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ABSTRACT Rainy days usually degrade the visual effect of images and videos. At present, most deraining
models for single images adopt gradual optimization or elimination to remove rain streaks, but actually with
relatively low efficiency in real tasks. An efficient one-stage deraining model, Efficient Transformer Derain
Network (ETDNet), is proposed to remove rain streaks in single images efficiently. A new Transformer
architecture is designed to provide rich multiple scales and context information, making the model extract
features in a coarse-to-fine way. Multiple expansion filters with different expansion rates are embedded to
predict the suitable kernel for each pixel of the rainy image in a multi-scale way. Amulti-scale Loss Function
is introduced to restore features with high-fidelity and detail textures. Experiments on Rain100L, Rain100H,
and SPA datasets show that the proposed ETDNet reaches the highest PSNR and SSIM values at the fastest
speed compared with other models.

INDEX TERMS Rain removal, ETDNet, transformer, multi-scale, loss function.

I. INTRODUCTION
Rainy days will decrease visibility, and the dense rainwa-
ter will also cause diffuse reflection, making it hard to
restore images with details on rainy days. Therefore, it is
difficult to detect objects in some fields such as automatic
driving and traffic monitoring, which are based on object
detection algorithms (object tracking [1]–[3], pedestrian
re-recognition [4]–[6], semantic segmentation [7], [8]).

Restoring images blurred by rain has always been a hot
topic in computer vision tasks. Removing rain streaks and
restoring all images at a fast speed has become the pri-
mary concern for researchers. The latest researches in this
field focus on exploring the physical properties and physical
layers of rain streaks, which use deep learning to remove
rain steaks by optimizing and predicting the relationship
between rain streaks and their physical layers. Representative
methods include RCDNet [9], JORDER [10], SNet [11],
MPRNet [12], etc. They first predict the unknown rain layers
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and background images to be recovered and then use various
network structures to normalize and separate them.

However, those methods often involve many iterations
and continuous optimization, which cannot cover all rainfall
conditions and require substantial computational overhead.
The detail texture restored by those methods will be too
smooth as the rain streaks and the background are essen-
tially overlapping in feature space, resulting in losing details
in the non-rainfall area of the restored background image.
Therefore, thosemethods are not applicable for removing rain
steaks from images with different rainfalls.

To address the above problems, a novel deraining model
with small computational overhead to remove rain streaks
from single images with different rainfall is suggested, which
is featured with the following aspects:

1) A new efficient Transformer module (Efficient Trans-
former) is designed. Firstly, the self-attentionmodule is
introduced to dynamically calculate the weight based
on the similarity and affinity between each pair of
tokens and construct themulti-scale eigenvectormodel.
Then, Relative Position Encoding and Global Position
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Encoding are designed to make the encoding position
more flexible. This module enables the model to extract
features in a coarse-to-fine way.

2) Multiple expansion filters with different expansion
rates are embedded to predict the suitable kernel for
each pixel of the rainy image in a multi-scale way to
remove rain streaks effectively.

3) Amulti-scale Loss Function is introduced to encourage
networks to solve the geometric, color, and texture
loss between the actual rainless image and the restored
background image with different resolutions. In addi-
tion, the prediction process does not require additional
computational overhead.

4) The proposed model is compared with other models
on synthetic datasets to prove its high performance in
removing rain streaks. As shown in Figure 1, ETDNet
achieves a better deraining effect on the SPA dataset
than the advanced MPRNet.

FIGURE 1. The rain-removing effect of the ETDNet and the advanced
MPRNet on SPA dataset. The comparisons are conducted on the
same PC and both models are retrained for comparison.

II. RELEVANT WORK
This part reviews the latest deraining models, which
are roughly divided into video deraining methods and
single-image deraining methods based on the difference of
the input data.

