
the receptive field can be the entire image. In other words,
a pixel value in the output layer can be theoretically affected
by the entire image. However, most SRDNN methods are
trained using a large number of patches (K× K images). The
typical value of K is 41 to 48.

In [20], it was shown that a convolution layer followed by a
ReLU layer can be expressed by matrix operations. The patch
was expressed as a vector (N × 1) with N = K 2. If there
are 64 filters in the convolution layer, the convolution layer
followed by the ReLU layer was expressed as follows [20]:

X j+164N×1 = ReLU(Aj64N×NX
j
N×1 + b

j
64N×1) (1)

where the superscript represents the layer index. Aj64N×N is
a filter matrix of the j-th layer and is a bias vector of the
j-th layer:

Aj64N×N =


Aj,0N×N
Aj,1N×N
...

Aj,63N×N

 , bj64N×1

= [bj0, b
j
0, . . . , b

j
0, . . . , b

j
63, b

j
63, . . . , b

j
63] (2)

As shown in [20], the output (X j+164N×1) can be also
expressed as a vector (64N × 1). The ReLU operator replaces
negative elements with zeros, which is equivalent to setting
the corresponding row of Aj64N×N and the corresponding
element of bj64N×1 to zero. This operation makes SRDNN
with ReLU a non-linear function. Thus, (1) can be rewritten
as follows:

X j+164N×1 = RA
j
64N×NX

j
N×1 + Rb

j
64N×1 (3)

In (3), RA
j
64N×N is a matrix that reflects the ReLU opera-

tions and Rb
j
64N×1 a vector that reflects the ReLU operations.

In other words, a convolution layer followed by a ReLU layer
can be modelled as a dynamic linear transformation.

After the DNN is trained, all the filter and bias coefficients
are fixed. Without the ReLU operations, the transformation
matrices would be identical for all input images. However,
the ReLU operator produces a different transformationmatrix
depending on the images. In particular, the sign of the ele-
ments of the vector (Aj64N×NX

j
N×1 + bj64N×1) determines

the transformation matrix (RA
j
64N×N ) and the bias vector

(Rb
j
64N×1). If all the element signs are identical, the transfor-

mation matrix and the bias vector will be the same.

FIGURE 2. The receptive field of VDSR.

In VDSR [2], there are 20 layers and the filter size is 3×3.
Thus the receptive field is 41× 41. In [20], it was shown that
an output pixel can be expressed as follows:

y = W1×NX0
N×1 +

L−1∑
k=0

nkbias∑
j=0

αkj b
k
j

= W1×NX0
N×1 +W1×NbBNb×1 (4)

where X0
N×1 represents an input patch (21 × 21 image),

W1×N and W1×Nb represents weight vectors. Theoretically,
1681 pixels of the input image affects the output pixel
(Figure 2).

On the other hand, the first layer (convolution and ReLU)
will produce 64 images and 97344 (39×39×64) pixels of the
64 images of the first layer affect the output pixel. Before the
ReLU operator, some of the pixel values may be negative and
the ReLU operator will set the values to zero, which in turn
will produce a different transformationmatrix (RA

j
64N×N ) and

a bias vector (Rb
j
64N×1). Therefore, a total of 682177 pixels

of layer output images can affect an output pixel in the VDSR
method (Table 1). In particular, the signs of the 682177 pixels
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TABLE 1. Output images sizes and numbers of pixels of the 20 layers of
VDSR.

determine the final linear transformation matrix. In other
words, the output pixel can be modelled as follows:

y = W1×N (P)X0
N×1 + b1×1(P) (5)

where P is the set of the 682177 pixels included in the pyra-
mid, as illustrated in Figure 2. In this paper, P is defined as a
pyramid pixel set, which is a set of pixels of the output images
of the layers. The output images of each layer are 64 in VDSR
except for the last layer whereas the input is a single-channel
image. If the signs of the 682177 pixels before the ReLU
operation are identical, the linear transformation (W1×N (P)
and b1×1(P)) will be identical. This property can be applied
to any SRDNN method that uses the ReLU function.

