
Received July 23, 2021, accepted August 24, 2021, date of publication August 27, 2021, date of current version September 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3108404

HI-FFT: Heterogeneous Parallel In-Place
Algorithm for Large-Scale 2D-FFT
HOMIN KANG , JAEHONG LEE , AND DUKSU KIM , (Member, IEEE)
School of Computer Engineering, Korea University of Technology and Education (KOREATECH), Cheonan 31253, South Korea

Corresponding author: Duksu Kim (bluekdct@gmail.com)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant
through Korean Government [Ministry of Science and ICT (MSIT)] under Grant 2020-0-00594 (Morphable Haptic Controller for
Manipulating VR·AR Contents, 50%), and in part by the Basic Science Research Program through the National Research Foundation of
Korea (NRF) through the Ministry of Education under Grant 2021R1I1A3048263 (High-Performance CGH Algorithms for Ultra-High
Resolution Hologram Generation, 50%).

ABSTRACT Fast Fourier Transform (FFT) is a fundamental operation for 2D data in various applications.
To accelerate large-scale 2D-FFT computation, we propose a Heterogeneous parallel In-place 2D-FFT
algorithm, HI-FFT. Our novel work decomposition method makes it possible to run our parallel algorithm
on the original data (i.e., in-place), unlike prior parallel algorithms that require additional memory space
(i.e., out-of-place) to guarantee independence among sub-tasks. Our work decomposition method also
removes the duplicated operations on the out-of-place approaches. Using our decomposition method,
we introduced an in-place heterogeneous parallel algorithm that utilizes both multi-core CPU and GPU
simultaneously. To maximize the utilization efficiency of the computing resources, we also propose
a priority-based dynamic scheduling method. We compared the performance of seven different 2D-FFT
algorithms, including ours, for large-scale 2D-FFT problems whose sizes varied from 20K2 to 120K2. As a
result, we found that ourmethod achieved up to 2.92 and 4.42 times higher performance than the conventional
homogeneous parallel algorithms based on the state-of-the-art CPU and GPU libraries, respectively. Also,
our method showed up to 2.27 times higher performance than the prior heterogeneous algorithms while
requiring two times less memory space. To check the benefit of our HI-FFT on an actual application,
we applied it to a CGH (Computer Generated Holography) process. We found that it successfully reduces the
hologram generation time. These results demonstrate the advantage of our approach for large-scale 2D-FFT
computation.

INDEX TERMS 2D-FFT, heterogeneous, parallel, CPU, GPU, in-place.

I. INTRODUCTION
The Discrete Fourier Transform (DFT) is one of the
fundamental operations in the scientific and engineering
domains [1]. A Fast Fourier Transform (FFT) is an algo-
rithm for computing DFT efficiently, and 2D-FFT is widely
employed in various applications, including image process-
ing, machine learning, and digital holography [2]–[4]. There
have been numerous attempts to accelerate the performance
of FFT. Early studies focused on minimizing the number
of arithmetic operations in the FFT process. For example,
the Cooly-Tukey algorithm reduces the computational com-
plexity from O(N 2) to O(NlogN ) [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Weipeng Jing .

One of the widely employed strategies for accelerat-
ing mathematic computation is utilizing parallel computing
hardware, including FPGA, multi-core CPU [6]–[8], and
GPU [9]–[11]. Recent FFT acceleration approaches have also
actively employed parallel processing approaches. A state-of-
the-art algorithm utilizing multi-core CPUs (e.g., FFTW [7]
and MKL [8]) improved the FFT performance by several
times compared with using a single CPU core. Also, the state-
of-the-art GPU FFT library (i.e., cuFFT [11]) improved
performance by several orders ofmagnitude thanks to its mas-
sive parallelism, which meets the compute-intensive nature
of FFT computation. Despite the impressive performance
of the GPU-based algorithm, the limited GPU memory size
restricts the use of GPU for large-scale FFT problems such as
ultra-high-resolution hologram (e.g., 100K2 double complex
matrix) generation.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 120261

https://orcid.org/0000-0003-3571-1294
https://orcid.org/0000-0002-8311-5975
https://orcid.org/0000-0002-9075-3983
https://orcid.org/0000-0001-7933-6946


H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

Recently, most computing systems include both multi-core
CPU and GPU in a system. To fully exploit the computing
capability of such heterogeneous systems, there have been
attempts to utilize different types of parallel computing archi-
tectures at once [12]. Such heterogeneous parallel techniques
achieved impressive performance improvement in various
applications [13]–[17]. Hybrid CPU/GPU algorithms have
also been proposed, and they solved the limited GPUmemory
issue by maintaining the all of data in the CPU memory and
sending parts of them to the GPU memory [18]. They also
utilized both multi-core CPU and GPU for the computation,
to obtain further performance improvements [19], [20].

Our HI-FFT improves the prior heterogeneous parallel
approaches for 2D-FFT computation in three aspects: mem-
ory usage, redundant operations, and utilization efficiency
of the heterogeneous computing system. In the prior parallel
2D-FFT algorithms, a typical work distribution unit is a line
(or row) of two-dimensional data (hereafter referred to as a
‘matrix’ for simplicity). However, a line-based work distribu-
tion requires a copy of the matrix to guarantee independence
for parallel processing, and this also leads to redundant opera-
tions. To solve these memory and computational overheads of
the line-based approach, we propose a novel work decompo-
sition method that divides the 2D-FFT computation work into
sub-tasks whose workspaces are disjoint (Sec. III). Based on
the decomposition method, we introduce an in-place parallel
2D-FFT algorithm that does not require additional memory
space or redundant operations (Sec. IV-A and Sec. IV-B).
Then, we extend our in-place parallel algorithm to utilize
both multi-core CPU and GPU. Unlike prior hybrid par-
allel approaches that allocate a region of the matrix with
a static scheduling scheme, we distribute the sub-tasks to
the available computing resources (e.g., the CPU cores and
GPU). Also, we propose a priority-based dynamic scheduling
method to maximize the utilization efficiency of the hetero-
geneous computing system (Sec. IV-C).

To check the benefits of our method, we implemented
seven different 2D-FFT algorithms, including two versions
of our methods. On three different heterogeneous computing
systems, we tested the performance of the 2D-FFT algo-
rithms with large-scale matrices from 20K2 to 120K2 in
both single- and double-precision (Sec. V). Compared with
the conventional homogeneous parallel algorithms based on
the state-of-the-art CPU (i.e., FFTW) and the state-of-the-art
GPU (i.e., cuFFT) libraries, our HI-FFT achieved up 2.92 and
4.42 times higher performance, respectively. Our method also
showed better (e.g., 69% on average) performance than prior
heterogeneous parallel algorithms, while using less CPU
memory space. Also, we found that our method, working
in an in-place manner, could successfully handle up to two
times larger 2D-FFT problems than prior out-of-place parallel
algorithms. In addition, the multi-core CPUs-only version
of our method (i.e., HI-FFTCPU ) achieved better perfor-
mance than the conventional CPU parallel algorithms using
a line-based work decomposition approach. Also, we found
that HI-FFTCPU had better performance than heterogeneous

algorithms in some cases. These results demonstrate the
advantages of our approach in terms of both memory usage
and computational performance.

II. RELATED WORK
Various parallel algorithms have been proposed to acceler-
ate 2D-FFT computation, including FPGA-based [21]–[24],
multi-core CPU-based [7], [8], [25]–[28], and GPU-
based [18], [29]–[35] approaches.