A. VIDEO DERAINING METHODS
Video deraining methods mainly use the spatial and temporal
frequency between adjacent frames of rain streaks in videos
to extract their inherent features to restore the background.
Garg et al. [13] first comprehensively analyzed the impact
of rain on the visual effect of the imaging system. They
captured the running state of rain based on the spatial and
temporal frequency between the rainy image’s keyframes and

explained the photometry of rain based on Motion Blur The-
ory. Then they considered the influence of rain streaks and
color attributes in videos and extracted background images
from the rainy video. Ren et al. [14] proposed a model to
decompose rain streaks in videos by matrix. They divided the
rain streaks into sparse ones and dense ones, extracted the
background fluctuation information and optical flow infor-
mation of the rain streaks in videos, and then marked the
moving objects and the sparse rain streaks as multi-label
Markov Random Field (MRF), and the dense rain streaks as
Gaussian distribution. Finally, they removed the sparse and
dense rain streaks by the low-rank matrix of the background.
Models based on matrix decomposition also include sparse
matrix coding [15], generalized low-rank matrix [16], etc.
Liu et al. [17] proposed a dynamic routing residual loop net-
work. First, this network extracted the spatial features of the
rainy image through the residual network. Then, the context
feature information along the time axis of spatial feature is
embedded into the network in a ‘‘dynamic routing’’ manner.
Finally, they used the selection gate of context feature infor-
mation to select the fusion feature based on the spatial and
temporal relationship as the final fusion feature to reconstruct
the background image. Liu et al. [18] constructed a combi-
native cyclic deraining network composed of a background
reconstruction network based on spatial and temporal cor-
relation, a background reconstruction network based on tex-
tures with spatial relationships, and a classification network
based on rain streaks. The sub-networks mentioned above can
achieve a good effect by removing rain streaks and retaining
background details.

Although these models have been well applied to remove
rain streaks in videos, they are less efficient in removing
rain streaks in single images as there is no time infor-
mation between two adjacent images. Therefore, removing
rain streaks in rainy images becomes a new challenge for
researchers.

B. SINGLE-IMAGE DERAINING METHODS
Deep learning has been widely studied in the image denoising
field. Most participants in the NTIRE 2020 Competition [19]
achieved excellent results by applying deep learning.
Tian et al. [20] proved that deep learning is helpful for
image denoising through a large number of experiments.
Ignatov et al. [21] developed an image denoisingmodel based
on end-to-end deep learning, which can be applied to smart-
phones to process noisy images quickly and restore back-
ground images with high-fidelity. The single image deraining
task can be regarded as a sub-task of the image denois-
ing task. Yang et al. [22] verified that the data-driven deep
learning model is superior to the model-driven sparse coding
model [23] and GMM [24] in a single image deraining field.
Regarding data-driven deraining models, Wang et al. [9] pro-
posed a simple Rain Convolution Dictionary (RCD) model,
removing rain streaks iteratively by adopting the near-end
gradient technology. The model contained two subnetworks
(M-net and B-net) in every iteration. The two subnetworks
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used the inherent convolution dictionary to encode the rain
shape and update the rainy image, rain kernel convolution,
and background layer. Yang et al. [10] proposed a model
to detect and remove rain streaks in single images through
the deep contextual network. They introduced a new rainfall
model and a multi-task deep learning network by using prior
knowledge. Firstly, the rainfall model simulated the rain in
various environments by integrating the binary rainy image
and considering the accumulation of rain streaks and the
overlapping rain streaks with various shapes and directions.
Then a contextual extension network was incorporated into
the multi-task deep learning network to learn the binary rain
streaks, the rain streak layers, and the clean background.
At last, the above steps needed to be repeated to loop the
network to remove the rain streaks further. Wang et al. [11]
proposed to classify rain streaks as the transmission medium,
and the rainy image was modeled together with the transmis-
sion medium and the fog. SNet (a unit in ShuffleNet [25])
was used to capture the features of the transmission medium
of rain streaks. VNet network was used to predict rain fog
and rain streaks in a multi-scale way. The encoder of ANet
was used to predict atmospheric light and eventually the
predicted transmission medium and atmospheric light were
used to restore the background. The SNet, VNet, and ANet
were trained jointly. He et al. [26] considered the density
and size of rain streaks and designed a multi-scale network.
In their network, a multi-scale rain streaks predictor was used
to predict the rain streaks. Then the convolutional sparse
codingmatrixwas used to remove the noise in the rain streaks.
Finally, the rain streaks were subtracted from the rainy image
to get the rainless background. Jiang et al. [27] proposed a
multi-scale progressive fusion network, which captured rain
streaks by fusing features in a multi-scale collaborative way
and circular calculations and used the captured rain streaks
to restore the background. Wang et al. [28] proposed a deep
residual learning model based on FastDerainnet. This model
first used a low-pass filter and high-pass filter to remove rain
streaks preliminarily, then used the residual structure on the
high-frequency component to learn the residual features of
rain streaks, and at last used high-frequency components and
low-frequency components to calculate rainless background
images. Deng et al. [29] proposed the DRDNet model, which
regarded rain streaks removing and detail recovery as two
independent sub-tasks, and the two sub-tasks could remove
rain streaks and recover details collaboratively.

