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ABSTRACT Machine learning requires a large volume of sample data, especially when it is used in high-
accuracy medical applications. However, patient records are one of the most sensitive private information
that is not usually shared among institutes. This paper presents spatio-temporal split learning, a distributed
deep neural network framework, which is a turning point in allowing collaboration among privacy-sensitive
organizations. Our spatio-temporal split learning presents how distributedmachine learning can be efficiently
conducted with minimal privacy concerns. The proposed split learning consists of a number of clients and a
centralized server. Each client has only has one hidden layer, which acts as the privacy-preserving layer, and
the centralized server comprises the other hidden layers and the output layer. Since the centralized server
does not need to access the training data and trains the deep neural network with parameters received from
the privacy-preserving layer, privacy of original data is guaranteed.We have coined the term, spatio-temporal
split learning, as multiple clients are spatially distributed to cover diverse datasets from different participants,
and we can temporally split the learning process, detaching the privacy preserving layer from the rest of the
learning process to minimize privacy breaches. This paper shows howwe can analyze the medical data whilst
ensuring privacy using our proposed multi-site spatio-temporal split learning algorithm on Coronavirus
Disease-19 (COVID-19) chest Computed Tomography (CT) scans, MUsculoskeletal RAdiographs (MURA)
X-ray images, and cholesterol levels.

INDEX TERMS Split learning, deep learning, deep neural network, privacy preserving, data protection.

I. INTRODUCTION
Machine learning in the medical field has transformed the
way hospitals operate; diagnosis, surgical methods, and treat-
ment plans have been devised in a much shorter time frame.
Deep learning has been extensively used to identify, classify
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and quantify patterns in medical images. CT, magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
X-ray, and ultrasound scans are a few examples of medical
image techniques that have been used in the past several
decades for early detection and treatment [1]. To develop
more algorithms in order to treat more patients, information
is crucial in the medical sector. Hospitals, research facilities,
pharmaceutical companies must possess an abundant amount
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of medical data to advance healthcare. Yet, when it comes
to exposing medical data that include demographic informa-
tion, consultation notes, immunizations, allergies, surgical
history on patients, people are reluctant to provide private
information. As more information is revealed on online plat-
forms, people are stepping in to secure their privacy, and
rightfully so.

Medical records, perhaps the most private information on
an individual, should be protected at all costs, yet it is not
so easy to do with hospitals deploying deep neural networks
to train algorithms using real patient data. Most hospitals
maintain digital versions of patient charts like the electronic
medical record (EMR). EMR is classified as highly sensitive
data because it contains a patient’s medical and treatment
history from an institute [2]. EMR data cannot be exposed to
any other organization outside the hospital by regulation and
is not sharedwith other healthcare providers unless the patient
changes one’s primary physician. Yet, these medical records
such as CT images or X-ray scans are crucial information
for laboratories, specialists, clinicians, and even corporations
beyond the health organization for research purposes. The
personal information that tags along these medical data make
it difficult for deep learning to develop. Here is where our
proposed method comes in. Spatio-temporal split learning
allowsmodels to be trained without revealing the original raw
data, which in our case are sensitive medical records.

In split learning, the deep neural network is sepa-
rated amongst the clients or end-systems and a centralized
server [3]–[7]. The local end-system learns the model only
up to a specific layer, typically the first hidden layer. The
parameter updated from the first hidden layer is transferred
to the centralized server where the rest of the computation
is conducted. In this paper, this type of network structure
that divides a deep neural network between one client and
one server is coined the term single-client split learning to
differentiate it with our proposed approach.

Spatio-temporal split learning, the method devised in this
paper, divides the deep neural network (temporal) among
multiple clients allocated in geographically different loca-
tions (spatio) and one centralized server [8]. Each client
has a privacy preserving layer, and begins learning process
with patient’s medical record. Only after the privacy pre-
serving layer, the model parameters are transferred to the
central server to finish the training. Since training data is not
shared among the clients, the privacy attack contingency is
efficiently reduced. Note that the training data of medical
applications are patients’ medical record, which is one of
the most sensitive private information. In a realistic setting
where numerous medical institutes collaborate to build a uni-
versal and high-accuracy deep neural network model, we can
extend the proposed split learning to comprise more clients
in different hospitals. Although the split learning structure
mentioned in [8] is similar to our proposed method, our
work explores the feasibility of applying spatio-temporal split
learning to medical data to protect the privacy of patient’s

personal information. Our paper emphasizes the first setting
where split learning is used in the medical field.

This paper explores the specific way in which multiple
hospitals utilize the method of spatio-temporal split learning
to collaboratively create a deep neural network model. The
main contributions of this work are summarized below:
• This paper proposes an innovative deep learning
approach to preserve the privacy of personal health data
through split learning.

• The proposed method resolves the issue of data-
imbalance and overfitting, a problem that arises when a
model is trainedwith insignificant amounts of data.With
spatio-temporal learning, it is practically impossible for
overfitting to occur since multiple clients with various
amounts of data all contribute in training the one model.

• The learning method presented in this paper proves to
be versatile. The proposed split learning method works
with both numerical and image data for the prediction
model and CNN model, respectively.

• The performance improvements and novelty of our pro-
posed approach are evaluated with various real-world
medical data such as cholesterol data provided by Seoul
National University Hospital (SNUH),1 COVID-19
chest CT scans, and MURA datasets.