FFTW (Fastest Fourier Transform in the West) [7] is one
of the most well-known multi-core CPU-based FFT libraries.
FFTW utilizes the SIMD (Single Instruction, Multiple Data)
units in CPU cores to maximize DFT (Discrete Fourier Trans-
form) performance. The MKL (Math Kernel Library) [8] is
a math library optimized for Intel’s CPU, and it supports
FFT computation. By using multi-core CPUs, both libraries
provide much higher performance than a serial algorithm
for FFT computation. Khokhriakov et al. [28] employed
these libraries for 2D-FFT computation. They also took a
load-imbalancing parallel computing method to optimize
2D-FFT computation onmulti-core CPUs (e.g., Intel Haswell
CPUs), and it achieved up to 9.4 times higher performance.

The GPU has also been actively employed to accelerate
FFT computation [18], [29], [30], [32], [33]. cuFFT (CUDA
Fast Fourier Transform library) [11] is one of the state-of-the-
art GPU-based FFT libraries introduced by Nvidia. Although
suchGPU-based FFT algorithms generally showmuch higher
performance than a CPU, it has two points of limitations.
First, it is hard to handle large-scale data since the GPU has
limited memory space (e.g., 2-24GB). The second limitation
is memory transfer overhead. Although the memory transfer
bandwidth between the host and device has been improved,
it is still one of the performance bottlenecks for the GPU algo-
rithm, especially for handling large-scale data. Gu et al. [18]
decomposed the work of 2D-FFT into a set of 1D-FFTs
based on the Cooley-Turkey algorithm [5] to perform 2D-FFT
with the GPU’s limited memory space. They also proposed a
blocked buffer method for 1D-FFT computation, to optimize
data transfer overhead. As a result, their algorithm achieved
up to 2.11 times higher performance than the CPU-based
algorithm for a large-scale 2D-FFT problem.

Unlike algorithms using one of the parallel comput-
ing resources (e.g., CPU or GPU), recent works have
proposed utilizing different types of processors at once
[19], [20], [36]–[38]. Wu and JaJa [36] employed both
CPU and GPU to perform 3D-FFT for large-scale three-
dimensional data. They distributed the workload to the CPU
and GPU while hiding the data transfer overhead with multi-
ple streams. For 2D-FFT computation, Ogata et al. [19] and
Chen and Li [20] utilized a heterogeneous computing system
with multi-core CPU and GPU. These works designed perfor-
mance models to predict the processing time of the 2D-FFT
computation on the CPU and GPU, and they tuned the models
empirically. Then, they allocated the appropriate workload
for each computing resource depending on its computing
capability, so that the entire processing time was minimized.

120262 VOLUME 9, 2021



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

To handle large-scale data with limited GPU memory, they
set a line (e.g., row or column) as the basic work unit.
Then, they computed 2D-FFT results by performing 1D-FFTs
for columns and rows. To avoid synchronization overhead
among parallel processing units (e.g., threads), the line-level
work distribution approach used additional memory space
(up to two times of data). Ogata et al. [19] transposed the
matrix before the column-wise 1D-FFT and used a row-
wise 1D-FFT module to improve processing performance.
Since the column elements are placed discontinuously in the
memory, it leads to low performance from the perspectives
of cache utilization efficiency and data transfer between host
and device [25], [39]. Therefore, this transposition strategy
improved the performance over the naive method. As a result,
they achieved up to 1.50 times performance improvement
compared with using a CPU only. Our method also adopted
this transposition strategy.

Like the prior heterogeneous algorithms, we utilized both
multi-core CPUs and GPU. However, instead of line-level
decomposition, we propose a novel decomposition method
that does not require additional memory space, while guar-
anteeing independence among tasks (Sec. III). Based on the
work decomposition method, our parallel algorithm performs
in-place processing. Also, we propose a simple dynamic
work scheduling algorithm that does not require empirical
parameter tuning (Sec. IV).

III. WORK DECOMPOSITION
In this section, we first briefly explain the general process
of 2D-FFT computation. Then, we introduce thework decom-
position method in our approach.

A. GENERAL PROCESS OF 2D-FFT COMPUTATION
A Fast Fourier transform (FFT) is an acceleration algorithm
that computes the Discrete Fourier transform (DFT). Let
f (x, y) be an element of an N × N complex matrix where
x and y are row and column indices, and the two-dimensional
DFT result of the matrix is defined by Eq. 1.

F(Ox ,Oy) =
N−1∑
x=0

N−1∑
y=0

f(x, y)× e−j2π (Ox
x
N +Oy

y
N ), (1)

where j is
√
−1. To reduce the high computational cost

(O(N 4)), it usually employs the row-column decomposition
method, which computes the 2D-DFT using a series of
1D-FFTs [39]. We can summarize this approach mathemati-
cally using Eq. 2.

F(Ox ,Oy) =
N−1∑
x=0

N−1∑
y=0

f(x, y)× e−j2π (Ox
x
N +Oy

y
N )

=

N−1∑
x=0

N−1∑
y=0

f(x, y)× e−j2π (Oy
y
N )

 e−j2π (Ox
x
N )

=

N−1∑
x=0

f′(x, y)e−j2π (Ox
x
N ) (2)

With this row-column decomposition method, the compu-
tational cost is reduced to O(N 2log(N )).
The computational process consists of two steps, including

column-wise FFT and row-wise FFT. Since a matrix has
a row-major layout in the memory, the column-wise FFT
accesses the discontinuous memory region. This type of
memory access pattern affects cache utilization efficiency,
leading to lower processing performance than the row-wise
1D-FFT cases. This discontinuous memory layout is also
inefficient when using a GPU. It requires multiple data
copy API calls to send data (e.g., column) in discontinu-
ous memory space, and we need to send the data to the
GPU memory first to use GPU computation. By transposing
the column before the column-wise 1D-FFT and processing
the transposed column with the row-wise 1D-FFT process,
we can improve the processing efficiency of the column-
wise 1D-FFT step. Although this strategy requires additional
data transposition steps before and after the column-wise
1D-FFT computation, it provides better performance than the
naive column-wise processing. Therefore, this transposition
strategy has been widely employed in many prior works,
especially when handling a large complex matrix with a
GPU [19], [38], [40]. The process of the transposition-based
2D-FFT is Transpose → FFT → Transpose → FFT .
Our method is based on this process, and we define the
combination of Transpose and FFT as a stage. Therefore,
our algorithm consists of two stages, including column- and
row-wise FFT stages.

B. OUR WORK DECOMPOSITION METHOD
In previous parallel algorithms for 2D-FFT, the basic work
distribution unit is usually a line, like a row or a col-
umn [19], [20], [38]. The lines are allocated to available com-
puting resources depending on the particular load-balancing
strategies, and each computing resource processes the given
line. When we employ the transpose-based 2D-FFT pro-
cess, a computing resource performs both transposition and
1D-FFT computation for the line. However, we found two
issues with this process.

• Out-of-Place Computation and Memory Overhead:
Since the transposition operation exchanges two ele-
ments in different rows and columns (e.g., f (i, j) ↔
f (j, i)), transposition for a line affects other lines. To pro-
cess multiple lines in parallel, we need to guarantee the
independence among the lines in the workspace. We can
guarantee it by making a copy of the matrix. However,
such out-of-place computation requires up to two times
more memory space than an in-place algorithm, which
uses no auxiliary space. This memory overhead can
significantly lower computational performancewhenwe
handle a large-scale 2D-FFT problem that needs to use
virtual memory space (e.g., when the data size is more
than half of the system memory space). In other words,
the out-of-place 2D-FFT algorithm halves the maximum
matrix size that the algorithm can handle efficiently.