In real applications, the above single-image deraining
models require complex optimization and gradual improve-
ment, indicating that those models still need further perfec-
tion. In this paper, ETDNet, a new single image deraining
model, is proposed to efficiently remove rain streaks and
restore the rainless background.

III. METHODOLOGY
This section describes ETDNet in great detail. The
ETDNet structure is introduced briefly, and its three main

components: Efficient Transformer module, expansion filter,
and a multi-scale Loss Function are described exhaustively.

A. NETWORK STRUCTURE
The ingle-image deraining models decompose the rain
image IR into the rainless background image INR and the rain
streaks R. Their common formulas ([30]–[32]) are shown in
formula (1).

IR = INR + R, (1)

The rainless background image INR can be obtained by
subtracting the predicted rain streaks R from the rainy
image IR. The deraining models based on formula (1) assume
the shapes of rain streaks are similar. However, in real-
ity, rain streaks usually have different shapes and irregular
distributions due to the swing of the camera and different
shooting distances. Those models predicting rain streaks in
advance cannot simulate actual complex situations. The net-
work is utilized to extract multi-scale features and assign
different weights to rain streaks to address the above prob-
lems according to their sizes and transparency. Generally
speaking, the deraining process can be considered an image
degradation recovery process, which may cause fog, motion
blur, occlusion, etc. Therefore, it is reasonable to extract
multi-scale information of images for processing, effectively
dealing with various degradation problems. To be specific,
the rainless image INR can be obtained by processing the
rain image IR ∈ RH×W with multi-scale pixel-level filtering,
which can be expressed in formula (2).

INR = K ⊗ IR, (2)

where INR ∈ RH×W represents the output background image.
⊗ stands for multi-scale pixel filtering operation. Each pixel
is processed by the appropriate kernel. K ∈ RH×W×k

2
con-

tains the kernel of all pixels. To effectively extract features
with multi-scale pixel filtering, the following challenges need
to be considered: estimating the spatial transformation and
scale transformation of rain image effectively and estimating
the detailed transformation of semantic perception. In this
paper, the generation function is defined as G, through which
θG is parameterized and transmitted into the feedforward
network for training. Loss Function LMulti is optimized to
obtain the weight and deviation of the deep network. The
calculation method of θG is shown in Equation (3).

θ̂G = argmin
θG

1
N

N∑
n=1

LMulti

(
GθG

(
IRn
)
, INRn

)
, (3)

In ETDNet, the Shuffle Attention [33] module and Effi-
cient Transformer (III.B) are used to assign different weights
to rain streaks with different sizes according to the interde-
pendence of each convolution layer. The SPP [34] structure
and expansion filter (III.C) are used to obtain multiple recep-
tive fields of different sizes and capture more context infor-
mation. By defining the multi-scale Loss Function (III.D),
the Loss Function of the first several layers can guide the
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FIGURE 2. The network structure of ETDNet. MaxPooling represents the Global Average Pooling operation. The cores of 3 Global
Average Pooling are 5, 9, and 13, respectively, with a step size of 1. Four dilated Convs refer to self-adaptive expansion filtering.
They can adapt to different pixels, and their expansion factors are 1, 2, 3, 4, respectively. ˙ represents the fusion of feature maps,
⊗ represents matrix multiplication.

Loss Function of the later layers to optimize the weight and
deviation of the network and reduce the loss of detail texture
features.