The rest of this paper is organized as follows. Related works
on distributed learning is presented in Section II. Section III
presents the problem statement and the system model with
design considerations. The experimental results are presented
in Section IV. Finally, the paper concludes with Section V.

II. RELATED WORK
Collaborative machine learning using medical data is lim-
ited due to regulations that prohibit patient information from
leaving the hospital. Federated learning (FL), a basic form
of distributed learning, is a commonly used technique that
learns a deep neural network while maintaining the security
of original data [9], [10]. Similar to split learning, FL consists
of several clients and a centralized server. Each client, such
as a mobile device or a base station, has its own deep neural
network that trains with its local data. Once the client learns
the model, the final parameter from every client is encrypted
and transmitted to the central server. Since only the local
parameters are shared by clients, instead of training data, the
privacy of the original training data is preserved. However,
this can be a double-edged-sword. As individually trained
models are integrated by averaging the parameter updates
without the actual characteristics of original data, a drop in
the accuracy of the models is inevitable.

Nevertheless, the learning process of FL is very different
from split learning. Both split learning and FL consists of a

1This study was approved by the Institutional Review Board of Seoul
National University Hospital (No. C-1712-009-903) with a waiver of
informed consent. No personally identifiable datawas included in the dataset.
Data used in this study was retrieved from Seoul National University Hospi-
tal’s Common Data Model (CDM) database.
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client and a centralized server. Split learning takes it one step
further and literally splits the deep neural network into two
sections. The input layer and first hidden layer reside with
the client and the remaining hidden layers are located up in
the centralized server. Thus, it is the server that holds and
trains the one deep neural network. On the other hand, in FL,
each client possesses a full deep learning model using its own
training data. The individual clients have their local training
dataset that does not leave its boundary. Only the updates
made to the current global model from each client are sent to
the server [11]. Hence, only the encrypted individual updates
from each client are exposed to the server. It is important
to understand that FL has the entire deep learning model
contained in each client; whereas, in split learning, the client
only runs the first hidden layer of the deep neural network.
For FL, the server only holds the updates for each model
ephemerally; while for split learning, the majority of the deep
learning model is placed in the server.

One of the benefits of spatio-temporal split learning is its
ability to prevent overfitting. Our proposed method is able to
gather multiple clients to all collaborate in developing one big
deep neural network. Therefore, even if a certain client does
not hold an abundance of data, it can still benefit from the
other clients that all contribute to training the model. Since
countless data are gathered to train a deep neural network,
overfitting will not occur in this novel spatio-temporal split
learning procedure.

Our model overcomes the problem of data-imbalance
amongst the participating hospitals as well as overfitting.
For example, if one medical facility possesses a minimum
amount of data onMRI scans of brain tumors, due to this data-
imbalance, the model is bound to be overfitted. Yet, if this
particular medical facility participates in the spatio-temporal
learning approach, it can collaborate with another institute
that holds an ample number of scans of a brain tumor, thus,
avoiding the problem of overfitting.

Moreover, this multi-client split learning allows different
kinds of clients to participate in the learning of the deep neural
network. This innovative spatio-temporal split learning is
applicable to various types of data. Image classification mod-
els and regression models can all be learned using the spatio-
temporal split learning approach. The experiments conducted
in this paper are done using two groups of data—numerical
data and image data. COVID-19 chest CT scans and MURA
datasets, which are both image datasets, and cholesterol data,
a numerical dataset, are used to evaluate the performance of
spatio-temporal split learning compared to single-site split
learning. Our work emphasizes its prominence in the medical
field where thousands of patients are waiting to be treated
every day and require swift and accurate analysis of test scans.

Anothermajor benefit of spatio-temporal split learning that
is consistently highlighted in this paper is the preservation
of privacy. Due to the learning process of split learning,
where the original training does not get exposed to external
networks, protection of personal information is guaranteed.
Only the encrypted, highly distorted feature maps from every

participating client are communicated to the external server.
There are model inversion attack techniques [12], [13] that
can abuse the neural network models to infer information
about its training data. This powerful tool can raise valid con-
cerns, yet, our spatio-temporal split learning is not affected
by these model inversion attacks. This is because the current
attacks are assumed on a fully intact model, and there is lack-
ing research on the feasibility of such attacks on split learning
models. Furthermore, the surface that can be attacked in a
split learning environment is quite limited.

III. MULTI-SITE SPLIT LEARNING FOR
SPATIALLY-DISTRIBUTED MEDICAL PLATFORMS
A. SYSTEM MODEL
The proposed spatio-temporal split learning revolutionizes
the machine learning process, where several medical orga-
nizations or institutes collaborate with each other to reach a
common goal—to establish a competent medical AI appli-
cation that can assist in accurate patient treatment. The
idea of multi-site split learning allows multiple clients to
co-operate with each other in the most advantageous way.
Spatio-temporal split learning allows clients to participate
in machine learning studies, and contributes to build more
accurate medical models without directly obtaining copi-
ous amounts of raw medical data. More importantly the
proposed spatio-temporal split learning preserves patients
privacy when we utilize invaluable medical information of
another client organization including hospital, research insti-
tute, pharmaceutical companies.