VOLUME 9, 2021 120263



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

FIGURE 1. The two types of transposition task in our work decomposition
method.

• Redundant Transposition Operations: When we use
a copy of the input matrix for parallel processing,
we perform transposition for each line independently.
However, not all lines are actually independent, and
transposing a line includes the same transposition oper-
ations for an element of other lines. For instance,
transposing the first row (f (0, j)) is the same work
as transposition of the first element of other lines
(f (j, 0), j = {1, . . . ,N − 1}). Therefore, handling each
line independently for transposition does the same work
two times. In other words, it requires twice as many
operations as it actually needs.

To avoid such memory and computational overhead from
the line-level work distribution approach, we decompose the
transposition work for a line in two ways (Fig. 1).
• TtransB(i) is a set of transposition operations for
f (i, j), ∀j ∈ {i+ 1, . . . ,N − 1}.

• TtransU (i) is a set of transposition operations for
f (i, j), ∀j ∈ {0, . . . , i− 1}.

When i is the line (or row) number, the criteria that defines
the two task types is the accessing direction from the line.
TtransB(i) accesses only the region of the matrix below the
line. Also, it performs the transposition operation from the
(i + 1)-th element since its former elements are handled by
the TtransB(k)s, k < i. On the other hand, we can define the
transposition task that accesses the region of the matrix above
the line, like TtransU (i). In TtransU (i), it performs transposition
tasks from the first element to the (i-1)-th element, while the
latter elements are transposed by the TtransU (k)s, k > i. Based
on the task definitions, we can get the matrix transposition
result without duplicate operations by performing a set of
TtransB(i)s or TtransU (i)s for all lines.
In some cases, our algorithm needs to perform TtransB(i)

after TtransU (k) (k > i) is done. We define a subset task of
TtransB(i) to handle such cases.
• TtransB(i, k) is a set of transposition operations for
f (i, j), ∀j ∈ {max(i+ 1, k), . . . ,N − 1}.

Finally, we define the FFT computation task,
• TFFT (i) is FFT computation for line i.

Therefore, we have four types of task for 2D-FFT computa-
tion, TtransB(·), TtransU (·), TtransB(·, ·), and TFFT (·).

IV. HI-FFT ALGORITHM
In this section, we first introduce an overview of our HI-
FFT (Heterogeneous parallel In-place 2D-FFT) framework.
Then, we explain the details of our algorithm.

FIGURE 2. HI-FFT framework overview.

A. HI-FFT FRAMEWORK
Fig. 2 shows an overview of the HI-FFT framework. It con-
sists of amaster worker and slaveworkers. Themaster worker
consists of three components: 1) work scheduler, 2) three task
queues, and 3) result collector. There are three task queues,
QtransB, QtransU , and QFFT . Each task queue manages each
task type, whileQtransB handles both TtransB(·) and TtransB(·, ·)
because TtransB(i) is equal to TtransB(i, i + 1). When our
HI-FFT framework gets an input matrix, it pushes TtransB(·)
for all lines to QtransB from the first line. At this time, there
is no task in the other task queues. The work scheduler pops
tasks from the queues and allocates them to the slave workers
based on our scheduling algorithm (Sec. IV-C). Each slave
worker has processing modules for the four task types. In our
framework, a GPU or a set of CPU threads can compose a
slave worker. Once a slave worker gets a task, it processes
the task and returns the results to the result collector in the
master worker. Then, the result collector takes the result
and checks whether it meets a condition for generating other
tasks (Sec. IV-B). If it meets one of the conditions, it pushes
available tasks to the task queues. The HI-FFT framework
repeats these processes until there are no tasks anymore and
all the slaver workers have finished their given tasks. Then,
we finally get the 2D-FFT result for the input matrix.

B. TASK GENERATION ALGORITHM
With an out-of-place parallel algorithm, a naive approach
distributes the lines to available computing resources
(e.g., threads) because all the lines are independent from each
other. In this case, the straightforward processing order for
line i is Ttrans1 (i) → TFFT1 (i) → Ttrans2 (i) → TFFT2 (i),
where Ttrans(i) is a set of transposition operations for all
elements in line i. Note that we have numbered each task
(e.g., TOO1 and TOO2 ) to distinguish the column-wise1 and
row-wise2 stages. Similarly, for line i, the processing order
of our in-place algorithm can be TtransB1 (i) → TFFT1 (i) →
TtransB2 (i) → TFFT2 (i). However, all the lines are dependent
on each other in our in-place algorithm. We need to consider
the dependencies among tasks to design a parallel algorithm.
As an in-place algorithm, there are three dependencies among
tasks of different lines,
• D1: TFFT1 (i) should be processed after completing
TtransB1 (j)s for all j ≤ i.

120264 VOLUME 9, 2021



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

FIGURE 3. This figure shows the process of our HI-FFT algorithm when it has two CPU slave workers and one GPU worker.

• D2: TtransB2 (i) should be processed after completing
TFFT1 (·)s for all lines.

• D3: TFFT2 (i) should be processed after completing
TtransB2 (j)s for all j ≤ i.

The first and third dependencies are caused by the fact that
TFFT (i) requires all the elements of line i, while the trans-
position operation for f (i, j) is performed by TtransB(j)s for
all j ≤ i. The second dependency is defined as the TtransB(i)
accesses the i-th elements of other lines below line iwhile we
process TFFT1 (·)s from the first line.

Tasks with dependencies require sequential processing,
and it is crucial to remove or reduce the dependency to
improve the degree of parallelism [41]. We can relax the sec-
ond dependency by employing TtransU (i) and TtransB(i, k).
Since TtransU (·) accesses only the lines on the upper side of
line i, D2 is decomposed into two sub-dependencies, and D3
is changed.

• D2-1: TtransU (i) should be performed after TFFT1 (j)s are
finished for all j ≤ i.

• D2-2: TtransB(·, k) can be processed after completing
TFFT1 (·) for all lines.

• D3′: TFFT2 (i) can be performed after TtransU (i) and
TtransB(i, k)s where k = i+1 (or k > (i+1) if TtransU (j)s
are finished, ∀j ∈ {i+ 2, . . . , k − 1}).

Based on these dependencies, we define four task generation
conditions.

• C1: If TtransB(j)s for all j ≤ i are finished (D1), it gener-
ates TFFT1 (i)

• C2: If TFFT1 (j)s for j ≤ i (D2-1) are finished, it generates
TtransU (i)

• C3: If TFFT1 (·) for all lines are finished (D2-2), it pops
all the remaining TtransU (i)s from QtransU and generates
TtransB(i, k)s where k − 1 is the last line TtransU () is
performed.

• C4: If TtransB(i, k) is finished (D3′), it generates TFFT2 (i).

C1 and C2 are intuitive according to the D1 and D2-1.
In our HI-FFT algorithm, the GPU’s role is an accelerator
for FFT computation (Sec. IV-C), and it needs to gener-
ate FFT tasks (i.e., TFFT (·)) as soon as possible to utilize
the GPU intensively. We designed C3 and C4 to meet this
demand. Because our framework uses queues, TtransU (·)s are
sequentially popped from the first line. This means that all
the TtransU (i) for i < k are processed if we wait until all the
slave workers finish their current tasks. To make sure of this,
our framework has a synchronization step when it meets C3.
After synchronization, finishing TtransB(i, k) means that line
i is ready for TFFT2 (i) (C4).