Using this paradigm, most SRDNN methods can be mod-
elled as a dynamic linear transformation. The input patch (K
xK ) and the filters determine the pyramid pixel set (P), which
in turn determinesW1×N (P) and b1×1(P). AlthoughW1×N (P)
is a function P, P is also a function of the input patch (X0

N×1).
Thus, W1×N and b1×1 can be viewed as functions of X0

N×1:

y = W1×N (X0
N×1)X

0
N×1 + b1×1(X

0
N×1) (6)

Figure 3 illustrates this mapping procedure. Thus,
the SRDNN method can be understood as first generating
the weight vector and bias term (W1×N & b1×1) and then
applying a linear transformation. In the case of VDSR,
the network generates W1×N and b1×1 from X0

N×1, and then
uses (6) to compute the output pixel, though these operations
are simultaneously performed in the VDSR network.

B. ONE-TO-ONE MAPPING-LIKE PROPERTIES
Recently, numerous SRDNN methods have been proposed
and they have shown impressive performance. Figure 4 shows

FIGURE 3. Weight vector generating mapping function.

FIGURE 4. Examples of SRDNN methods. (a) HR (high resolution), (b) LR
(low resolution), (c) SR enlarged by 4 using RRDB [12].

some examples of SRDNN methods (RRDB [12]). These
methods produced impressive enlarged images (4x) from a
reduced image. Fromwhat appears as blurred lines at the cen-
ter of the LR image, the method successfully reconstructed
the twofine line structures. Also, the SRDNNmethod impres-
sively reconstructed the detailed structures of the beam on
the right. Since SRDNN methods can be modelled as shown
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in Figure 3, one may claim that SRDNN methods effec-
tively utilize surrounding structures to successfully restore
lost detailed information. However, erratic behaviors for new
input images also suggest that SRDNN methods may fail to
use relevant information and theymight suffer from reliability
problems.

FIGURE 5. Output pixels with identical sign sequences (DSLR images). The
left images are the original images and the red pixels of the right images
represent the pixels with identical sign sequences. (a) red pixels in the
upper-left, (b) red pixels in the lower-left, (c) red pixels in the lower-right.

In this paper, we examined the signs of the pyramid pixel
set (P) for over 70 million output pixels when the VDSR
was used. From each pyramid pixel set, we generated a sign
sequence of 682177 numbers. If two output pixels have the
same sign sequence, then the two output pixels will use the
same linear transformation of (6). Another interpretation can
bemade from a point of input space division. The convolution
filters will divide the input space (1681 dimensions) into a
very large number of hyper-polygons. Then, all the pixels
within the same hyper-polygon will use the identical linear
transformation (W1×N (P) and b1×1(P)).
Figures 5-6 show some output pixels with identical sign

sequences. The left image is an SR image and the right image
shows where the output pixels with the same sign sequence
are marked as red pixels. It can be seen that all those output
pixels correspond to almost constant regions (either white or
black). These results indicate that almost every input patch
produced a different linear transformation of (6). Almost
every hyper-polygon was occupied by a single pixel and
the number of hyper-polygons may significantly exceed the
number of training patches.

In other words, the weight vector generating mapping
function shown in Figure 3 shows behaviors like a one-to-one
mapping operator. Since this one-to-one mapping operator is
designed from finite training samples, the mapping may not

FIGURE 6. Output pixels with identical sign sequences for some public
image databases (red pixels of the right images).

reflect valid logic using relevant information. More complex
SRDNN methods (e.g., RCAN, RRDB, SAN, etc.), which
have a larger number of parameters than VDSR, might suffer
from the same problem since they may divide the input space
into a much larger number of hyper-polygons.

Consequently, SRDNN methods may have a fundamental
reliability problem due to this one-to-one mapping prop-
erty. In other words, when SRDNN methods are applied
to real-world images that are not used for training, they
may show erratic behaviors. SRDNN has been reported to
produce clear and sharp high-resolution images from low-
resolution images with blurred edges and lines. However,
since most SRDNN methods produce one-to-one mapping
solutions, they may not be able to distinguish blurred edges
and lines from the compression artefacts that can be produced
by coding. To investigate this vulnerability, we applied vari-
ous SRDNN methods to some real-world images in the next
section.

FIGURE 7. Compressed LR images (JPEG at various quality levels).