The overall architecture of our proposed system is depicted
in Fig. 1. In the figure, the learning layers are split in two
parts: the hospitals (i.e., clients) and centralized server. In our
environment, hospitals are the clients that make requests to
build a deep neural network model with its patient data. The
hospital holds the input layer and the first hidden layer, and
the centralized server has the rest of the layers; thus most of
the computation occurs at the central server, where it builds
up a high-accuracy medical neural network. Each hospital
runs the training process only up to the first hidden layer.
The feature map that is produced after going through the first
hidden layer in each hospital is sent to the centralized server.
The server has a queue for taking feature maps from different
clients, allowing multiple clients to work asynchronously.

A hidden layer comprises of the convolution (Conv2D)
and/or max-pooling (MaxPooling2D). When CT, MRI, or
PET image data pass through the hidden layer, some infor-
mation is lost due to the nature of convolutional and max-
pooling operations. This is an essential operation in order
to preserve privacy because the operations make it hard to
distinguish a specific data item. Specifically, max pooling,
and activation functions apply non-linear and non-reversible
operation to the original data; thereby, once applied, it is
hard to infer the original values from the feature map. As
these medical images pass through more hidden layers in the
centralized server, the images become even harder to identify
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FIGURE 1. The overall architecture of training through our proposed spatio-temporal split learning.

a specific data element–hence, the privacy of the original data
is strongly preserved.

Besides the advantages in privacy, the proposed split learn-
ing makes the clients much light-weight because a client
conducts computations only up to the first hidden layer.
Computation-intensive layers are integrated into the central
server, and the server can efficiently schedule the learning
process based on the server’s parameter queue.

B. ALGORITHM DESIGN AND PSEUDO-CODE
1) ALGORITHM DESIGN
Our spatio-temporal split learning consists of the client algo-
rithm and the server algorithm.

• Client algorithm: The client preserves the privacy of
data by 1) not exposing the raw data or 2) only disclosing
the encrypted feature maps. The algorithm enforces the
two properties. First, a client transfers the feature map
only after the privacy-preserving layer is passed. That is,
raw data is isolated from the machine learning pipeline.
Second, the client algorithm adds enough noise to the
image that it becomes difficult to infer the original data
with only the information about the feature map.

• Server algorithm: The server gathers the outputs
of multiple clients and then computes the remaining
machine learning pipeline. The outputs are the feature
maps after passing through the one hidden layer that
practically encrypts the original data. These feature
maps are trained along the multiple hidden layers posi-
tioned in the server to produce a deep neural network
model. The only information the server receives is the

encrypted feature map from the client. Since the raw
data is not exposed to the server, privacy of personal
information is guaranteed.

In addition, our algorithm introduces a parameter queue for
receiving feature map from clients, as shown in Fig. 1. The
design has several benefits whenwe considermultiple clients.
First, the server does not stop processing for incoming client
data. While the server learns the model by calculating the
parameters, it can receive data from another client. Second,
the server can control the amount of input data from different
clients. The amount of input data differs from clients because
different hospitals have different number of patients, and
different cases.

The formal description of our proposed spatio-temporal
split learning can be presented in a form of a pseudo-code,
as shown in the following Sec. III-B2.

2) PSEUDO-CODE
The pseudo-code of the proposed spatio-temporal split learn-
ing is presented in Algorithm 1. From (line 1) to (line 8), the
split learning algorithm of a client is explained. A client runs
only one hidden layer calculated by Equation 1 in (line 4)
∼ (line 5). In (line 6), the calculated the parameter fc is
sent to the server. In (line 10) to (line 22), the split learning
algorithm in the server side is presented. The server basically
runs the machine learning process. The only difference is
that the server begins with the received feature set, that is
placed on a parameter queue. The computation for Conv2D
and MaxPooling2D layers are formulated as following (1)
and (2), respectively, as depicted in (line 11) and (line 12),
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Algorithm 1Multi-Client Spatio-Temporal Split Learning
Require: Batch size B, clients C, number of clients n, num-

ber of epoch E, learning rate α, target value y, predicted
value ŷ, input data I , number of input data In, number of
label la, and output convolution layer Ol .

1: procedure Client
2: For Client = {1, · · · , n} do
3: For Training data set = {1, · · · , x} do
4: Calculate Conv. F Eq. (1)
5: F fc = Conv(Ol−1,wl, In, la) = net lIn,la
6: F Send feature fc to server.
7: End For
8: End For
9:

10: procedure Server
11: Receive input data from client: fc
12: Concatenate all features

∑n
k=1 f

k
c

13: For epoch = 1, E do
14: For Training data set do
15: Calculate Conv, and Pool F Eq. (1), Eq. (2)
16: F fc = Conv(Ol−1,wl, In, la) = net lIn,la
17: F fp = Pool(fc, Im, Ia)
18: F ŷ is calculated using I , (1), and (2).
19: F Calculate loss. F Eq. (3)
20: F Update the model: update weights w← w · α.
21: End For
22: End For

i.e.,

net lmn =
sizel−1∑
i=0

sizel−1∑
j=0

(Ol−1m+i,n+j . . .w
l
i,j + b

l), (1)

where Ol is the output convolution layer, w is the weight
parameter, b is the bias, l is the layer, i and j are the row
and column of the matrix, and size represents the number of
neurons, and

Pool(x, i, j) =

sizel∑
m=1

sizel∑
m=1

x l−1sizel×(i−1)+m,sizel×(j−1)+n

sizel × sizel
, (2)

where x is the matrix that was convoluted and serves as the
input in the pooling layer, l is the layer, i and j are the row
and column of the matrix, and size represents the number of
neurons.