Fig. 3 shows the process overview of the HI-FFT algo-
rithm with our task generation algorithm when it has
two CPU slave workers and one GPU worker. Initially,
we have TtransB(·)s for all lines. CPU slave workers pro-
cesses TtransB(·)s from the first line (Fig. 3-(a)). As TtransB(·)s
are processed, TFFT1 (·)s are generated according to C1,
and the GPU slave worker process them from the first
line (Fig. 3-(b)). After the GPU worker completes TFFT1 (j)
for j ≤ i, TtransU (i) is generated depending on C2.
Once CPU slave workers process all the TtransB(·)s, they
start to process TtransU (·)s (Fig. 3-(c) and (d)). Meanwhile,
CPU slave workers also participate in processing TFFT1 (·)s
since the workload for TtransU () is much smaller than
TFFT (). When all TFFT1 (·)s were finished, it pops remaining
TtransU (·)s from QtransU and generates TtransB(·, ·)s accord-
ing to C3 (Fig. 3-(e)). Then, CPU slaver workers pro-
cess TtransB(·, ·)s (Fig. 3-(f)). As TtransB(·, ·)s are processed,
TFFT2 (·)s are generated (C4) while the GPU slave worker
takes them (Fig. 3-(g) and (h)). Once CPU slave work-
ers complete all TtransB(·, ·)s, they start to process TFFT2 (·)s
(Fig. 3-(i)).

C. PRIORITY-BASED DYNAMIC SCHEDULING
The work scheduler in the master worker distributes tasks
in the task queues to the slave workers. We employ a

VOLUME 9, 2021 120265



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

priority-based dynamic scheduling strategy. From a high-
level, there are two types of tasks, transposition (TtransB()
and TtransU ()) and FFT computation (TFFT ()). Also, we have
two types of computing resources, multi-core CPU and
GPU. The transposition tasks’ major operation is exchang-
ing the two elements which reside in different memory
regions. In other words, those tasks are memory-bounded
work having a non-regular memory access pattern. In con-
trast, TFFT () is a compute-intensive task that accesses the
continuous memory region. The properties for each task
type are matched with the architectural characteristics of the
CPU and GPU.

At first, the CPU has a well-organized cache hierarchy,
which improves the memory access efficiency for random
memory access patterns [16], [25], [42]. Also, the CPU
can access the system memory directly, unlike the GPU
which requires copying data from the system memory to
the device memory. Therefore, we give a higher priority
than TFFT () to the transposition tasks for slave workers
consisting of CPU threads. Between transposition tasks,
TtransB()s have a higher priority, to generate TFFT ()s as
soon as possible. In summary, the task priority for CPU is
TtransB() > TtransU () ≥ TFFT ().

Unlike the CPU, the GPU has many cores (e.g., hun-
dreds or thousands), and it has an optimized archi-
tecture for regular streaming floating-point operations
[16], [43], [44]. This architectural property matches the char-
acteristic of TFFT (), and the GPU has a much higher perfor-
mance than a multi-core CPU for FFT computation. On the
other hand, the transposition tasks have a non-regular mem-
ory access pattern that is not suitable for the GPU architec-
ture. Also, using GPU for the transposition tasks is rather a
loss, due to the overhead for transferring data between host
and device memories. We found that the transfer time itself is
larger than the time needed for transposition on the CPU-side.
As a result, we employ the GPU as an FFT computation accel-
erator. The workload for FFT computation is much larger
than the transpositions, and we can utilize GPU intensively
if it generates TFFT ()s as soon as possible. The task priority
of the CPU slave worker and the task generation conditions
(C3 and C4) reflect this. Algorithm 1 is the pseudo-code
of our HI-FFT algorithm that the priority-based dynamic
scheduling algorithm is applied.
Scheduling Granularity: To reduce the scheduling over-

head, including communication overhead between master
and slaves, we distribute tasks as a unit of a block which
is a set of tasks with the same task type. For example,
a block of FFT computation is {TFFT (i), . . . ,TFFT (i+b−1)},
where b is the block size. A larger block leads to better
GPU computational efficiency, but it can waste the GPU’s
computing power while transferring the block to the device
memory [45], [46]. To hide the data transfer time and fully
utilize the GPU’s computing capability, we overlap the data
transfer and computation using multiple streams [43]. In this
way, we use themaximumnumber of lines the devicememory
can hold for all streams as the block size.

Algorithm 1: Pseudo Code of the HI-FFT Algorithm
1 k ← 0
2 QtransB ← TtransB(i),∀i ∈ {1, . . . , (N : matrix size)}
3 Run all slave workers in parallel
4 [CPU slave worker]
5 while QtransB is not empty do
6 TtransB(i)← QtransB
7 process TtransB(i)
8 QFFT ← TFFT1 (i) // C1

9 while QFFT is not empty do
10 if QtransU is not empty then
11 TtransU (i)← QtransU
12 process TtransU (i)
13 k ++

14 if QFFT is not empty then
15 TFFT1 (i)← QFFT
16 process TFFT1 (i)
17 QtransU ← TtransU (i) // C2

18 [GPU slave worker]
19 while QFFT or QtransB is not empty do
20 TFFT1 (i)← QFFT
21 process TFFT1 (i)
22 QtransU ← TtransU (i) // C2

23

24 Global synchronization F Fig.3-(e)
25 TtransU (i)← QtransU
26 QtreansB ← TtransB(i, k) // C3
27

28 Run all slave workers in parallel
29 [CPU slave worker]
30 while QtransB is not empty do
31 TtransB(i, k)← QtransB
32 process TtransB(i, k)
33 QFFT ← TFFT2 (i) // C4

34 while QFFT is not empty do
35 TFFT2 (i)← QFFT
36 process TFFT2 (i)

37 [GPU slave worker]
38 while QtransB or QFFT is not empty do
39 if QFFT is not empty then
40 TFFT2 (i)← QFFT
41 process TFFT2 (i)

V. RESULTS AND ANALYSIS
We implemented our HI-FFT algorithm on three different
heterogeneous machines consisting of multi-core CPU(s) and
a GPU (Table 1). The three machines had different GPUs.
The GTX 1060 in Machine 1 is a low-end GPU with the
lowest performance and smallest device memory space. The
two GPUs in Machine 2 and 3 have the same device memory
size, but the RTX 3090 has a higher computational perfor-
mance. Machine 1 and 2 share the same base system, and
they have larger host memory space than Machine 3. On the
other hand, Machine 3 has a more powerful CPU with PCIe
4.0 and supports higher bandwidth between host and device
memories than Machine 1 and 2. We used OpenMP [47] and

120266 VOLUME 9, 2021



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

TABLE 1. Configurations of the three heterogeneous computing
machines used in our experiments.

TABLE 2. This table shows the block sizes used in our experiment on
each machine depending on the matrix size for single- and
double-precision cases.

CUDA 11.0 [10] to implement the parallel algorithms on the
multi-core CPU and GPU. To perform TFFT (), we employed
the FFTW 3.3 [7] and cuFFT 11.0 [11] libraries for the
slave workers in the multi-core CPU and GPU, respec-
tively. We used four streams, and the block sizes are shown
in Table 2. We implemented two versions of our method.
• HI-FFT is the implementation of our algorithm with
two CPU slave workers and one GPU slaver worker.
Each CPU slave worker uses sixteen threads on
Machine 1 & 2, and twenty-four threads on Machine 3.

