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ABSTRACT According to a previously built situation-awareness (SA) model based on attention allocation,
with the ACT-R (Adaptive Control of Thought, Rational) theory for analyzing pilot cognitive processes
for situation elements, an SA mathematical model was improved to predict pilot SA during exposure
to different display interfaces and missions. An indicator-display monitoring task was performed under
different experimental conditions for SA model verification, while the SA global assessment technique
(SAGAT), performance measures, 10-dimensional SA rating technique (10-D SART), and eye movement
measures were adopted to comprehensively assess the operator’s SA. The experimental results revealed that
theoretical prediction values calculated using the improved SA model were strongly correlated with the
operation performance, and thus confirming the model validation. The SAGAT was shown to be a more
effective method than SART in this research, and the overall SAGAT accuracy rate, as well as the accuracy
response time, are effective indices for SAmeasurement. Eye-movement indices, such as the fixation/saccade
ratio, which corresponds to the mode of information perception and extraction, was examined to be sensitive
to operator’s SA changes. The Advances of the improved SA model have been achieved in predicting and
indicating SA by using human behaviors, including operation performance, SAGAT response behaviors,
and visual behaviors. Thereby, it provides a new auxiliary tool for quantitative characterization of pilot’s SA
during cockpit interface design optimization and ergonomic evaluation.

INDEX TERMS ACT-R model, cockpit display interface, cognitive modeling, human–machine interaction,
situation awareness.

I. INTRODUCTION
The pilot–cockpit system is an example of a typical com-
plex human-in-the-loop system. With the development of
integrated information and intelligence in modern aircraft,
the information flow carried by the flight display and con-
trol system has become increasingly diverse and complex.
Whether for routine tasks or under special circumstances,
the pilot must perform dynamic and repetitive processes
of information perception, comprehensive judgment, and
decision-making. While performing these tasks, the pilot
must constantly maintain situation awareness (SA), which is
one of the most important abilities for ensuring flight safety.
Aviation accident investigations have indicated that 51.6%
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of fatal accidents and 35.1% of non-fatal accidents can be
attributed to the failure of decision-making. However, most
of these are not a result of decision errors but SA errors [1].
For example, SA may be lost because of a pilot’s overre-
liance on the automation system, which can cause an aircraft
with no mechanical faults to be piloted toward the ground,
resulting in the fatal occurrence of controlled flight into
terrain. SA reflects pilot cognitive status of various factors
and conditions that affect aircraft and crew members within
a specific situation and time period. Research has indicated
that at a higher pilot SA level, more rapid and effective
operation can be applied, which is more helpful to ensure
flight safety [2], [3].

Among the various SA definitions, Endsley’s informa-
tion process-based three-level model is the most popular.
This model describes SA as the perception of task-relevant
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elements in the environment (the first level of SA, SA1),
the comprehension of the meaning in relation to task goals
(the second level of SA, SA2), and the projection of the status
in the near future (the third level of SA, SA3) [4], [5]. The
SA process can be perceived as cumulative, implying that it
is difficult for pilots to cognitively reach SA3 before SA1 and
SA2 are achieved. Without good interface design, pilots may
stop or be interrupted during information acquisition before
they reach SA3 [6]. The defined three-level SA model is
important not only because it distinguishes different cognitive
processes but also owing to the suggestion that different
system designs and training modes are required for dealing
with problems caused by multiple SA levels. For example,
better alarm mechanism design may be needed when there
is a problem with SA1, and better preview display design is
more suited to address a problem with SA3. Nowadays, SA is
important index to assess design concepts and the technical
effectiveness of complex technology systems, which can pro-
vide valuable diagnostic data for interactive design [7]–[11].