IV. EXPERIMENTS
A. NON-MEDICAL DATA
Proposed split learning works not only with medical images
data, but also with general data. A recent study on split
learning conducted in [8] shows the accuracy rate at each
stage of the hidden layer, proving the optimal performance
and maintaining data privacy. This experiment used CNN
with cifar10 and a very similar setup to our experimental
design. They paired one Conv2D layer and one MaxPooling

TABLE 1. Accuracy rate for individual layers.

FIGURE 2. Image capture during deep neural network computation.

2D layer to comprise one hidden layer. 16, 32, 64, 128, and
256 filters were used for each of the five hidden layers with
size 32× 32.
As summarized in Table 1, a classification accuracy of

71.09% can be achieved when all of the five layers are located
at the centralized server and computed within the server. The
classification performance drops to 68.18%, a fall of 2.91%,
when the first hidden layer is placed at the client’s side and
the rest at the server. There is only a trivial reduction in
classification accuracy, yet this can be overlooked since the
advantage of data privacy in hospital settings is much more
significant. Paper [8] considered the extreme case where the
first four layers of the neural network are computed by the
client. That scenario had a performance of 65.66%, which
is only a 5.43% degradation in accuracy. Thus it shows that
a very minor fall in performance is sacrificed for a greater
benefit in preserving privacy for medical data. By sacrificing
a drop in performance of around 5%, the privacy of the
trained data can be preserved whilst allowing many clients
with various amounts of data to collaboratively train a deep
neural network. A visual representation of how the original
data is preserved is depicted in Figure 2. Figure 2 (a) shows
the original cifar10 image of a car. The original car image
becomes distorted after passing through one Conv2D of the
first hidden layer as shown in (b). At this stage, the outline
of the car can still be recognized. However, after the data
passes through the max-pooling layer, the image becomes
completely deformed to the point where it cannot be traced
back to the original image. This is depicted in (c), where
the image after the first hidden layer is hardly recognizable,
therefore, preserving data privacy.

B. MEDICAL DATA
To evaluate the proposed spatio-temporal split learning, we
present the performance of split learning using three kinds of
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TABLE 2. The number of X-ray scans done on each body part collected
from MURA.

medical data, including COVID-19 chest CT scan image data,
MURA image datasets, and patient’s cholesterol data.

Using the COVID-19 chest CT scans, the model learns to
classify the images according to lungs that are infected by
the COVID-19 virus from those that are healthy, as shown
in Fig. 3. Those who got positive results for the COVID-19
virus, would suffer from lung complications such as pneu-
monia [14]. The COVID-19 chest CT scan is a dataset of
lungs obtained from [15]. It is the largest COVID-19 chest CT
scan that is curated from multiple public datasets [16]–[21].
This paper conducts the split learning algorithm to classify
which lung image is of a patient that suffers from pneumonia
contaminated by the COVID-19 and which is of a healthy
patient. These two classes of data are used inmedical research
platforms to track changes in the treatment progress [14].
Hence, primarily identifying which CT image is the scan of a
viral COVID-19 virus and which is of a healthy lung is key.
This can be considered a binary classification problem. The
MURA dataset is a collection of X-ray images of patient’s
arms gathered by Stanford University School of Medicine
and ML Group [22]. This data provides X-rays of the elbow,
finger, forearm, hand, humerus, shoulder, and wrist. The
data is used to classify abnormalities in the X-ray scan. We
conduct an experiment to determine whether or not the X-ray
image has a crack in the bone. If the bone X-ray scan does
not have a fracture, then the patient is not diagnosed with
musculoskeletal disorders, if not, then the patient suffers from
musculoskeletal conditions. If the patient’s bone appears to
have a crack, it is classified positive, as in the patient does
have amusculoskeletal disorder; the X-ray image is classified
as negative if the bone is in one piece. The number of MURA
X-ray scans of 7 different body parts is shown in Table 2,
where the total number, number of positive case, and negative
case used in training for each body part is configured.

Before learning of a deep neural network can take place,
the image data must be resized to the same size. COVID-19
chest CT scans and MURA X-ray data both require a pre-
processing stage. The sets of images obtained from the open
source all have different sizes, as indicated in Fig. 4. In other
words, the CT images vary in size and the bone X-ray images
differ in size as well. With inputs all having different sizes,
training cannot run smoothly. Hence, this pre-processing step

is needed to reshape the images into all the same sizes. The
images are simply resized to an appropriate size depending
on the image size distribution of the original image, being
careful not to loose any valuable information of the original
image.

The cholesterol dataset is provided by SNUH. Note that
cholesterol data is numeric, thus our learning model pre-
dicts the target cholesterol value based upon other medical
information. Using the proposed spatio-temporal learning on
actual patient records, we learn a general cholesterol value
prediction model. The cholesterol dataset includes the infor-
mation on the patient’s age, sex, height, weight, total choles-
terol (TC), high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), and triglyc-
eride (TG). Cholesterol travels through the bloodstream using
the protein called ‘lipoprotein’. LDL-C is the harmful type
that collects in the walls of the blood vessels and raises the
risk of heart disease and strokes [23]. Yet, not all cholesterol
is lethal. The HDL-C type absorbs cholesterol and directs it
to the liver where it is excreted from the body [24].