III. APPLICATIONS TO REAL-WORLD IMAGES
A. APPLICATION TO COMPRESSED IMAGES
In general, SRDNN performance is evaluated using standard
databases. Usually, low resolution (LR) images are generated
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FIGURE 8. SR images produced by various SRDNN methods when the LR image was not compressed.

FIGURE 9. SR images produced by various SRDNN methods when the LR image was compressed (JPEG 90). The
SRDNN methods were trained using uncompressed LR images.

by reducing high resolution (HR) images with bi-cubic inter-
polations. This operation acts like low pass filtering and the
resulting LR images are usually free of artefacts and noise.

However, in real-world applications, the input images may
contain noise and almost all input images have compression
artefacts.
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TABLE 2. Performance comparison when the SRDNN methods trained using uncompressed LR images were applied to uncompressed LR test images.

TABLE 3. Performance comparison when the SRDNN methods trained using uncompressed LR images were applied to compressed LR test images
(JPEG 90).

TABLE 4. Performance comparison when the SRDNN methods trained using uncompressed LR images were applied to compressed LR test images
(JPEG 80).

FIGURE 10. SR images produced by various SRDNN methods when the LR image was compressed (JPEG 80). The SRDNN
methods were trained using uncompressed LR images.

In the next experiment, we applied several SRDNN meth-
ods (VDSR [2], EDSR [5], RRDB [12], ESRGAN [12],
RCAN [6], SAN [7], CAR [27], HAN [28]) to the com-
pressed LR images. The pre-trainedmodels were downloaded

from the authors’ sites [29]. After the HR images were
reduced to LR images, we compressed them using JPEG
coding at various quality levels. When creating the com-
pressed images, we used a JPEG function (built-in function
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FIGURE 11. EDSR output images when applied to a compressed image
(JPEG 90). (a) EDSR trained using uncompressed LR images enhanced
coding artefacts, (b) EDSR trained using both uncompressed and
compressed LR produced an improved output image without enhancing
coding artefacts.

in Ubuntu, ver. 18.04). Figure 7 shows the compressed LR
images at various quality levels. Then, we used the SRDNN
methods to enlarge the compressed LR images to the original
high resolution.

Tables 2-4 show the PSNR performance of the SRDNN
methods along with the bi-cubic interpolation. The PSNR
of the SRDNN methods considerably decreased for the
compressed LR images.

Figure 8 shows the enlarged images when uncompressed
LR images were used. Compared to the bi-cubic method,
the SRDNN methods produced much better quality. Figure 9
shows the enlarged images when the LR image was
compressed (JPEG 90). Although the bi-cubic method shows
a similar output, the SRDNNmethods showedmore artefacts.
In particular, ESRGAN, which aimed to maximize perceptual
image quality, showed severe artefacts. It can be seen that the
SRDNN methods immediately produced artefacts when the
LR images were compressed. The VDSR generated the least
number of artefacts for the compressed LR images, though its
enlarged images were not as good as the outputs of the other
SRDNN methods for the uncompressed LR images.

FIGURE 12. Enlarged images of a compressed LR image. (a) bi-cubic,
(b) EDSR trained using uncompressed LR images enhanced coding
artefacts, (c) EDSR trained using both uncompressed and compressed LR
images produced an overly smooth image.

Figure 9 shows that the SRDNN methods produced arte-
facts similar to some 2D cosine transforms. For example,
RCAN and SAN showed diagonal artefact patterns on the
chin. Along strong horizontal edges such as eyebrows, a hori-
zontal artefact pattern appeared. Figure 10 shows the enlarged
images when the LR image was compressed using JPEG
(quality level: 80). The artefact patterns appeared similar to
2D cosine transforms of lower frequency. This issue will be
discussed in detail later.

Although the SRDNN methods successfully restored fine
details from the blurred LR images in Figure 4, they also
enhanced the coding artefacts of the compressed LR images
and produced poor perceptual image quality (Figure 11(a)).
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FIGURE 13. Performance comparison of the EDSR trained with various
datasets when applied to compressed LR images. LR_NC: trained with
uncompressed LR; LR_NC, LR_90: trained with LR_NC and compressed LR
(JPEG 90); LR_NC, LR_90, LR_80: trained with LR_NC and compressed LR
(JPEG 90 & 80).

These results indicate that the one-to-one mapping-like prop-
erties of SRDNN methods may not be able to use rele-
vant information that reflects the true nature of the target
images.