• HI-FFTCPU is an alternative version of our method.
It uses only two CPU slaver workers without a GPU
slave worker. The configuration for CPU slaver workers
is the same as the HI-FFT.

To check the benefits of our method, we also implemented
five alternative algorithms based on prior approaches.
• CPUFFTW is based on the state-of-the-art CPU-based
FFT library, FFTW [7], respectively. We applied the
transposition-based 2D-FFT process, which uses the
line-level work decomposition method. Tomake it an in-
place algorithm, we put a synchronization step between
the transposition and FFT computation steps. For this
method, we used sixteen and twenty-four CPU threads
for Machine 1 and 2, and Machine 3, respectively.

• CPUMKL is an alternative implementation of a CPU-
based 2D-FFT algorithm based on the MKL library [8].
The only difference from CPUFFTW is that it uses the
FFT functions of the MKL 2021.3.0 library instead of
the FFTW library.

• GPUCUFFT is based on cuFFT, which is a GPU-based
FFT library highly optimized for Nvidia GPUs [11].
If the matrix is smaller than the device memory size
(marked by the asterisk in Table. 3), it loads the
entire matrix onto the GPU first and runs the 2D-FFT

module of the cuFFT library. Otherwise, it employs
the row-column decomposition strategy. For columns,
it transfers the lines to the device memory by cud-
aMemcpy2D() API instead of using the transposition-
based approach. We used the same block size with our
method and four streams to minimize the data transfer
overhead.

• Ogata is an implementation of the heterogeneous par-
allel algorithm presented by Ogata et al. [19]. This
method uses the line-level work decomposition method
and out-of-place computation with a transposition-based
2D-FFT strategy. Although they reported that allocat-
ing a 60% workload (i.e., lines) to the GPU achieved
the best performance, we found that it depended on
the system configurations. Therefore, we measured the
performance while changing the GPU workload from
10% to 90% (in 10% increments) and took the best
performance for comparison.

• Chen is an implementation of the heterogeneous parallel
algorithm proposed by Chen and Li [20]. Like Ogata,
it is an out-of-place algorithm and the basic work unit is
a line. This algorithm needs to set the entire workspace
on the host memory as page-locked (or pinned) memory,
and the maximum size of the input matrix it can handle
is smaller than Ogata. Like Ogata, we recorded the best
performance among different conditions for the work-
load distribution between CPU and GPU.

For Ogata and Chen, we used the same number of CPU
threads as the number of CPU cores on each machine.
Benchmarks: To measure the performance of the different

2D-FFT algorithms, we generated a set of complex matrices
in both single- and double-precision. We randomly generated
complex numbers, and the matrix sizes are varied from 20K2

to 120K2 while the matrix’s data sizes varied from 3 GB
to 215 GB. For each matrix, we performed the 2D-FFT
computation five times and reported the average processing
time.

A. RESULTS
Table 3 shows the processing times of the seven differ-
ent 2D-FFT algorithms. Since the out-of-place approach
requires up to two times more memory space of the input
matrix, the two out-of-place algorithms failed to process
the large-scale 2D-FFT problems. For the double-precision
complex matrices, Ogata failed to handle a 120K 2 matrix on
Machine 1& 2 and 100K 2 onMachine 3 because the required
memory space (e.g., 2 × 215 GB for 120K 2) exceeded the
system memory size. The problem size that Chen could
process was much smaller than Ogata, since only a part of
the system memory is allowed to be a page-locked memory.
Therefore, Chen failed to process the 100K 2 and 120K 2

complex matrices in single precision on Machine 1 & 2 and
Machine 3, respectively. Also, it could not treat the 80K 2

complex matrix in double precision. In contrast, the in-place
algorithms, including ourHI-FFT, successfully processed the
large-scale 2D-FFT problems.

VOLUME 9, 2021 120267



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

TABLE 3. This table shows the 2D-FFT computation times (seconds) of seven different algorithms on three machines for different input matrices in
single- and double-precision. For Machine 2, the processing times of the CPUMKL, CPUFFTW and HI-FFTCPU are the same as Machine 1 since they used
the same CPUs. An asterisk(*) denotes that the GPUCUFFT performed 2D-FFT after loading all of the data on the device memory. A dash(-) denotes that
the algorithm failed to process, due to out-of-memory. The bold font and the bold-italic font mark the best and the second-best performance among the
seven algorithms, respectively.

CPUMKL shows a comparable or a little higher perfor-
mance than CPUFFTW for small matrices. However, for
large-scale matrices, CPUFFTW generally achieved a better
performance (e.g., 10% on average) than CPUMKL , espe-
cially for the double-precision case. HI-FFTCPU generally
showed higher performance than two alternative CPU-based
algorithms. It achieved up to 33% and 28% (18% and
12% on average) better performance than the CPUFFTW
for single- and double-precision cases, respectively. Com-
pared with CPUMKL , HI-FFTCPU showed up to 44% and
165% (19% and 35% on average) higher performance for

single- and double-precision cases, respectively. For a larger
matrix, HI-FFTCPU tended to show more performance gaps
from these two CPU-based algorithms. Since our method
requires fewer operations for the transposition task and has
higher parallelism thanCPUFFTW andCPUMKL ,HI-FFTCPU
achieved higher performance than these two alternatives with
the same computing resources in most cases.
GPUCUFFT achieved higher performance than the two

CPU-based parallel algorithms, including CPUFFTW and
HI-FFTCPU , when the input matrix was small enough to
load the entire data into the device memory (denoted by the

120268 VOLUME 9, 2021



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

FIGURE 4. This graph compares the performance of two prior
heterogeneous algorithms and ours for the single-precision case.

asterisk in Table 3). Also, it showed comparable performance
with CPUMKL . However, when the input matrix’s data size
was larger than the device memory and the GPU was unable
to process that in an in-core manner, GPUCUFFT showed a
much lower performance than the CPU-based methods. For
large-scale data, GPUCUFFT required frequent data transfer
between the host and device memories, and this communica-
tion overhead lowered performance significantly. We found
that the data communication took 89% of the GPUCUFFT ’s
processing time on average.

By employing multi-core CPU(s) in addition to a GPU,
the heterogeneous 2D-FFT algorithms not only decreased
the workload on the GPU but also the data communi-
cation overhead as well. Therefore, they achieved much
higher performance than GPUCUFFT . For single-precision,
Ogata, Chen, and HI-FFT achieved up to 2.74, 2.96, and
4.43 times higher performance thanGPUCUFFT , respectively.
For double-precision, they also achieved up to 2.64, 2.44, and
4.38 times higher performance thanGPUCUFFT , respectively.
Fig. 4 and Fig. 5 compare the 2D-FFT computation

times of three heterogeneous algorithms, including two prior
works and our HI-FFT. On average, Chen showed 16%
and 2% higher performance than Ogata for single- and
double-precision cases, respectively. However, Chen requir-
ing large page-locked memory space failed to handle a large
2D-FFT problem that Ogata could process. In some cases,
especially for double-precision, Chen showed a comparable
or even worse (e.g., double-precision 60K 2) performance

FIGURE 5. This graph compares the performance of two prior
heterogeneous algorithms and ours for the double-precision case.

than Ogata. We found that Chen had a higher reliance
on the GPU than Ogata (Table 4). Therefore, the increase
in data transfer overhead for the large 2D-FFT problems
affected Chen’s processing performance more than Ogata’s
(Sec. V-B).