Four representative regions are visualized to illustrate the
effectiveness of ETDNet. From C1 to C4 in Figure 2, it can
be observed that ETDNet is applicable to remove rain streaks
of different shapes and directions. From C1 to C3, it can be
noted that this network allocates higher weights to feature
maps with fewer rain streaks and lower weights to feature
maps with more rain streaks. C4 indicates that ETDNet will
not lose the details of the original image and can recover the
details better.

Algorithm 1 Learning ETDNet

Input: Rainy images IR

for i = 1 to epoch do
for j = 1 to batchnum do
Generate rain map via R = RainMix(R)
Sample an image pair via (IR, INR) ∼ (IR, INR);
Sample X ∼ (IR, INR) and Perform IR = X + R;
Derain via Eq. 5 and Eq. 11;
Calculate Eq. 15 and do back-propagation;
Update parameters of Conv(·)

end for
end for

B. EFFICIENT TRANSFORMER
The Transformer [35] has attracted researchers working on
machine vision for its outstanding performance in natural
language tasks. It encodes the dependent items in the input

field by the self-attention mechanism to make the extracted
features highly expressive. The calculation method of the
self-attention mechanism of the early Transformer is as
follows:

Att(X ) = softmax
(
QKT
√
C

)
V , (4)

where X , QKT , V and C represents the input feature map,
the key encoding, the value matrix, and the number of
channels, respectively. An Efficient Transformer module is
proposed in this paper, which can remove rain streaks in
a coarse-to-fine way from rainy images with only a small
amount of computational overhead. It is divided into Factor-
ized Attention Mechanism, Convolutional Relative Position
Encoding, and Convolutional Position Encoding, as shown
in Figure 3.

As can be seen from Equation (4), the spatial complex-
ity and time complexity of Factorized Attention Mecha-
nism, Softmax and Attention Map of the early Transformer
are O

(
N 2
)
and O

(
N 2C

)
, respectively. The early Trans-

former used 1
√
C

to normalize the output values. Although

its normalization is proved to be effective in some tasks
(target tracking [1]–[3], pedestrian re-recognition [4]–[6],
semantic segmentation [7], [8]), 1

√
C

significantly increases

the time complexity. Besides, the application of 1
√
C

will
decrease the deraining efficiency as the network of the
deraining model is relatively shallow. Therefore, deleting
the scaling factor 1

√
C

not only makes the time complexity

becomeO
(
N 2
)
, but also brings better deraining performance

in experiments. The mathematical expression of Factorized
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FIGURE 3. Multi-head Attention mechanism layer in Efficient Transformer, 1 × 1 means point-by-point convolution, ⊕ means matrix
summation, ⊗ means matrix multiplication.

Attention Mechanism is shown in Formula (5).

FactorAtt(X ) = softmax
(
QKT

)
V , (5)

Without Position Encoding, the Transformer can only be
composed of linear layers and self-attention modules in
the deraining algorithms. The Transformer does not know
the difference between similar features (for example, big
rain streaks can be removed while small rain cannot be
removed).

In Convolutional Relative Position Encoding, ViT [36]
and Deit [37] insert the absolute position into the input fea-
tures, limiting the relative position communication between
local features. Coat [38] explores the relative position
encoding in work. The relative position encoding P ={
pi, i = −M−1

2 , . . . , M−12

}
in this study can be obtained

through the sliding windowM in Transformer, and the corre-
sponding feature map EV ∈ RN×C can be obtained through
the relative position encoding P.