Since LDL-C is the dangerous type of cholesterol, medical
infrastructures want to predict the level of LDL-C in the
blood using the attributes such as age, sex, height, weight,
TC, TG, and HDL-C. There are various forms of equations
that calculate LDL-C value using the values of TC, HDL-C
and TG. However, these equations are only valid under cer-
tain conditions [25]. The experiment shows that the LDL-C
level estimated using the prediction model with the same
attributes, provides a similar value to the original LDL-C
value. This numerical data also requires pre-processing. In
the pre-processing step, we selectively choose the attributes
for predicting the LDL-C level. Five examples from the
pre-processed cholesterol data are shown in Table 3. Note
that only the attributes used to predict the LDL-C level are
presented.

C. EXPERIMENT SETUP
The experiment conducted in this paper compares the perfor-
mance of our proposed spatio-temporal split learning algo-
rithm to the conventional split learning algorithm using three
different datasets–COVID-19 chest CT scans, MURA bone
X-ray scans, and cholesterol data.

1) OVERCOMING DATA-IMBALANCE
To simulate an environment where several medical orga-
nizations collaborate to build a high-accuracy medical AI
model, the experiment assumes three clients connected to
one centralized server. This basic setup applies to all three
datasets considered in this paper. Each dataset is divided in
a 7:2:1 ratio. In other words, out of the three clients, one
hospital will possess 70 % of the data, the other hospital will
possess 20 % of the data, and the remaining one hospital will
possess only 10 % of the data. Note that this data is divided
into this ratio after 10 % of the data is saved as the validation
set to tune the model and 10 % of the data is saved as the test
dataset to evaluate the performance of our spatio-temporal
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FIGURE 3. The lung CT scans of (a) COVID-19 patient and (b) non-COVID-19 patient.

FIGURE 4. MURA X-ray images of the 7 body parts. The top section is positive for a fracture being present in the bones, and the bottom section is
negative for an absence of a fracture in the bones.

TABLE 3. A sample of the five original cholesterol data obtained from SNUH without the LDL-C level. Only the attributes used in the prediction model are
shown.

split learning. Hence, 80 % of the remaining data is then
divided into this 7:2:1 ratio as the inputs to the client. In a

single-client split learning method, the hospital with 10 %
of data is bound to be overfitted. Yet, even if one hospital
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only has 10 % of data, overfitting does not become a problem
with our learning method as hospitals with 70 % and 20 % of
the dataset jointly train the deep neural network placed in the
server. This data division is applied equally to the COVID-19
CT scans, MURA X-ray scans, and cholesterol data.

2) MODEL CONFIGURATION FOR IMAGE DATA
For CNN to classify images, we conduct pre-processing to
reshape all the images to the same sizes. COVID-19 chest
CT scans with a variety of image sizes are all re-sized
to 64× 64× 1. The MURA bone X-rays are pre-processed
to a size of 224× 224× 1.
After the pre-processing step of scaling, the neural network

is established. The COVID-19 chest CT scans are trained
using a custommodel with a total of 5 convolutional layers. In
using our spatio-temporal split learning algorithm, the client
will train up to the first layer, and the server will continue
training along 4 of the convolutional layers. This CNN archi-
tecture is setup up using the following specifications. The
input image shape is set to a size of 64× 64× 1. The number
of epochs, which is the number of times the algorithm trains
on the dataset, is set to 100. For the loss function, binary
crossentropy function is selected, which is a widely used loss
function for a classification problem. The sigmoid function
is used as the activation function in this classification model.
The purpose of the activation function is to introduce non-
linear data in the training process. The batch size, which is
the number of training examples utilized in one iteration, is
set to 64. The parameter values set for our experimentalmodel
is summarized in Table 4.

A similar approach is undertaken with the MURA dataset.
The collection of X-ray images of the patient’s arms is fed
into the deep neural network to identify a presence of a
fracture in the bones. TheX-ray image is classified as positive
if there is a crack or broken bone, and negative if the patient’s
arm is intact and in one piece. This X-ray data is learned
using VGG19, which is comparably deeper in its neural
net structure than the previous CNN classification architec-
tures. VGG19 is a variant of VGGNet, which significantly
reduces the number of parameters in the convolutional layers
to improve convergence speed. Hence, it has a total of 17
convolutional layers, where the majority of the computations
are conducted within the 16 layers placed at the servers end.
The number of epochs is 50, hence the model completes 50
complete passes of the X-ray scans throughout the algorithm.
Since the VGG19 is also a classification model, the loss and
activation functions are the same as the COVID-19 classifi-
cation setup. The shape of the original input image is set to
224× 224× 1. Again, the architecture setting is summarized
in Table 4. As the images for both COVID-19 and X-ray
scans undergo the deep neural network for classification, the
images reduce in size. The max-pooling layer used in both
the CNN models, reduces the image size in half. Hence, a
feature map of size 32 × 32 × 1 for the COVID-19 CT scan
and a feature map of size 112 × 112 × 1 for the X-ray scan

is transferred to the centralized server, where the rest of the
convolutional layers are computed for classification.