In recent years, numerous studies have been conducted on
SA modeling and experimental measurement in the fields
of cognitive psychology and ergonomics [12]–[17]. Early
research mainly focused on the formation process analy-
sis of the SA cognitive mechanism and the establishment
of SA qualitative models. Accordingly, the development of
SA quantitative prediction models has become an impor-
tant engineering application target for research. Compared
with the qualitative model, the quantitative model driven
by theory can be used for quantitative analysis and calcu-
lation, providing SA prediction and ergonomics evaluation
functions [18]–[20]. For example, Entin et al. proposed the
performance sensitivity model, which suggested that SA
insufficiency leads to task performance deterioration, and the
total performance deterioration is related to the reduction in
the cognitive accuracy of each situation element (SE) [21].
Hooney et al. developed a man–machine integration design
and analysis human performance model for the improvement
of multi-operator SA prediction. This model computes SA as
a ratio of the actual SA (the number of SEs that are detected
or comprehended) to the optimal SA (the number of SEs that
are required or desired to complete the task). High-fidelity
flight simulation experiments under different task conditions
(aviate, separate, and navigate) were performed for validating
the model, and the results indicated that the pilot SA level is
sensitive to the display interface design [22]. Wickens et al.
proposed the attention-situation awareness (A-SA) model,
which can be divided into two modules. One governs the
allocation of attention to events and channels in the envi-
ronment (corresponding to SA1), and the second draws an
inference or understanding of the current (corresponding to
SA2) and future (corresponding to SA3) states of the aircraft
within this environment. The A-SA model emphasizes the
SA errors related to attention resource allocation. According
to a review of SA in flight accidents, there is a close rela-
tionship between SA errors and inadequate attention [23].
Additionally, Wickens et al. proposed the display formatting

and situation awareness model for predicting which type of
aviation display interface features are conducive to improv-
ing pilot SA. This model was validated against data from
a high-fidelity synthetic vision simulation, and an analysis
revealed that the prediction results were strongly correlated
with the multitask flight control performance, as well as the
traffic awareness response time and accuracy [24]. Adaptive
Control of Thought-Rational (ACT-R), which was originally
developed by Anderson, is a theory of human cognition
and performance as well as a framework for developing
computational models of human behavior [25]–[27]. For
example, Byrne et al. constructed an ACT-R-based computa-
tional model of a pilot–aircraft–visual scene–taxiway system,
which was used for the diagnosis of possible sources of
taxi-driver error. To evaluate the impact of Synthetic Vision
System technology on pilot performance in commercial avi-
ation, Byrne et al. also developed a pilot–vehicle–airport
model combined with ACT-R [28], [29]. By analyzing the
theories and research on ACT-R, the driver behavior model-
ing method in ACT-R was employed by Liu et al. to present
a highway overtaking behavior model as an example. Driver
behavior prediction andmodel verification both indicated that
driver behavior modeling is a flexible and effective method
for ensuring traffic safety [30].

Usually, SA models must be verified by combining task
scenario simulation and several measurement methods. In a
review of multiple SA measurement techniques, subjec-
tive measures (e.g., three-dimensional SA rating technique,
SA-subjective workload dominance, crew SA, SA supervi-
sory rating form), memory probe measures (e.g., SA global
assessment technique), performance measures (e.g., exter-
nal task performance measures, embedded task performance
measures), and physiological measures (e.g., eye-movement
tracking, electroencephalograms, event-related potentials,
brain mapping, heart rate, electrodermal activity) are all com-
monly applied [6], [31]–[34]. Using these SA measurements,
a large amount of valuable research has been conducted, e.g.,
comparing the advantages and disadvantages of various SA
measurements in different application environments, propos-
ing and testing methods for improving operator SA from
different perspectives, using SA as an index for display inter-
face or system design evaluation, and revealing the complex
relationships between SA and other factors such as the atten-
tion allocation, cognitive load, and automation level. For
example, Salmon et al. compared two different SA measures
(freeze probe recall approach and post-trial subjective rating
approach) during a military planning task, and the results
indicated that only the participant SA scores derived via the
freeze probe recall method produced a statistically signif-
icant correlation with the performance [4]. By employing
the widely used SA global assessment technique (SAGAT),
Endsley et al. investigated design methods for improving SA
in complex system, e.g., a display model with target orien-
tation, highlighting key features, and parallel processing of
multi-display models [35], [36]. Using a high-fidelity flight
simulator with a focus on the primary flight display (PFD),
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with its route guidance design, Wickens et al. studied the
effects of tunnel characteristics on the pilot route tracking
performance, mental workload, and SA (including traffic
and terrain awareness). Traffic awareness was measured by
observing the operator accuracy rate and the response time
for detecting aircraft symbols, and terrain awareness was
measured by asking the operator to point out important terrain
directions during the flight simulation freezing period [37].
Chudy et al. studied pilot’s simultaneous data management
ability under stress. The intuitive flight display was designed
for improving the pilot’s SA and decision-making processes,
and its effectiveness was tested via a subjective evaluation
based on a flight simulation experiment [38]. For studying
SA in the pilot-aircraft system, a human-in-the-loop exper-
iment in the flight simulation environment was performed
by Wei et al. to assess SA using the SAGAT method and
physiological measurement. Accordingly, participant SAwas
analyzed under different cockpit display interface designs [2].
To develop an event-based method for measuring air traffic
controller SA, Yang et al. simulated radar control scenar-
ios. SA data based on the event-based method and SART,
mental-workload ratings based on the air traffic workload
input technique and NASA-TLX, the number of flight con-
flicts, the actual task load, etc. were applied comprehensively
to investigate the sensitivity and validity of the event-based
SA assessment technique [39].