Our HI-FFT achieved the best performance for all the
cases, and it successfully processed large-scale 2D-FFT prob-
lems the prior two algorithms failed to handle. Compared
with Ogata, HI-FFT showed up to 2.27 and 1.93 times
(1.66 and 1.56 times on average) higher performance
for single- and double-precision cases, respectively. Also,
HI-FFT achieved up to 1.33 and 1.79 times (1.26 and
1.41 times on average) higher performance than Chen for
single- and double-precision cases, respectively.

We also found that HI-FFTCPU achieved a similar to or
even higher performance than two prior heterogeneous algo-
rithms for large-scale 2D-FFT problems (e.g., larger than
double-precision 60K 2 on Machine 1 and 2). The data com-
munication overhead increased as the problem size increased,
but the prior static workload distribution approach was hard
to correspond to such changes. Also, our in-place algorithm
has a lower workload for transposition tasks than the out-of-
place algorithms. As a result, HI-FFTCPU surpassed those
prior heterogeneous algorithms for large-scale 2D-FFT prob-
lems. On the other hand, HI-FFT robustly showed higher
performance thanHI-FFTCPU since our scheduling algorithm
dynamically controlled the workload between the CPU and
GPU slave workers (Sec. V-B).

VOLUME 9, 2021 120269



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

FIGURE 6. This figure shows the summation of the processing times for each task type and data copy for the three heterogeneous algorithms on three
machines. For this profile, we used a 60K2 complex matrix in single-precision.

B. PERFORMANCE ANALYSIS
To ascertain the factors that allowed the proposed approach
to achieve higher performance than the prior algorithms,
we measured each task’s total processing time in the three
heterogeneous algorithms, including ours. Fig. 6 has stacked
column charts that show the total time for processing each
task type on the three machines. For this profiling, we used
60K 2 complex matrices in the single-precision. Please note
that the times in the charts are the summation of the process-
ing times of all slave workers and on all the streams, while
some of them run concurrently at runtime.

For the CPU workloads, the total processing time for the
transposition task in our HI-FFT was 2.54 and 4.24 times
shorter on average than Ogata for single- and double-
precision cases, respectively. This result was possible because
the HI-FFT requires two times fewer operations for transpo-
sition tasks than Ogata. Also, our in-place algorithm has a
higher spatial locality, which leads to a higher cache hit ratio
than the out-of-place algorithms. SinceChen does not take the
transposition strategy [20], there is no transposition time on
the CPU. Instead, we found that Chen had greater overhead
for data copy than the other algorithms.

The common ground for all the methods is that data copy
was themost time-consuming job, which governed the GPU’s
utilization efficiency. Therefore, performance improvements
with Machine 2 over Machine 1 were not impressive for all
algorithms because their base system was the same, although
Machine 2 had a much more powerful GPU. Nonetheless,
on Machine 2, all of the algorithms using GPU showed better
performance. This is because the larger block increases the
efficiencies of both computations on GPU and data commu-
nication. Machine 2 used a larger block size than Machine 1,
depending on the device memory size.

Machine 3 supports PCIe 4.0 (32 GB/s), which supports up
to two times higher bandwidth than the PCIe 3.0 (16 GB/s)
on Machine 2. As shown in Fig. 6, the data transfer over-
head decreased on Machine 3 compared with Machine 2.
Consequently, all of the algorithms achieved much higher
performance on Machine 3 than on Machine 2. This phe-
nomenon stood out more for Ogata and Chen than HI-FFT,

TABLE 4. This table shows the ratio of TFFT (·)s processed by the GPU
slaver worker in three heterogeneous algorithms.

FIGURE 7. Images and distance from the hologram used in the
layer-based hologram process.

which means that the efficiency of those methods is affected
by the computing environment. On the other hand, our HI-
FFT stably brought out the best performance from the given
computing resources.

We found that our scheduling algorithm, which dynam-
ically controls the workload for available computing
resources, allowed HI-FFT to achieve stable and high per-
formance regardless of system configuration. Table 4 shows
the ratio of TFFT (·)s processed by the GPU in three differ-
ent heterogeneous algorithms for the single-precision 60K 2

complex matrix case. As we mentioned, we measured the
processing time for Ogata and Chen by changing the ratio
from 10% to 90% (in 10% increments) manually. Then,

120270 VOLUME 9, 2021



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

FIGURE 8. These images show numerical reconstruction results of the 80K2 hologram generated by applying our method. The first three images
(a, b, c) show the reconstruction results with a different focal point. The last two images (d, e) are the reconstruction results with different viewpoints.

TABLE 5. This table shows the processing times (seconds) for ASM,
applying off-axis, and other steps of the layer-based CGH. For this
analysis, we used Machine 2 and generated hologram consists of three
layers (Fig. 7). The bold font denotes the steps that include 2D-FFT
computation.

we reported the best one as their performances, and Table 4
shows the ratio. On the other hand, our scheduling algorithm
in HI-FFT does not require any empirical tuning or manual
control, and it dynamically determined the appropriated work
distribution at runtime depending on the processing status,
as shown in Table 4. One interesting example is that Machine
2 has a much more powerful GPU than Machine 1, but
HI-FFT distributed a little more TFFT (·)s to the GPU slave
worker on Machine 2 than Machine 1. This deviates from the
usual approach of allocating much more tasks to the GPU
when we have a much more powerful GPU. We found that
the different block sizes in Machine 1 and 2 changed the
processing efficiency for each task type on each device (e.g.,
better efficiency for transposition with larger block size).
Our dynamic scheduling algorithm coped with such organic
change suitably, and these results validate the robustness of
our approach.

C. APPLICATION TO COMPUTER GENERATED
HOLOGRAPHY
To verify the benefit of our HI-FFT in an actual application,
we applied three heterogeneous algorithms into the layer-
based CGH (Computer Generated Holography) [48]–[50].

The layer-based CGHprocess consists of seven steps: read-
ing image, random phase, Angular SpectrumMethod (ASM),

accumulation, applying off-axis, phase encoding, and saving
the resulting hologram. Among them, the ASM computation
includes 2D-FFT calculation two times for each layer, and
the off-axis computation requires calculating 2D-FFT two
times. These two steps are the most time consuming part of
the layer-based CGH. Fig. 7 shows the layers and configura-
tion used in our experiments. We generated 80K 2 and 60K 2

holograms in single- and double-precision, respectively, and
used Machine 2. Fig. 8 is numerical reconstruction of 80K 2

hologram generated with single-precision computation, and
it validates that our algorithm works accurately in the
application.

Table 5 shows the processing time of ASM, applying
off-axis, and other steps of layer-based CGH. We applied
three different 2D-FFT algorithms for ASM and apply-
ing off-axis steps. In the double-precision case, our
HI-FFT reduced the processing time of ASM by 18% and
28% compared with using Ogata and Chen, respectively.
Also, HI-FFT achieved 1.15 and 1.23 times higher perfor-
mances than Ogata and Chen, respectively, for applying off-
axis. For the single-precision case, HI-FFT achieved similar
performance improvement for ASM and applying off-axis
with the double-precision case. It needs to note that they also
include other computations like element-wise multiplication,
etc. As a result, our HI-FFT reduced hologram generation
time by 14% and 7% for 80K 2 in single-precision and 8%
and 13% for 60K 2 in double-precision, compared with using
Ogata and Chen, respectively. These results demonstrate the
usefulness of our approach in actual applications.