3) MODEL CONFIGURATION FOR NUMERICAL DATA
The model trained using the cholesterol data is a predictive
model. Based on the information of age, sex, height, weight,
TC, TG, and HDL-C of a patient, the level of LDL-C in the
bloodstream can be predicted. The learning of the prediction
model is conducted with 200 epochs. The MSE is selected
as the loss function, the LeakyReLU function is used as the
activation function in this regression model. The batch size,
which is the number of training examples utilized in one iter-
ation, is set to 2,048. Mean square logarithmic error (MSLE)
is generally used for the loss function as an indication of
whether or not the prediction model is training well. A loss
function is an evaluation index of how adequately the model
makes predictions based on the training dataset. It helps to
make informed decisions when tuning the algorithm as it
numerically shows howmuch the predicted value differs from
the actual value. If the algorithmmodels the dataset well, then
the value of the loss function is a lower number; if themodel is
poor at making predictions, the loss function outputs a higher
value. MSLE is calculated by taking the squared difference
between the log-transformed true and predicted values. The
equation for MSLE is expressed below:

MSLE =
1
N

N∑
i=0

(log(yi + 1)− log(ŷi + 1))2 (3)

where yi and ŷi are the true and predicted values of LDL-C,
respectively.

We use several other metrics to compare our spatio-
temporal split learning algorithm to the baseline, single-
client split learning. We use root mean squared logarithmic
error (RMSLE) as another means to compare the loss values
between our model and the baseline. Due to the nature of
logarithms, the RMSLE calculates the relative error between
the actual LDL-C value and the predicted LDL-C value. Since
it only measures the relative error, the magnitude of the error
value is not considered, making it more robust to outliers.
Other similar loss functions such as RMSE, spikes in value
when met with an outlier, making it more susceptible to
record large error values.

With this property, the RMSLE incurs a greater penalty
when the predicted value is lower than the actual value; and
incurs a lower penalty when the predicted value is greater than
the actual value. This is great in our case where the LDL-C
level, which is a harmful cholesterol in the body, is predicted.
Medical centers would be better off predicting a larger level of
LDL-C level rather than a lower LDL-C level and go through
an extra screening process instead of merely dismissing the
patient as healthy if the prediction value is lower than the
actual. For precautions, predicting a higher level of a harmful
substance is safer since the results can be inspected again.
Therefore, RMSLE is suitable for evaluating our model for
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TABLE 4. The deep neural network setup for each COVID-19, MURA and cholesterol data.

cholesterol data, and it is formulated as follows.

RMSLE =

√√√√ 1
N

N∑
i=0

(log(yi + 1)− log(ŷi + 1))2. (4)

Symmetric mean absolute percentage error (sMAPE) is
another tool to measure the difference between the true and
predicted value [27]. This is also a measure of accuracy
based on percentage or relative errors. It is calculated by the
formula:

sMAPE =
100%
n

N∑
i=1

(
|yi − ŷi|
|yi| + |ŷi|

)
. (5)

The performance of our spaito-temporal split learning is
compared to the single-client split learning, where only one
client is involved in the split learning process with one cen-
tralized server. Just as image and numerical data use differ-
ent models to train their data, image data is assessed quite
differently from numerical data. The evaluation criteria of
experiments for these two different split learning algorithms
are the loss rates and percentage accuracy for the image
data. Cholesterol level data is evaluated by comparing loss
functions MSLE, RMSLE and sMAPE.

Table 4 summarizes the experiment setting such as the
number of epochs, batch size, shape size, type of loss func-
tion, and activation function used to train the model with the
three datasets. These same experimental preconditions are
applied to evaluate the performance of the single-client split
learning.

D. EXPERIMENT RESULTS
The experimental results using cholesterol levels, COVID-19
chest CT scan, and MURA dataset are presented in this
section.

1) CLASSIFICATION ACCURACY
Graphs comparing the loss and accuracy of the two split
learning algorithms using COVID-19 chest CT scans are
shown in Fig. 5. The graphs show the performance of all the
discussed cases. Our proposed multi-client spatio-temporal
split learning algorithm, which is represented by the black
curve, is compared to the single clients with 10%, 20%,
and 70% of data, which are shown in red, blue, and green,
respectively. As can be seen in Fig. 5 (a), the loss value for all

FIGURE 5. Graph comparing (a) loss value between single-client and
spatio-temporal split learning; and (b) accuracy value between
single-client and spatio-temporal split learning for CNN model training
using COVID-19 CT scans.

the single-client models fluctuates quite aggressively over the
course of epochs. There is an obvious decrease in loss with
ourmodel, where the loss value itself is lower and it converges
at a steady rate compared to the baseline model. It can also be
observed that after a certain amount of epochs, the loss values
for the three single-client models, whether it be the 10%,
20%, or 70% data, start to elevate, whereas our proposed
method continues to decrease.This is due to the insufficient
amount of data available for training the single-client split
learning model, which leads to overfitting. Furthermore, the
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red curve, which is a depiction of a single-client model with
the least amount of data–10%–has the highest loss value.
Comparing this with the black curve clearly demonstrates the
effect of data-imbalance.

The accuracy in classifying whether a patient tests positive
to COVID-19 just by analyzing chest CT scans is depicted
in Fig. 5 (b). The classification accuracy of our proposed
model is the highest. It also has steady learning progress than
the single-client models, which spikes quite a bit even after
80 epochs. As repeatedly stated through this paper, multi-
site spatio-temporal split learning resolves the issue of data-
imbalance. Comparing the black curvewith the red curve very
distinctly shows the effect of data-imbalance. Fig. 5 (b) shows
that the classification accuracy of a single-client split learning
increases as the amount of data increases from 10% or 20%
or 70%, with 70% of data being almost high as our proposed
method. Hence, even with multiple clients participating in
training the deep neural network model, the classification
accuracy is high at around 98.5% with the advantage of data
security.