The aforementioned studies provide valuable reference
for SA modeling and measurement methods. However, most
of the previous research focused on proposing a relatively
independent concept model from the viewpoint of cognitive
psychology, and few of the models have been transformed
into their corresponding quantitative calculation models,
which limits their applicability in engineering. Additionally,
few studies have been performed on SA quantitative pre-
diction models—particularly those covering high-level SA
and those directed toward the evaluation and optimization
of the cockpit display interface design. In a previous study,
the forming process of pilot SA was analyzed in combination
with ACT-R cognitive theory, and an SA model covering
three levels was proposed on the basis of attention allocation.
The theoretical model was validated by several experimental
measurements [40], [41]. However, the experimental results
indicated that the SA prediction value from the theoreti-
cal model was not correlated with the operator behavior
performance. As high SA is usually necessary for good oper-
ation performance, SA should be partly predicted using the
operation performance [42]. In this regard, the previous SA
model was improved in the present study, and its correlation
with the operation performance of an indicator-monitoring
simulation task was analyzed to validate the improved model.
Furthermore, the changing trends of several typical evaluation
indices were investigated with variations in the SA level.

II. IMPROVED SA MODEL BASED ON ACT-R THEORY
Human performance modeling is useful for understanding
new systems and their effects on human task performance,

without resorting to the more expensive methods of human-
in-the-loop experiments or simulations [43]. In the present
study, the improved SA model was constructed on the basis
of the hierarchical analysis of an SA forming processes
combined with the ACT-R theory. FIGURE 1 shows the
relationship between the three levels of SA and the ACT-R
system [30].

In a certain operation environment, the situation related
to the current task can be divided into n parts labeled SEi.
Each SEi is necessary for supporting an operator task with
high performance. It is assumed that the operator’s attention
resource A shared by the n SEs is

A = (A1,A2, . . . ,Ai, . . . ,An). (1)

Generally, information is processed from top–down and
bottom–up channels simultaneously. The former is a type of
automatic search (or selective control of visual system), while
the latter is driven by visual features of SEi. The attention
recourse Ai allocated to a certain SEi can then be expressed
by (2) [44], [45]. βi indicates the operator expectation for
information, which can be manifested by SEi’s occurrence
frequency; Vi indicates SEi’s information value or the impor-
tance for accomplishing the current task; Sai indicates SEi’s
salience, which can be manifested by its visual coding; and
Ei indicates the operator effort paid for obtaining the infor-
mation. Considering the fuzziness and randomness of the
human cognitive processing mechanism, the Vi can be further
expressed as ∂iui, where ∂i represents the possibility of the
operator potential cognitive availability status for SEi, and ui
is the membership degree normalized into [0,1] based on the
cognitive evaluation of SEi’s priority [46]. Thus, the attention
allocation proportion fi of SEi can be calculated as ‘‘(3)’’:

Ai = βiViSaiE
−1
i (2)

fi = Ai

/
n∑
i=1

Ai. (3)

In the ACT-R system, the SEi of the environment is selec-
tively noticed by the visual module. Assuming that the event
of paying attention to SEi, which is defined as ai, occurs at the
current time, the preliminary cognitive processing of SEi is
performed. The occurrence probability of ai can be equivalent
to the SEi’s attention allocation proportion fi, as follows:

p(ai) = fi. (4)

When event ai occurs, declarative knowledge is extracted
from declarative memory by the buffers to activate the oper-
ator’s cognition, and the cognitive activation amount ACi can
be defined as the sum of the base-level activation amountAC0i
and the relevant activation amount

∑n
j WjSji. The base-level

activation amount reflects the general usefulness of SEi
according to operator’s past experience. If the fact of rec-
ognizing SEi has occurred t times previously, AC0i ≈ c +
0.5 ln t , where c is usually set as 0. The relevant activation
amount reflects the SEi’s relevance to the current context,
where Wj represents the attention weighting of SEi, which
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FIGURE 1. Relationship between SA levels and ACT-R system.

can be equivalent to fi, and Sji represents the association
intensity between the current SEi and the other relational SEj.
Additionally, Sji = S − ln(fanj), where fanj represents the
number of facts associated with SEj, and S is usually set as 2.
Only when the cognitive activation amount reaches a certain
threshold τ can the perception of SEi occur (corresponding to
SA1). The event of perception of SEi is denoted as bi. In (5),
s controls the noise at the activation level and is typically set
as 0.4, and τ is set as 1.0 [25], [46].

p(bi/ai) =
1

1+ e−(ACi−τ )/s
. (5)

According to ACT-R theory, the essence of the cognitive
process is the firing of a series of production rules. Mul-
tiple production rules can be applied for the ‘‘IF-THEN’’
pattern matching at any point in time, but for recognizing
SEi, only one production rule with the highest utility Ui can
be selected. After the procedural knowledge is successfully
extracted from the procedural memory and optimal pattern
matching is performed by the operator cognitive mechanism,
the significance of SEi can be fully comprehended, which
may correspond to SA2 or SA3. In dynamic systems, there
is fuzzy boundary between SA2 and SA3 because the under-
standing of the present usually has direct implications for the
future, and both are equally relevant for the task [23], [41].
If the event of SEi comprehension is denoted as ci, then

p(ci/biai) = eUi/θ
/

m∑
l

eUl/θ . (6)

According to the definition method of the operator cogni-
tive level Pi for a certain SEi [22], there are three situations:
the cognitive activation amount is lower than the threshold,
the SEi is not perceived, and Pi takes the value of 0; the
cognitive activation amount is higher than the threshold,
where the declarative knowledge is extracted successfully to
form perception, SA1 is achieved, and Pi takes the value
of 0.5; the production rule with the highest utility is matched
successfully to form comprehension of the current state or

future state, SA2 or SA3 is achieved, and Pi takes the value
of 1. See (7)–(9):

p(aibi) = p(ai)p(bi/ai) (7)

p(aibi) = p(ai)p(bi/ai) (8)

p(aibici) = p(ci/biai)p(bi/ai)p(ai). (9)

Therefore, the mathematical expectancy Pi of the cognitive
level for SEi can be calculated as follows [41]:

Pi = p(aibici)× 1+ p(aibi)× 0.5+ p(aibi)× 0. (10)

If the operator attempts to obtain and hold a relatively high
SA level, the cognitive levels for the critical SEs, which have
important impacts on the current task’s performance, should
be kept high. Simultaneously, the display attributes of the
SEs should contribute to the maintenance of operator SA.
Therefore, ei is used to represent SEi’s sensitivity coefficient,
and its value is related to not only the importance ui of SEi
but also the salient Sai of SEi. The relationship between the
operator’s whole SA level and the cognitive levels of SEs can
then be expressed as follows:

SA(tj) = e1p1 + e2p2+, . . . ,+enpn

=

n∑
i=1

(
eUi/θ
m∑
l
eUl/θ

+ 0.5)
Saiuifi

1+ e−(ACi−τ )/s
. (11)

The SA modeling in our study is focused on the forma-
tion process of SA1, SA2, and SA3 on the basis of ACT-R
theory. In addition, the SA prediction model is built based
on the quantitative representation of pilot’s cognition process
rather than simulation calculation. It is conducive to the
applicability of the model to flight scenarios, as the model
parameters are determined by referring to the literature focus-
ing on pilot cognition and behavior [25], [47]–[50]. However,
as the operator SA is affected by multiple factors, the pre-
diction results of our improved SA model cannot represent
the absolute-truth value; rather, they represent a value of
comparative significance.
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FIGURE 2. Interface simulation models.

III. EXPERIMENT METHOD
A. PARTICIPANTS
Twenty-eight highly trained, healthy participants (18 males,
10 females) were included in the present study, all from the
School of Aeronautic Science and Engineering in Beihang
University. All the subjects (aged from 22 to 28 years
with a mean age of 23.95 years) were right-handed and
possessed normal or corrected-to-normal vision. Written
informed consent was obtained from the participants before
the experiment.

B. INTERFACE SIMULATION MODEL DESIGN
The interface simulation models used in the experiment were
designed by referring to two typical interfaces for the PFD,
as shown in FIGURE 2. Information layout and color coding
differed in the two interface simulation models. GL Studio
was adopted as the development platform for graphical mod-
eling of the instruments and control panels, and the C++
programming language and network communication technol-
ogy were used to realize the virtual instrument simulation
programming. The experimental procedure was generated on
the Microsoft Visual Studio platform. The interface simula-
tion model was presented on a 17-inch IBM monitor with a
resolution of 1280 × 1024, and the average illumination in
the experiment environment was set as 600 lx.

C. EXPERIMENT DESIGN
A two-factor, completely within-subjects design was adopted
in the experiment. Factor 1 was the probability distribution
of indicators’ abnormal display, with two levels (level 1:
uniform probability distribution, UPD; level 2: non-uniform
probability distribution, NUPD) set by the frequency with
which SEs were questioned, and factor 2 was the interface
simulation model, with two levels (level 1: interface sim-
ulation model A; level 2: interface simulation model B).

An indicator-monitoring task was performed in the exper-
iment. The rolling angle (SE.1), indicated airspeed (SE.2),
barometric altitude (SE.3), and heading angle (SE.4) pre-
sented on the interface simulation model were set as the
monitoring targets, referring to the optimal and effective
numbers of targets for human attention allocation [40]. Each
participant was asked to perform four trials with different
combinations of the interface simulation model and proba-
bility distributions for indicators’ abnormal display. The task
orders were counterbalanced across the subjects according to
the Latin square design.

D. EXPERIMENT PROCEDURE
The SAGAT method was employed in the experiment. For
one trial, a total of 32 selection questions (with 4 options for
each question) covering three levels of SA were presented
randomly on a certain selected interface simulation model
according to the chosen probability distribution, so that the
participants’ cognitive status of all the indicators (SEs) under
different task conditions could be obtained. During a random
frozen time, only one question aiming at a certain indicator
was presented, and the participant responded by selecting
one option as soon as possible within the given time limit.
The overall accuracy rates for the three levels and the accu-
racy response time were chosen as the evaluation indices
for the SAGAT method. Additionally, combined with the
SAGAT method, the participants’ performance was recorded
simultaneously. Before the experiment, the participants were
required to be familiar with the relative importance of each
indicator manifested by their scores, which could be obtained
by answering the corresponding questions correctly, as well
as the probability distributions of indicators’ abnormal dis-
play, which was manifested by the probability of each
indicator being questioned. The participants were required
to monitor the interface simulation model on the screen
and to capture abnormal information as quickly as possible.
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TABLE 1. Results of improved SA model prediction and experimental measurements (mean ± sd).