VI. CONCLUSION AND FUTURE WORK
We have presented a heterogeneous parallel in-place algo-
rithm, HI-FFT, for large-scale 2D-FFT. We first figured out
the memory and computational overhead in the out-of-place
computation and line-level work distribution approaches used
in prior parallel 2D-FFT algorithms. To solve these issues,
we proposed a novel work decomposition method, in which
the workspaces of the decomposed tasks are disjointed
from each other, and do not have duplicated operations.
Based on our work decomposition method, we introduced
an in-place parallel 2D-FFT algorithm that can handle up
to two times larger 2D-FFT problem compared with the

VOLUME 9, 2021 120271



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

out-of-place algorithms. Then, we extended it to use both
multi-core CPUs andGPU.We also proposed a priority-based
dynamic scheduling algorithm to maximize the utilization
efficiency of the computing resources. We found that our
scheduling algorithm achieved good performance stably for
a given computing machine without any empirical tuning
or manual control. We implemented our method on three
different heterogeneous computing systems and compared
the performance with five alternative methods based on prior
approaches for large-scale 2D-FFT problems. Overall, our
HI-FFT showed the best performance among all the algo-
rithms. Compared with the CPU-based and GPU-based par-
allel algorithms based on state-of-the-art libraries, HI-FFT
achieved up to 2.92 and 4.42 times higher performance. Also,
HI-FFT showed up to 2.27 times higher performance than the
prior heterogeneous algorithms while successfully handling
a large-scale 2D-FFT problem the prior approaches failed to
process.

With our in-place algorithm,we could handle amuch larger
2D-FFT problem than the prior out-of-place algorithms.
However, for a massive 2D-FFT problem whose input matrix
size exceeds the system memory size, it is hard to apply our
method. As future work, we plan to extend our method to
support out-of-core processing to efficiently handle massive-
scale 2D-FFT. From the perspective of processing perfor-
mance, copying data between host and device memories is
still the performance bottleneck of heterogeneous algorithms,
although we have PCIe 4.0. Therefore, we would like to
design an algorithm which minimizes data copy overhead for
2D-FFT computation on GPU.

REFERENCES
[1] A. V. Oppenheim, Discrete-Time Signal Processing. London, U.K.: Pear-

son, 1999.
[2] B. S. Reddy and B. N. Chatterji, ‘‘An FFT-based technique for translation,

rotation, and scale-invariant image registration,’’ IEEE Trans. Image Pro-
cess., vol. 5, no. 8, pp. 1266–1271, Aug. 1996.

[3] M. Mathieu, M. Henaff, and Y. LeCun, ‘‘Fast training of convolutional
networks through FFTs,’’ 2013, arXiv:1312.5851. [Online]. Available:
http://arxiv.org/abs/1312.5851

[4] P. Duhamel and M. Vetterli, ‘‘Fast Fourier transforms: A tutorial review
and a state of the art,’’ Signal Process., vol. 19, no. 4, pp. 259–299, 1990.

[5] J. W. Cooley and J. W. Tukey, ‘‘An algorithm for the machine calculation
of complex Fourier series,’’ Math. Comput., vol. 19, no. 90, pp. 297–301,
1965.

[6] Y. Zhang, F.-Z. He, N. Hou, and Y. M. Qiu, ‘‘Parallel ant colony optimiza-
tion on multi-core SIMD CPUs,’’ Future Gener. Comput. Syst., vol. 79,
pp. 473–487, May 2018.

[7] M. Frigo and S. G. Johnson, ‘‘FFTW: An adaptive software architecture
for the FFT,’’ in Proc. Int. Conf. Acoust., Speech, Signal Process., vol. 3.
May 1998, pp. 1381–1384.

[8] Intel. (2020). Intel R© Math Kernel Library. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-
library.html

[9] Y. Zhou, F. He, and Y. Qiu, ‘‘Dynamic strategy based parallel ant colony
optimization on GPUs for TSPs,’’ Sci. China Inf. Sci., vol. 60, no. 6,
Jun. 2017, Art. no. 068102.

[10] CUDA Runtime API :: CUDA Toolkit Documentation. Accessed:
Jul. 15, 2021. [Online]. Available: https://docs.nvidia.com/cuda/archive/
11.0/

[11] NVIDIA. CUFFT Libraries. Accessed: Jul. 15, 2020. [Online]. Available:
https://docs.nvidia.com/cuda/cufft/index.html

[12] S. Mittal and J. S. Vetter, ‘‘A survey of CPU-GPU heterogeneous comput-
ing techniques,’’ ACM Comput. Surv., vol. 47, no. 4, pp. 1–35, Jul. 2015.

[13] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and
O. O. Storaasli, ‘‘State-of-the-art in heterogeneous computing,’’ Sci. Pro-
gram., vol. 18, no. 1, pp. 1–33, Jan. 2010.

[14] D. Kim, J.-P. Heo, J. Huh, J. Kim, and S.-E. Yoon, ‘‘HPCCD: Hybrid
parallel continuous collision detection using CPUs and GPUs,’’ Comput.
Graph. Forum, vol. 28, no. 7, pp. 1791–1800, Oct. 2009.

[15] S. Hong, T. Oguntebi, and K. Olukotun, ‘‘Efficient parallel graph explo-
ration on multi-core CPU and GPU,’’ in Proc. Int. Conf. Parallel Archit.
Compilation Techn., Oct. 2011, pp. 78–88.

[16] D. Kim, J. Lee, J. Lee, I. Shin, J. Kim, and S.-E. Yoon, ‘‘Scheduling
in heterogeneous computing environments for proximity queries,’’ IEEE
Trans. Vis. Comput. Graphics, vol. 19, no. 9, pp. 1513–1525, Sep. 2013.

[17] N.Hou, F. He, Y. Zhou, andY. Chen, ‘‘An efficient GPU-based parallel tabu
search algorithm for hardware/software co-design,’’ Frontiers Comput.
Sci., vol. 14, no. 5, pp. 1–18, 2020.

[18] L. Gu, J. Siegel, and X. Li, ‘‘Using GPUs to compute large out-of-card
FFTs,’’ in Proc. Int. Conf. Supercomput. (ICS), 2011, pp. 255–264.

[19] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka, ‘‘An efficient, model-
based CPU-GPU heterogeneous FFT library,’’ in Proc. IEEE Int. Symp.
Parallel Distrib. Process., Apr. 2008, pp. 1–10.

[20] S. Chen and X. Li, ‘‘A hybrid GPU/CPU FFT library for large FFT
problems,’’ in Proc. IEEE 32nd Int. Perform. Comput. Commun. Conf.
(IPCCC), Dec. 2013, pp. 1–10.

[21] K. Underwood, K. Hemmert, and C. Ulmer, ‘‘Architectures and APIs:
Assessing requirements for delivering FPGA performance to applica-
tions,’’ in Proc. ACM/IEEE SC Conf. (SC), Nov. 2006, p. 111.

[22] A. Saeed, M. Elbably, G. Abdelfadeel, and M. Eladawy, ‘‘Efficient fpga
implementation of fft/ifft processor,’’ Int. J. circuits, Syst. Signal Process.,
vol. 3, no. 3, pp. 103–110, 2009.

[23] N. H. Nguyen, S. A. Khan, C.-H. Kim, and J.-M. Kim, ‘‘A high-
performance, resource-efficient, reconfigurable parallel-pipelined FFT
processor for FPGA platforms,’’ Microprocessors Microsyst., vol. 60,
pp. 96–106, Jul. 2018.