To highlight the exceptional performance of our multi-
client spatio-temporal split learning algorithm, this paper
compares the experiment results simulated using FL. As
meticulously detailed in Section II, FL encompasses a com-
pletely different learning process from split learning. An
experiment is conducted to analyze the classification accu-
racy using COVID-19 chest CT scans with FL. To make
a fair and unbiased comparison, the experimental setup for
FL is identical to the setup of our proposed method used
for classifying whether or not a patient is diagnosed with
COVID-19 after analyzing their CT scan.With the exact same
setup to our learning method, FL achieved a classification
accuracy of only 95.7%, whilst split learning obtained an
accuracy up to 98.5%. This is 2.8% lower than the accuracy
achieved by our multi-client spatio-temporal split learning
process. The results are summarized in Table 5. Therefore,
a greater performance is accomplished when utilizing split
learning, especially multi-client spatio-temporal kind of spit
learning, whilst allowing computationally-limited hospitals
such as small private hospitals to achieve a near-perfect
classification.

The single-client split learning algorithm considers the
case where the one client might not hold an abundance of
data. Hence, in this experiment, the single-client is set to
possess only 10% or 20% or 70% of the data. In other
words, our spatio-temporal split learning algorithm with the
three clients having a 7:2:1 data division is tested against the
single-client split learning that has one-tenth, one-twentieth,
or one-seventieth of the data. This is strategically done to
demonstrate the reality of hospitals having data-imbalance.
Since the hospital with only 10% of the data, compared to
hospitals that have 20% and 70% of the data, possess very
small amounts of training data, the overfitting of the model
occurs. Hence, the red curve has a higher loss than our black
curve. The same reasoning is applied to the accuracy rate as
well. The red, data-insufficient hospital, curve depicts a lower

TABLE 5. A comparison of classification accuracy between federated
learning and split learning.

FIGURE 6. A bar graph of accuracy level comparing single-client and
spatio-temporal split learning for MURA X-ray scans. The x-axis labels
each 7 of the body parts.

classification accuracy since it does not have enough data to
make accurate groupings of COVID-19 chest CT scans. On
the other hand, our model in black, which exhibits a higher
accuracy percentage than hospitals with 10% or 20% or 70%
of data all collaborate together to train one large CNN model
in the server. Whilst all the appropriate accuracy levels are
met, the privacy of these medical images is also protected.

MURA data consists of X-ray scans of 7 body parts–finger,
hand, wrist, forearm, elbow, humerus, and shoulder–that we
all trained. The accuracy rate of single-client and spatio-
temporal split learning is graphed in Fig. 6 for each part.
Just like the analysis made with the COVID-19 CT scans,
our algorithm shows a superior accuracy rate than that of
the single-client split learning algorithm. The blue bars are
of the single-client with again, only having 10% of the data
and the yellow illustrates our algorithm. Since ours is tested
against a hospital with a significantly smaller number of data
available, which leads to overfitting, the accuracy rate of
spatio-temporal split learning is higher for every body part.

Table 6 shows the specific accuracy value in classifying
theMURA bone X-ray images into two groups: fractured and
unfractured bones. The single-client split learning appears to
have a slightly lower accuracy level than the accuracy level
of our proposed system. In identifying a crack in the finger,
the single-client split learning has an accuracy of 60.5% and
our multi-client split learning system achieves an accuracy of
68.9%. Our model performs better by 8.4%, which is a signif-
icant gap in performance in classifyingmedical data. Looking
at the performance of classifying fractures with an elbow
X-ray image, the single-client split learning has a 56.3%
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TABLE 6. Accuracy data points for training MURA dataset with single-client and spatio-temporal split learning.

FIGURE 7. The (a) original CT image of a COVID-19 patient and
(b) COVID-19 chest CT image that is processed by the first hidden layer at
the client.

accuracy rate whereas our algorithm has a 65.1% accuracy
rate. Once again, there is an increase of 8.8% in classification
performance in our multi-client split learning. As repeatedly
stated throughout this paper, the increase in performance goes
hand in hand with the protection of personal information.
Without sacrificing classification accuracy, the same preser-
vation of training data cannot be achieved.

2) PRESERVING PRIVACY OF MEDICAL DATA
It has repeatedly been stated throughout this paper that the
privacy of the original data is preserved. This section visually
shows how the original medical image gets distorted to the
degree it becomes hardly discernible, not even being able to
recognize the outline of a lung or bone let alone determine
the presence of a crack.

The original image of the chest CT scan of a COVID-19
patient and one that has passed through the first and only
hidden layer at the client side is shown in Fig. 7. Fig. 7 (a)
shows the original CT scan of a patient with COVID-19 and
(b) shows an image of lungs after it goes through the first
hidden layer located at the client, hence it is the image that is
transferred to the server. It is apparent that the second image
is hardly recognizable. Therefore, as the server continues to
train the CNN model, these medical images become even
more distorted. The original scans are not shared among
hospitals, and only image (b) from each client is sent to
the server, hence, preserving the privacy of sensitive medi-
cal information. The same phenomenon can be observed in
Fig. 8. Fig. 8 (b) is the image that is sent to the server, which
is unrecognizable. Thus, the original medical data, Fig. 8 (a),
is protected during split learning. Note that medical images
usually have high-resolution because we need high-accuracy
in diagnosis.

FIGURE 8. The (a) original image of a negatively grouped X-ray scan of an
elbow and (b) that image after passing through the first hidden layer in
the client side.