To solve this reliability problem of SRDNN methods, new
structures may be developed.

B. TRAINING USING COMPRESSED LR IMAGES
In the next experiments, we trained the EDSR and RCAN
methods using uncompressed and compressed LR images.
In other words, in addition to uncompressed LR images
(LR_NC: LR no compression), we also used compressed
LR images coded by JPEG for training. We encoded the
training set using JPEG (quality level: 90) and decoded the
JPEG LR images to produce the compressed LR training
data. We used the DIV2K dataset for training and validation.
In general, the 800DIV2K images have been used for training
and the 100 DIV2K images have been used for validation.
To train the EDSRmodel, 32 residual blocks and 256 features
were used. To train the RCAN model, we used 10 residual
groups, 20 residual blocks, and 64 features. The models were
trained for 300 epochs. When the EDSR was trained using
only the uncompressed LR images, it produced annoying
artefacts when it was applied to the compressed LR images
(Figure 11(a)).

However, the EDSR trained using both uncompressed and
compressed LR images did not produce these artefacts for the

FIGURE 14. Performance comparison of RCAN trained with various
datasets when applied to compressed LR images. LR_NC: trained with
uncompressed LR; LR_NC, LR_90: trained with LR_NC and compressed LR
(JPEG 90); LR_NC, LR_90, LR_80: trained with LR_NC and compressed LR
(JPEG 90 & 80).

FIGURE 15. Enlarged images of a compressed LR image (JPEG80).
(a) EDSR, (b) RCAN. EDSR and RCAN enhanced coding artefacts.

compressed LR images (Figure 11(b)). However, there were
PSNR decreases (Figure 13). Similar performance patterns
were observed for the RCAN (Figure 14).
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FIGURE 16. EDSR performance. (a) original HR, (b) SR (trained using NC)
for uncompressed LR, (c) SR (trained using NC) for compressed LR (80)
(d) SR (trained using NC, 80, 90) for compressed LR (80). NC: no
compression, 80/90: JPEG 80/90. EDSR trained using uncompressed and
compressed LR images produced an overly smooth image.

FIGURE 17. EDSR (train: uncompressed data LR images; test:
uncompressed data LR images) produced a good output image.

Figure 12 shows enlarged images of a compressed LR
image (JPEG 90). Although the bi-cubic interpolationmethod
produced an image with some coding artefacts, it retained
some naturalness (Figure 12(a)). The EDSR trained using

FIGURE 18. EDSR (train: uncompressed data LR; test: JPG 90) enhanced
coding artefacts.

FIGURE 19. EDSR (train: uncompressed LR, JPG 90; test: JPG 90) produced
an improved output image without enhancing coding artefacts.

only uncompressed LR images enhanced the coding arte-
facts (Figure 12(b)). Although the EDSR trained using
both uncompressed and compressed LR images produced
a clean image (Figure 12(c)), the output image was overly
smooth and fine details were lost. For example, the grada-
tion within the music notes was lost and the text lines look
unnatural.

Next, we encoded the LR images with higher compression
(JPEG 80). With larger coding impairments, the EDSR and
RCAN enhanced the coding artefacts (Figure 15), though
they were trained using uncompressed and compressed LR
images (JPEG 90 & 80).

It appears that the SRDNN methods failed to dis-
tinguish the lost details from the coding impairments
when those impairments were larger than a threshold.
Figure 16 shows the SR images produced by the EDSR
when the LR images were compressed. When the EDSR
trained using only uncompressed LR images was applied
to uncompressed LR images, it produced good outputs
(Figure 16(b)). However, it produced severe artefacts when
applied to compressed LR images (Figure 16(c)). Even
when the EDSR was trained using uncompressed and
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FIGURE 20. EDSR (train: uncompressed LR, JPG 90; test: JPG 80) failed to
suppress coding artefacts.

FIGURE 21. EDSR (train: uncompressed LR, JPG 90&80; test: JPG 80) still
failed to suppress coding artefacts.

FIGURE 22. Output image when the EDSR trained using uncompressed LR
images was applied to an uncompressed LR test image.

compressed LR images, it still produced some artefacts
(Figure 16(d)). The corresponding LR images were shown at
the lower-right.