During each trial, the screen was frozen randomly, and the
interface simulation model was immediately replaced by
SAGAT question interface on the screen. The question setting
of SAGAT was aimed at examining the participants’ capabil-
ity in flight information acquisition, flight status understand-
ing, and near future trends prediction, which corresponds to
the three levels of SA (SA1, SA2, and SA3). The participants
were asked to click on the correct one of the four options with
a mouse within a limited time, clicking on the wrong options
or timeout were recorded as an error. Afterwards, the screen
freeze was released and the experimental task continued with
the previous interface simulationmodel. All participants were
encouraged to obtain scores as high as possible by optimizing
their attention allocation strategies. No score was given for an
incorrect or missing answer, and the participants’ final total
scores were used for their performance evaluation. Imme-
diately after each trial, the participants were asked to rate
their SA using the 10D-SART (Situation Awareness Rating
Technique) self-rating scale [6]. The ratings on 10 individual
dimensions were then combined to form a rating for each
of the three major factors, including the demand of atten-
tion, supply of attention, and understanding of the situation.
To objectively record eye-tracking data, the Smart Eye Pro
noncontact eye tracker system was employed for real-time
tracking during the experiment. The calibration accuracies of
all the subjects were always better than 1◦, and the sampling
rate was 60 Hz.

IV. RESULTS
A. MODEL PREDICTION AND EXPERIMENTAL
MEASUREMENT RESULTS
The attribute values of ‘Effort’ and ‘Salience’ for the four
SEs displayed for the two types of interface simulation mod-
els were calculated. To be precise, the attribute values of
‘Effort’ were determined by the relative normalized distances
between the SEs, and the attribute values of ‘Salience’ for
each SE were determined by its color matching, indicator

size, and indicator type. Furthermore, the color-matching
value was set according to the legibility degree of the dis-
played characters, the indicator size value was set according
to the displayed areas occupied within the experiment inter-
face, and the indicator type value was set according to the
difficulty of reading and understanding the indicator [41].
The prediction results for SA calculated via the theoreti-
cal model as well as the statistical results for SA obtained
from different measuring methods under the four tasks are
presented in Table 1.

B. EXPERIMENTAL ANOVA RESULTS
An analysis of variance (ANOVA) was performed using IBM
SPSS 23.0 to investigate the effects of the two factors—
the probability distributions of indicators’ abnormal display
and the interface simulation model—on the participants’ SA,
operation performance, and eye movement. The level of sig-
nificance was set at α = 0.05, yet the significance level
lower than 0.1 was recorded asmarginally significance for the
consideration of the potential research value in the connection
between SA prediction model and operator’s cognition and
behavior. The ANOVA results are presented in Table 2.

The main effect of the interface simulation model on the
operation performancewas significant (F (1, 27)= 5.311, p=
0.029, η2 = 0.164), as indicated by the higher operation score
for interface B compared with interface A. The main effect
of the interface simulation model on the SAGAT accuracy
rates of level 1 (F (1, 27) = 3.309, p = 0.080, η2 = 0.109)
and level 3 (F (1, 27) = 3.050, p = 0.092, η2 = 0.102)
was marginally significant. The SAGAT accuracy rates of
the two levels in interface B were both higher than those in
interface A. In contrast, the main effects of the probability
distributions of the indicators’ abnormal display, rather than
the interface simulation model, on the understanding score
in the 10D-SART self-rating scale (F (1, 27) = 6.096, p =
0.020, η2 = 0.184) were significant. The understanding score
under the condition of NUPD was higher than that under
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TABLE 2. Main effects of experiment anova results.

TABLE 3. Correlations between improved SA model, performance, SAGAT and 10D-SART measurements.

TABLE 4. Correlations between improved SA model and eye movement measurements.

the condition of UPD. No other significant effects on the
operation performance or SA were observed.