RelFactorAtt(X) = softmax
(
QKT

)
V + ÊV , (6)

The mathematical expression of encoding matrices
E ∈ RN×C and EV are as follows:

Eij = 1(i, j)qi · pj−i, 1 ≤ i, j ≤ N , (7)

ÊVi =
∑
j

Eijvj, (8)

where 1(i, j) = 1{|j−i|≤(M−1)/2}(i, j) represents indicator func-
tion. Eij denotes the query of relationship between vector qi
and value vector vj in windowM . (EV )i represents the aggre-
gation of all the value vectors vj associated with qi. ÊV can be

calculated by the two-dimensional Depthwise Convolution.
Its mathematical expression is as follows:

ÊV = Qimg
◦ DepthwiseConv2D (Pimg,V img), (9)

where ◦ represents the matrix product operation. In Convo-
lutional Position Encoding, as the transformer cannot cap-
ture long-distance dependencies of features and adapt to the
changeable features that are input dynamically, the Relative
Position Encoding and the Global Position Encoding are
combined to focus on the relative distance between features
and the global feature information. This method effectively
associates the object information and position information
and dynamically adjusts weight to adapt to input feature
maps, eventually making the encoding position more mean-
ingful. The mathematical expression of Convolutional Posi-
tion Encoding is as follows:

x̂ = GL(x)+ DepthwiseConv2D (x), (10)

where GL(x) represents the Global Position Encoding of
each pixel’s linear operation of the input feature. Inspired
by Spatial Attention, a simple but effective Global Position
Encoding of each pixel’s linear operation is presented. To be
specific, this algorithm divides the Global Position Encoding
into two modules: one module performs Global Position
Encoding on the height axis of the feature map, and the other
module performs on the width axis. The Global Attention
performing on the width axis and the height axis simulates the
Global Position Encoding effectively, which adds the object
feature information to the position information, making the
dynamic input feature more sensitive to the position infor-
mation and able to encode the spatial structure of images.
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FIGURE 4. (a) is the RepVGG Block, (b) is the Efficient Transformer. The Efficient Transformer can interpret the existing system in
Transformer as the bottleneck structure with Multi-head Self-attention (MHSA), but with different concept from the bottleneck
structure. It is different from the RepVGG Block in that it uses MHSA instead of 3 × 3 convolution. ⊕ represents the summation of
matrixes.

The mathematical expression of GL(x) is as follow:

GL(x)

= xh ∗ σ (DWConv([AvgPool(xh);MaxPool(xh)])
+xw ∗ σ (DWConv([AvgPool(xw);MaxPool(xw)])),

(11)

where σ (·) represents the sigmoid operation. In addition,
the latest research shows that the RepVGG Block struc-
ture [39] is featured with high parallelism and large receptive
field of the multi-path architecture during training and the
fast speed and memory saving of the single-path architecture
during prediction. In ETDNet, the proposed deraining model,
the RepVGG Block is extensively used, and an Efficient
Transformer module with a bottleneck structure is defined,
as shown in Figure 4. The Efficient Transformer adds a paral-
lel 1× 1 convolution branch and an identity mapping branch
to each MHSA. When ETDNet is trained, its Efficient Trans-
former uses a multi-branch structure to expand the receptive
field to speed up themodel fitting speed and establishes resid-
ual mapping to alleviate the gradient disappearance. When
ETDNet conducts prediction, the Efficient Transformer can
integrate a 1× 1 convolution layer and identity mapping into
the MHSA layer to reduce the storage units for parameters
and speed up the prediction.

C. EXPANSION FILTER
The JORDER model proposed by Yang et al. [10] has proved
that aggregating context information in a multi-scale way can

expand the convolutional receiver field in deraining models,
which is very effective for models to learn the features of rain
streaks. Therefore, multiple expansion filters are embedded
into ETDNet, as shown in Fig. 5. The expansion filters with
multiple pixel-wise dilation rates can adapt to rain streaks of
different intensities in a multi-scale way. The expansion fil-
ters can perceive the position of rain streaks according to the
intensity of rain streaks through different expansion factors in
the input feature map and the original rain map without loss
of resolution. The expansion filters can perceive the position
of rain streaks according to the intensity of rainfalls. They
allocate relatively low weight to the position with dense rain
streaks and relatively high weight to the position with sparse
rain streaks and then extract features in a multi-scale way.
To not affect the efficiency of the ETDNet model, four filters
with expansion filters as 1, 2, 3, 4 respectively are assigned
to the network to process rain streaks. Through the expansion
filters, four processed feature maps can be obtained. The four
feature maps are confused into one feature map, on which
a 3 × 3 convolution operation are implemented to remove
rain streaks. fin is defined as the input feature map and fout as
the output feature map to provide a detailed description:

fout = max

0,
4∑

tp=1

(
Win ,tp ∗ fin ,tp + bin ,tp

)
.fin

 , (12)

where * represents convolution operation, variable tp
represents different expansion filters. Variable Win and bin