[24] A. Kumar, S. Gavel, and A. S. Raghuvanshi, ‘‘FPGA implementation of
radix-4-based two-dimensional FFT with and without pipelining using
efficient data reordering scheme,’’ in Nanoelectronics, Circuits and Com-
munication Systems. Singapore: Springer, 2021, pp. 613–623.

[25] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, ‘‘Cache-
oblivious algorithms,’’ ACM Trans. Algorithms, vol. 8, no. 1, pp. 1–22,
Jan. 2012.

[26] D. Pekurovsky, ‘‘P3DFFT: A framework for parallel computations of
Fourier transforms in three dimensions,’’ SIAM J. Sci. Comput., vol. 34,
no. 4, pp. C192–C209, Jan. 2012.

[27] M. Pippig, ‘‘PFFT: An extension of FFTW to massively parallel architec-
tures,’’ SIAM J. Sci. Comput., vol. 35, no. 3, pp. C213–C236, Jan. 2013.

[28] S. Khokhriakov, R. R. Manumachu, and A. Lastovetsky, ‘‘Performance
optimization of multithreaded 2D fast Fourier transform on multicore
processors using load imbalancing parallel computing method,’’ IEEE
Access, vol. 6, pp. 64202–64224, 2018.

[29] K. Moreland and E. Ange, ‘‘The FFT on a GPU,’’ in Proc. SIG-
GRAPH/Eurographics Workshop Graph. Hardw., 2003, pp. 112–119.

[30] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, ‘‘Brook for GPUs: Stream computing on graphics hardware,’’
in Proc. ACM SIGGRAPH Papers (SIGGRAPH), 2004, pp. 777–786.

[31] O. Fialka and M. Cadik, ‘‘FFT and convolution performance in image
filtering on GPU,’’ in Proc. 10th Int. Conf. Inf. Visualisation (IV), 2006,
pp. 609–614.

[32] Y. Chen, X. Cui, and H. Mei, ‘‘Large-scale FFT on GPU clusters,’’ in Proc.
24th ACM Int. Conf. Supercomput. (ICS), 2010, pp. 315–324.

[33] L. Gu, X. Li, and J. Siegel, ‘‘An empirically tuned 2D and 3D FFT library
on CUDA GPU,’’ in Proc. 24th ACM Int. Conf. Supercomputing (ICS),
2010, pp. 305–314.

[34] A. Gholami, J. Hill, D. Malhotra, and G. Biros, ‘‘AccFFT: A library
for distributed-memory FFT on CPU and GPU architectures,’’ 2015,
arXiv:1506.07933. [Online]. Available: http://arxiv.org/abs/1506.07933

[35] Z. Zhao and Y. Zhao, ‘‘The optimization of FFT algorithm based with par-
allel computing on GPU,’’ in Proc. IEEE 3rd Adv. Inf. Technol., Electron.
Autom. Control Conf. (IAEAC), Oct. 2018, pp. 2003–2007.

[36] J. Wu and J. Jaja, ‘‘High performance FFT based Poisson solver on a CPU-
GPU heterogeneous platform,’’ in Proc. IEEE 27th Int. Symp. Parallel
Distrib. Process., May 2013, pp. 115–125.

120272 VOLUME 9, 2021



H. Kang et al.: HI-FFT: Heterogeneous Parallel In-Place Algorithm for Large-Scale 2D-FFT

[37] V. H. Naik and C. S. Kusur, ‘‘Analysis of performance enhancement
on graphic processor based heterogeneous architecture: A CUDA and
MATLAB experiment,’’ in Proc. Nat. Conf. Parallel Comput. Technol.
(PARCOMPTECH), Feb. 2015, pp. 1–5.

[38] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, ‘‘A novel data-
partitioning algorithm for performance optimization of data-parallel appli-
cations on heterogeneous HPC platforms,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 10, pp. 2176–2190, Oct. 2018.

[39] D. Takahashi, Fast Fourier Transform Algorithms for Parallel Computers.
Springer, 2019.

[40] B. Van de Wiele, A. Vansteenkiste, B. Van Waeyenberge, L. Dupré, and
D. De Zutter, ‘‘Fast Fourier transforms for the evaluation of convolution
products: CPU versus GPU implementation,’’ Int. J. Numer. Model., Elec-
tron. Netw., Devices Fields, vol. 27, no. 3, pp. 495–504, May 2014.

[41] M. J. Quinn, Parallel Computing Theory and Practice. New York, NY,
USA: McGraw-Hill, 1994.

[42] U. Drepper, What Every Programmer Should Know About Memory,
vol. 11. Raleigh, NC, USA: Red Hat, Inc., 2007.

[43] J. Cheng,M. Grossman, and T.McKercher, Professional Cuda C Program-
ming. Hoboken, NJ, USA: Wiley, 2014.

[44] S. Asano, T. Maruyama, and Y. Yamaguchi, ‘‘Performance comparison
of FPGA, GPU and CPU in image processing,’’ in Proc. Int. Conf. Field
Program. Log. Appl., Aug. 2009, pp. 126–131.

[45] D.-K. Chen, H.-M. Su, and P.-C. Yew, ‘‘The impact of synchronization and
granularity on parallel systems,’’ ACM SIGARCH Comput. Archit. News,
vol. 18, no. 2SI, pp. 239–248, Jun. 1990.

[46] D. Lustig and M. Martonosi, ‘‘Reducing GPU offload latency via fine-
grained CPU-GPU synchronization,’’ in Proc. IEEE 19th Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2013, pp. 354–365.

[47] ARB. (2020). OpenMP. [Online]. Available: https://www.openmp.org/
[48] H. Zhang, L. Cao, and G. Jin, ‘‘Computer-generated hologram with occlu-

sion effect using layer-based processing,’’ Appl. Opt., vol. 56, no. 13,
p. F138, 2017.

[49] C. Slinger, C. Cameron, andM. Stanley, ‘‘Computer-generated holography
as a generic display technology,’’ Computer, vol. 38, no. 8, pp. 46–53,
Aug. 2005.

[50] Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, ‘‘Accurate calculation
of computer-generated holograms using angular-spectrum layer-oriented
method,’’ Opt. Exp., vol. 23, no. 20, 2015, Art. no. 25440.

HOMIN KANG is currently pursuing the M.S.
degree with the School of Computer Engineering,
Korea University of Technology and Education
(KOREATECH). His research interests include
heterogeneous parallel computing using CPU and
GPU, and GPGPU computing for matrix opera-
tion, including 2D-FFT and matrix multiplication.

JAEHONG LEE is currently pursuing the M.S.
degree with the School of Computer Engineer-
ing, Korea University of Technology and Edu-
cation (KOREATECH). His research interests
include high-performance computing and large-
scale computer-generated holography.

DUKSU KIM (Member, IEEE) received the B.S.
degree from Sungkyunkwan University, in 2008,
and the Ph.D. degree in computer science from
Korea Advanced Institute of Science and Technol-
ogy (KAIST), in 2014. He spent several years as
a Senior Researcher with KISTI National Super-
computing Center. He is currently an Assistant
Professor with the School of Computer Engi-
neering, Korea University of Technology and
Education (KOREATECH). His research interests

include designing heterogeneous parallel computing algorithms for various
applications, including proximity computation, scientific visualization, and
machine learning. He is a Young Professional Member of IEEE and a
Professional Member of ACM. Some of his work received the Distinguished
Paper Award at Pacific Graphics, in 2009, and an ACM Student Research
Competition Award, in 2009. He was selected as the Spotlight Paper for
the September Issue of IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER

GRAPHICS (TVCG), in 2013.

VOLUME 9, 2021 120273