FIGURE 23. Output image when the EDSR trained using uncompressed LR
images and compressed LR images (JPG 90&80) was applied to an
uncompressed LR test image. It produced an overly smooth image.

FIGURE 24. Original JPG image and the selected sub-image.

Furthermore, when the images are highly compressed,
the SRDNN methods enhanced the coding artefacts even
when the compressed training data of the same level was used.
For example, when the EDSR trained using the uncompressed
LR images (NC LR: no compression low-resolution images)
was applied to compressed LR images (JPEG 90), it pro-
duced coding artefacts (Figure 18) whereas it produced a
good image when applied to the uncompressed LR image
(Figure 17). When trained using both uncompressed and
compressed LR images, the EDSR reduced the coding
artefacts (Figure 19). However, it still produced coding arte-
facts (Figures 20 & 21) when the image was more com-
pressed (JPEG 80), though compressed images (JPEG 80)
were also used for training. Also, when the EDSR was
trained using both uncompressed and compressed LR images,
it produced overly smooth images (Figures 22 & 23). Restor-
ing the detailed information without amplifying the coding
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FIGURE 25. Sub-image enlarged by the bi-cubic interpolation. The coding
artefacts (DCT patterns) are visible.

FIGURE 26. Sub-image enlarged by the EDSR. The enhanced coding
artefacts (DCT patterns) are clearly visible.

artefacts and noise is still an unsolved challenge for SRDNN
methods.

C. ENHANCING CODING ARTEFACTS
In the next experiment, we applied the SRDNN methods
(VDSR, EDSR, RRDB, ESRGAN, RCAN, and SAN) to the
images of the MICC logo database [21]. Figure 24 shows an
original JPG image, which was enlarged (4x) by using the

FIGURE 27. Sub-image enlarged by ESRGAN (perceptual). The enhanced
coding artefacts (DCT patterns) are clearly visible.

FIGURE 28. Sub-image enlarged by EDSR (top) and RCAN (bottom). The
enhanced coding artefacts (DCT patterns) are clearly visible.

SRDNN methods. Figure 25 shows a sub-image (enlarged
box area of Figure 24) of the enlarged image produced
by the bi-cubic interpolation. One can clearly see the
DCT patterns.

Figure 26 shows a sub-image of the enlarged image pro-
duced by the EDSR, which noticeably enhanced the cod-
ing artefacts (DCT patterns). Figure 27 shows a sub-image
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FIGURE 29. More examples of enhanced mosquito noise produced by the SRDNN methods.

FIGURE 30. Sub-image enlarged by the nearest neighbor.

FIGURE 31. Sub-image enlarged by RCAN. The enhanced coding artefacts
(e.g., mosquito noise) are clearly visible.

enlarged by ESRGAN, which produced severe coding
artefact enhancement.

Figures 28-32 show more examples of enhanced coding
artefacts (e.g., mosquito noise due to encoding) produced

FIGURE 32. Sub-image enlarged by HAN [28]. The enhanced coding
artefacts (e.g., mosquito noise) are clearly visible.

FIGURE 33. Various aliasing artefacts produced by EDSR that was trained
different training datasets and applied to uncompressed LR images (NC:
uncompressed LR, 90: compressed with JPEG 90, 80: compressed with
JPEG 80).

by the SRDNN methods. These kinds of enhanced coding
artefacts were observed in many of the MICC logo images
and other JPEG images. In particular, the ESRGAN method,
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FIGURE 34. (a) Bicubic (test: JPG 90), (b) RCAN (train: NC, JPG 90; test: JPG90). RCAN trained with the uncompressed and
compressed LR images produced an overly smooth output image that looks unnatural compared to the conventional bi-cubic
method.

which is a perceptual model, produced the most severe
artefacts.

D. ALIASING AND NATURALNESS
It is well known that aliasing can occur when images are
reduced. Many SRDNN methods have produced such alias-
ing artefacts (Figure 33). Depending on the training data,
SRDNN methods might produce different aliasing artefacts.
In Figure 33, the EDSR trained with different training
datasets produced different aliasing patterns.

In some cases, the SRDNN methods tend to produce
overly smooth output images that look unnatural compared
to conventional methods (Figure 34). Figures 37-42 show
more of these examples. This unnaturalness was more easily
perceived for human faces and characters.