119886 VOLUME 9, 2021



Q. Qin et al.: ETDNet: Efficient Transformer Deraining Model

FIGURE 5. (a) is the expansion filter. Multiple expansion filters predict each pixel;
(b) denotes the feature map predicted by the expansion filter multiplying the rainy
image, making the network suitable for rain streaks with different sizes.

represent the parameters of the expansion filter and the basic
parameters of the convolution layer, respectively.

D. MULTI-SCALE LOSS FUNCTION
The study on deraining explores how to remove more
rains and restore high-quality images to the largest degree.
In ETDNet, the shallow network layer can learn the edge,
color, brightness, and other underlying features, the mid-
dle network layer can learn the texture features, and the
deep network can learn distinctive, identifiable, and relatively
complete features. MSE is often used as the Loss Function in
deraining algorithms, making the output images too smooth
(losing many details or high-frequency parts). Therefore, fea-
ture maps of specific layers selected appropriately are input
into the Loss Function to recover more details. Multi-scale
Feature Loss Function is involved in training ETDNet, which
makes the network modulate the rain streak features in the
feature space from multiple scales in a coarse-to-fine way
to ensure the model restores features with high fidelity and
details.

The feature maps with low-resolution in the shallow layer
usually contain rich features with high-fidelity, such as edges,
colors, and brightness, but it is challenging to acquire their
accurate geometric and texture features. MSE Loss Function
and the TV Loss Function are used to define the Loss Func-
tion of the shallow layers. They can roughly transfer features
with high-fidelity to the feedforward network, which leaves
the featureswith high-fidelity to the subsequent network layer
to carry out the calculation. The Loss Function of the shallow
layer is defined as follows.

LShallow = λmse ‖ ŷ− y2 ‖ +λtvŷ2, (13)

λmse and λtv represent the weights of MSE Loss Function and
TV Loss Function, respectively. The middle network layer
further enhances the texture features with perceptual mean-
ing by using the previous information and the pre-trained
VGG Loss Function [40], MS-SSIM Loss Function [41], and
L1 Loss Function, which reduces the detail loss and increases
the fidelity of the restored background. The Loss Function of
the middle layer is defined as follows.

LMiddle = λper ‖ φ(ŷ)− φ(y)2 ‖

+λ1 ‖ ŷ− y ‖ 1 + λmssim

M∏
i

‖ f2(ŷ)− f2(y) ‖ 1 ,

(14)

where φ stands for using feature maps from conv1. . . ,Conv5
inVGGnetwork [42], andM signifies the scaling factor of the
feature map, M = 0.5, 1.0, 2.0, 4.0, 8.0. λper , λ1, and λmssim
represent the weights of VGG Loss Function, L1 Loss Func-
tion, and MS-SSIM Loss Function, respectively. In the deep
network layer, L1 Loss Function and SSIM Loss Function are
utilized to reuse features and explore key features to maintain
the minimum distance between the recovered results and the
deep feature space of the real background, further enhancing
the expression ability of details. The Loss Function of the
deep layer is defined as follows:

LDeep = λ1 ‖ ŷ− y ‖ 1 + λssim ‖ f2(ŷ)− f2(y) ‖ 1 , (15)

λ1 and λssim represent the weights of the L1 Loss Function
and the SSIM Loss Function, respectively. The overall object
Loss Function can be written as:

LNR = LShallow + LMiddle + LDeep, (16)
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FIGURE 6. Comparison of PSNR, SSIM and speed on Rain100L.

IV. EXPERIMENT AND RESULT ANALYSIS
In this section, the experimental environment is intro-
duced first, and then the ETDNet, the proposed model,
is verified on three different datasets to prove its high
performance.

A. EXPERIMENT ENVIRONMENT
Datasets: comparative experiments of different techniques are
carried out on three popular datasets: Rain100L (synthetic
datasets), Rain100H [10], [43] (synthetic datasets), and the
SPA [44] (synthetic datasets similar to the actual rainfalls)
to explore their influences on the performance of deraining
models.