3) PREDICTION ACCURACY
To check the performance of the regression model learned
with single-client and spatio-temporal split learning method
trained by the numerical cholesterol data, the MSLE is cal-
culated. Since MSLE is a loss function that calculates the
relative error between predicted and ground truth values, a
lower MSLE value refers to a better, more accurate model.
The red represents the performance of our model and the blue
data points are the single-client split learning algorithm. The
value of the final MSLE, RMSLE, and sMAPE are shown in
Table 7.

The graph in Fig. 9 shows the cumulative distribution func-
tion (CDF) of the losses found using MSLE and RMSLE for
the cholesterol data. This graph represents the distribution of
the loss values obtained after testing with 1508 data. Having
a steep gradient at the beginning of the curve means that there
is a large distribution of loss with a lower value, which would
mean that the model has predicted the cholesterol levels close
to the target value. As seen in Fig. 9 (a), the CDF graph
of MSLE loss function shows that the blue curve represent-
ing the spatio-temporal learning process has a much steeper
gradient than the red single-client model. The same pattern
can be observed in Fig. 9 (b), where it can be interpreted as
our model predicting the LDL-C level better than the single-
client model, thus giving us a higher probability of the loss
being around a very small value of between 0 and 0.2 for
the RMSLE loss values. Fig. 9 (c) represents the cumulative
probability distribution of the relative error values calculated
for single-client and spatio-temporal split learning.

A similar comparison between our model and the single-
client model is made using Probability Distribution Functions
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FIGURE 9. CDF graph comparing (a) MSLE values (b) RMSLE values and (c) sMAPE of single-client and spatio-temporal split learning for regression
model using cholesterol data.

FIGURE 10. PDF graph comparing (a) MSLE values (b) RMSLE values and (c) sMAPE of single-client and spatio-temporal split learning for regression
model using cholesterol data.

(PDF) graphs using MSLE and RMSLE as depicted in
Fig. 10. This is a graph that shows the probability distribution
of MSLE loss and RMSLE loss. Therefore, in Fig. 10 (a),
our model drawn in blue demonstrates there is a greater
possibility of the MSLE loss value being smaller than the
baseline model. The PDF graph exhibited using the RMSLE
loss function in Fig. 10 (b) is analogous to that of the pre-
vious explanations. Graph (c) also shows that our model
has a higher probability near the lower error value, which
proves our model is better at predicting the LDL-C level in
the blood.

The spatio-temporal split learning model has a lower loss
for all three metrics, MSLE, RMSLE and sMAPE, compared
to the single-client model as summarized in Table 7. This
phenomenon is once again due to the fact that the single-
client has a significantly lower number of data, which leads
to overfitting. Since the single-client only trains the model
using its small amount of medical information, it is only fit
to take in those types of data. Hence, when other data from
the test set are inputted to predict the LDL-C value, it shows a
considerable amount of loss as depicted in Fig. 9 and Fig. 10.
The results for training the cholesterol level are analyzed

below. Table 2 shows five patient’s original cholesterol data,
with the LDL-C level omitted since that is the value we want
to predict, obtained from SNUH. Once the client runs its one
and only hidden layer, the gradient or one-dimensional fea-
ture map is transferred to the server. Table 2 includes several
personal information such as age, sex, height, and weight.

TABLE 7. Comparison of single-client and spatio-temporal split learning
loss values using MSLE, RMSLE, and sMAPE loss functions.

However, the information that is exposed to the public, which
is the gradient update, is an encrypted data that does not reveal
or hint out anything about the original data. Hence, even if
malicious attacks target the medical data, the hackers will
only be able to hack the information that the client sends to
the server. The cyber attackers will not be able to trace the
information back to the original data that contains sensitive
personal information using the parameter updates in our split
learning setting. Privacy preservation is firmly secured.

V. CONCLUSION AND DISCUSSION
This paper introduces an innovative learning method that
trains a deep neural network without fear of exposing orig-
inal raw data. Unlike regular deep learning where the client
learns a single deep neural network, split learning shares the
learning step between the clients and a centralized server.
Our spatio-temporal split learning algorithm helps multiple
clients collaboratively train a deep neural network with a
centralized server. In doing so, the raw data in each client
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is never shared with each other and only the encrypted fea-
ture maps are exposed to the network, thus, complete and
utter protection of original data is achieved. This approach is
especially promising in machine learning with privacy, where
protection of user information is critical such as medical or
finance applications.

In addition, our spatio-temporal split learning study shows
that it efficiently alleviates an overfitting problem. Since
multiple clients can participate in model training, clients
can collaborate to build much higher-accuracy models with
much light-weight processing. Further, the proposed split
learning works with clients with imbalance data volume.
Finally, the proposed split learning is versatile–the split learn-
ing is general to learn image or numeric data, and the user
can wisely choose the neural network model according to
the target application. With actual medical data, such as
patient’s COVID-19 chest CT scans, X-ray bone scans, and
cholesterol levels, we present how the proposed split learning
achieves high-accuracy machine learning with privacy. Note
that our algorithm is applicable in any setting whether med-
ical, finance, banks, or insurance–where protection of per-
sonal records is crucial, data-imbalance between participating
clients is an issue and diverse types of data must be processed.

For future studies, we hope to find the effects of varying
the number of clients participating in split learning. This can
be extended to include studies on the performance changes
seen according to variations made to the data ratio of training
datasets. Furthermore, we hope to explore the implications
of utilizing differential privacy, a metric that measures the
degree of privacy protected in future studies.
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