Figures 35-36 show some examples of enlarged text.
It appears that the bi-cubic method provided the best
naturalness and readability whereas the SRDNN meth-
ods produced unrecognizable/disturbing characters along
with enhanced coding artefacts. Figure 43 shows enlarged
tree branches. The SRDNN methods (RCAN, ESRGAN,
CAR, HAN) produced very unnatural tree branch pat-
terns. Also, they created visible vertical stripes at the left
side ((c)-(f)).

Super-resolution is an ill-posed problem. Although it is
claimed SRDNN aims to restore lost detail information using

FIGURE 35. Examples of enlarged text: (from top) bi-cubic, EDSR, RCAN,
ESRGAN. The SRDNN methods enhanced coding artefacts, thereby
producing unrecognizable/disturbing characters.

surrounding structures, it is a challenging task and the current
SRDNN methods may not able to successfully handle all
types of impairments.
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FIGURE 36. Examples of enlarged characters: (from top) bi-cubic, EDSR,
RCAN, ESRGAN. The SRDNN methods enhanced coding artefacts (e.g.,
mosquito noise).

FIGURE 37. Output image produced by the bi-cubic method when applied
to a compressed LR test image (JPG 90).

Table 5 summarizes some impairment types of real-world
images and the goal/target of SRDNN along with the
results/side-effects. SRDNN aims to reconstruct lost

FIGURE 38. Overly smooth output image produced by RCAN trained with
uncompressed and compressed (JPG90) LR images when applied to a
compressed LR test image (JPG 90).

FIGURE 39. Output image produced by the bi-cubic method when applied
to a compressed LR test image (JPG 90).

FIGURE 40. Overly smooth output image produced by RCAN trained with
uncompressed and compressed (JPG90) LR images when applied to a
compressed LR test image (JPG 90).

high-frequency information mainly by enhancing blurred
edges/lines. However, blurred edge/line-like structures can
also occur when images are compressed. The current SRDNN
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TABLE 5. Impairment types in real-world images, goal/target of SRDNN and results/side effects.

FIGURE 41. Output image produced by the bi-cubic method when applied
to a compressed LR test image (JPG 90).

methods failed to distinguish the blurred edges/lines due
to low resolutions from the blurred edge/line-like struc-
tures produced by encoding, even though the SRDNN
methods were trained with compressed LR images. In some

FIGURE 42. Overly smooth output image produced by RCAN trained with
uncompressed and compressed (JPG90) LR images when applied to a
compressed LR test image (JPG 90).

cases, when the SRDNN methods were trained with com-
pressed LR images, they produced overly smooth unnatural
images. It appears that the current SRDNN methods may
not able to provide global solutions to all super-resolution
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FIGURE 43. Enlarged tree branches, (a) nearest neighbor, (b) bilinear, (c) RCAN, (d) ESRGAN, (e) CAR [27], (f) HAN [28]. The tree
branch patterns of the SRDNN methods are very unnatural. All of them created visible vertical stripes at the left side.

problems, though they may be a good solution for specific
applications.

IV. CONCLUSION
In this paper, we analyzed the working mechanisms of
SRDNN techniques and investigated the one-to-one map-
ping nature. After we modelled SRDNN methods in terms
of weight vector generating and dynamic linear transfor-
mation, we analyzed a large number of projection vectors
(over 70 million) and found that the SRDNNmethod showed
one-to-one mapping-like properties. After further analyses of
real-world images, it appears that current SRDNN techniques
are vulnerable to unknown data patterns since the one-to-
one mapping function is designed with a limited number of
training samples, though the mapping space is enormous.
Although it is desirable to restore the blurred edges/lines due

to low resolutions without enhancing the blurred edge/line-
like structures (e.g., coding artefacts, mosquito noise, etc.)
produced by encoding, the current SRDNN methods failed
to distinguish them and enhanced both, thereby generating
undesirable artefacts. Using compressed LR images as train-
ing data failed to completely solve the problem and produced
overly smooth unnatural images in some cases. Super-
resolution is an ill-posed problem, though recent SRDNN
methods have shown promising results. However, to pro-
vide robust performance for real-world compressed images,
new structures may be necessary for successful SRDNN
applications.
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