Evaluation indexes: peak signal-to-noise ratio (PSNR)
and structural similarity Index Measure (SSIM) are used as
evaluation indexes to evaluate the performance of deraining
models. Generally, the larger their values are, the better the
deraining effect is.

Benchmark models: different deraining models are exper-
imented on Rain100L and Rain100H to verify their perfor-
mances, including NLEDN (Li et al. [45], 2018), RESCAN
(Li et al. [46], 2018), JORDER (Yang et al., 2019),
SPANet (Wang et al., 2019), GCANet (Chen et al. [47],
2019), PRENET (Ren et al. [48], 2019), RCDNet
(Wang et al. [9], 2020), DCSFN (Wang [49], 2020), MPRNet
(Zamir et al. [12], 2021). Then the proposed ETDNet is
comparedwith 6 benchmarkmodels on SPA datasets to verify
its efficiency, including RESCAN (Li et al., 2018), SIRR
(Wei et al. [50], 2019), PRENet (Ren et al., 2019), SPANet
(Wang et al., 2019), RCDNet (Wang et al., 2020), MPRNet
(Zamir et al., 2021).
All models are trained on Ubuntu 18.04, GPU1060, and

Pytorch1.6. Adam is used as the optimizer. The initial value
of the learning rate is 0.002.

TABLE 1. Comparison of PSNR and SSIM on Rain100L and Rain100H.

B. COMPARATIVE EXPERIMENTS ON RAIN100L AND
RAIN100H
In Table 1, ETDNet is compared with the other nine bench-
mark models on Rain100L and Rain100H. The experi-
mental results indicate that on Rain100H, compared with
the NLEDN (2018), the PSNR and SSIM of the proposed
ETDNet increase by 4.04 DB and 0.0649, respectively. Com-
pared with the latest MPRNet, they increase by 1.04 DB
and 0.0139, respectively. Comparedwith the RCDNet (2020),
they increase by 1.07 DB and 0.0206, respectively.

Figure 6 shows the comparison of ETDNet with the other
nine benchmarkmodels on Rain100L. Figure 6 illustrates that
the deraining speed of ETDNet on Rain100H is 33 times
faster than that of MPRNet and 43 times faster than that
of the RCDNet. Figure 6(a) and Figure 6(b) indicate that
the ETDNet can achieve the highest PSNR and SSIM at the
fastest speed, proving its excellent performance.

In Figure 7, the partial predicting results of ETDNet,
RCDNet, and MPRNet on Rain100L and Rain100H are visu-
alized. In Case 1 and Case 2, it is obvious that RCDNet and
MPRNet destroy the details of the picturewhen removing rain

119888 VOLUME 9, 2021



Q. Qin et al.: ETDNet: Efficient Transformer Deraining Model

FIGURE 7. Three visualized results of RCDNet, MPRNet, and ETDNet on Rain100L(Case1) and Rain100H (Case 2 and
Case 3). The main differences are magnified.

FIGURE 8. Comparison of PSNR, SSIM and speed on SPA.

streaks, such as the face of a boy in Case 1 and the fine lines of
fish in Case 2. However, ETDNet removes more rain streaks
but retains more detailed features. In Case 3, RCDNet and
MPRNet do not remove small rain streaks, while ETDNet
removes all rain streaks, indicating that ETDNet is more
efficient in removing rain steaks of different sizes.

C. COMPARATIVE EXPERIMENTS ON SPA DATASETS
The synthetic rain images in Rain100L and Rain100H
datasets are different from the real rain images, but the
synthetic rain images in SPA datasets [44] are much more
similar to the ones taken in real life. ETDNet is com-
pared with the other six benchmark models on SPA datasets.
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FIGURE 9. The visualized results of MPRNet and ETDNet on SPA. The red arrow shows the main difference between ETDNet and MPRNet.

Figure 8(a) and Figure 8(b) show that the SSIM and PSNR
of ETDNet are higher than those of other benchmark models.
Besides, the deraining speed of ETDNet is 26 times faster
than that of MPRNet on SPA. In Figure9, the deraining effect
ofMPRNet and the ETDNet on SPA are visualized. In Case 1,
MPRNet does not remove small rain streaks, while ETDNet
successfully removes small rain streaks. In Case 2, MPRNet
does not remove relatively large rain streaks, but ETDNet suc-
cessfully removes all rain streaks. In Case 3, when removing
rain streaks, MPRNet deletes the window frame, but ETDNet
successfully retains the details of the window frame. The
above all show that the proposed ETDNet is more efficient in
removing rain streaks of different shapes and retaining details
than other models.

D. ABLATION EXPERIMENT
This section defines four variant models to verify the derain-
ing effects of the expansion filter, the Efficient Transformer,
and the multi-scale Loss Function in ETDNet on Rain100H.
The first model (ETDNet-v1) consists of RainMix, SPP,
Shuffle Attention module, and RepVGG Block; the sec-
ond model (ETDNet-v2) adds the expansion filter based on
ETDNet-v1; the third model (ETDNet-v3) adds the Efficient
Transformer module based on ETDNet-v2. The above three
models are trained with L1 Loss Function. The fourth method

TABLE 2. The ablation experiments of four variant models on Rain100H
on GPU 1060.

(ETDNet-v4) adds the multi-scale Loss Function based on
the ETDNet-v3. As shown in Table 2, the PSNR and SSIM
of the four mentioned models improve gradually, indicat-
ing that the expansion filter, the Efficient Transformer, and
the multi-scale Loss Function can facilitate removing rain
streaks. In addition, the parameters of the four models are
analyzed. It is observed that ETDNet-v3 with the Efficient
Transformer instead of convolution reduces parameters, sug-
gesting the Efficient Transformer proposed in this article is
applicable in other real-time model architectures.

As is shown in Figure 10, the prediction results on
Rain100H further prove the advantages of the proposed
ETDNet. In Case 2 and Case 4, ETDNet-v2 remove more
rain streaks than ETDNet-v1, indicating that the expansion
filter helps to remove more rain streaks. In Case 2 and
Case 4, ETDNet-v3 removes more small rain streaks than
ETDNet-v2, denoting that the Efficient Transformer helps
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FIGURE 10. The four visualized results of the four variant models of ETDNet on Rain100H.

remove small rain streaks. In Case 1 and Case 3,
ETDNet-v4 removes rain streaks and restores more detailed
features, such as the face in Case1 and the fence in Case2,
signifying that the multi-scale Loss Function helps recover
details.

V. CONCLUSION
In this paper, a one-stage deraining model for images based
on deep learning is introduced from a new perspective.
Compared with other deraining models, the ETDNet model
proposed in this paper can remove rain streaks faster and
recover more texture details. The high performance of ETD-
Net is attributed to the following aspects. First, the Efficient
Transformer module is introduced, which can adapt to differ-
ent features dynamically, enabling the model to extract fea-
tures in a coarse-to-fine way and remove small rain streaks.
Then, the expansion filters are incorporated to enlarge the
receptive field, finding suitable kernels for different rain
streaks to remove rain streaks in a multi-scale way. At last,
the multi-scale Loss Function is integrated to solve the loss
of precise color with high-frequency and detailed texture in
the background. Comparative experiments of the proposed
model and other models are conducted on three synthetic
datasets to verify the efficiency and high performance of
ETDNet in removing rain streaks. Actually, some failure
methods have been tried in experiments, such as Frelu, Batch
Normalization, and evaluation network for conflict training.
However, the PSNR and SSIM of ETDNet have decreased,
so it is concluded that these methods may be more suitable
for models with deep networks.

This research still needs to be perfected. For example, there
is no detailed discussion on whether the ETDNet model is

suitable for images with the same parameters to denoise or
whether multiple sliding windows of different sizes can fur-
ther realize the exchange of feature information and improve
the performance of the Transformer. In the future, we plan
to apply ETDNet into other computer vision tasks, such as
image reconstruction, target detection, panoramic segmenta-
tion, and use simpler feedforward networks to deal with more
complex application scenarios.
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