Themain effects of the probability distributions of the indi-
cators’ abnormal display on the fixation duration (F (1, 27)=
4.243, p = 0.049, η2 = 0.136), blink duration (F (1, 27) =
4.603, p = 0.041, η2 = 0.146), and blink frequency (F (1,
27) = 4.933, p = 0.035, η2 = 0.154) were significant. The
fixation duration under the NUPD condition was lower than
that under the UPD condition, while both the blink duration
and the blink frequency under the NUPD condition were
higher than those under the UPD condition. The main effect
of the probability distributions of the indicators’ abnormal
display on the fixation/saccade ratio (F (1, 27) = 3.499, p =
0.072, η2 = 0.115) was also marginally significant, as indi-
cated by the lower fixation/saccade ratio under the NUPD
condition compared with the UPD condition. The main effect
of the interface simulation model on the mean saccade time
(F (1, 27) = 3.467, p = 0.074, η2 = 0.114) was marginally

significant, as indicated by the lower mean saccade time in
interface B compared with interface A. No other significant
effects on the eye movement were observed.

C. CORRELATION ANALYSIS AND MULTILINEAR
REGRESSION ANALYSIS RESULTS
To validate the improved SA prediction model based on
ACT-R theory, a correlation analysis between the results of
the improved SAmodel prediction and the experimental mea-
surement indices, as well as a multilinear regression analysis,
were performed, referring to the method of ‘‘modeling the
average pilot’’ [23], [24].

The following conclusions were drawn from the correla-
tion analysis, as shown in Tables 3 and 4. For performance
measurements, the improved SA model was highly and sig-
nificantly correlated with the operation score (|r| = 0.972,
p= 0.028). For the SAGAT measurements, the improved SA
model was highly and close to significantly correlated with
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FIGURE 3. Improved SA model prediction results and experimental measurement results under different experimental conditions.

FIGURE 4. Comparison of the previous and improved SA prediction models: correlation between predicted SA and experimental variables with significant
effects in the ANOVA.

the overall accuracy rate (level 1&2&3) (|r| = 0.943, p =
0.057) and accuracy response time (|r| = 0.922, p = 0.078).
The improved SA model was not correlated (|r| = 0.452, p=
0.548) with the evaluation score for the 10D-SART measure-
ments but was correlatedwith the dimension of understanding
(|r| = 0.234, p = 0.006). For the eye-movement measure-
ments, the improved SA model was highly and significantly
correlated with the fixation/saccade ratio (|r| = 0.955, p =
0.045). It also had high correlations with the pupil diameter
(|r| = 0.863, p = 0.137) and fixation frequency (|r| = 0.836,
p = 0.164), but the correlations did not reach significance.
As shown in FIGURE 3, the improved SA model prediction

results and experimental measurement results changed under
different experimental conditions.

To investigate the consistency between the model predic-
tion and the experimental measurement indices, we analyzed
the correlation among the experimental variables with signifi-
cant effects in the ANOVA, as well as the correlation between
the significant variables and the predicted SA in the previous
and improved models. The results are shown in FIGURE 4.
The operation score was correlated with the predicted SA
for the improved model but not for the previous model. The
dimension of understanding in 10D-SART was correlated
with the predicted SA for both the previous and improved
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models. The correlations among the operation score, under-
standing dimension of 10D-SART, and SAGAT accuracy of
level 3 (projection) were significant. The correlation between
the SAGAT accuracy of level 1 (perception) and the mean
saccade duration was negative, and the correlation between
the SAGAT accuracy of level 3 and the fixation/saccade ratio
was positive.

Compared with the previous SA model (adjusted R2
=

0.035), the results of the multilinear regression analysis indi-
cated a 14.3% increase in the interpretation rate (adjusted R2)
for the improved SAmodel (adjusted R2

= 0.040). The linear
regression equations of the previous and improved SAmodels
are as follows:

SAprevious model = 0.331+ 0.008 · Understanding (12)

SAimproved model = 0.326+ 0.008 · Understanding

+0.001 · Performance. (13)

V. DISCUSSIONS
An improved SA prediction model was proposed with the
ACT-R theory, based on the previous one. The model-
predicted SA was verified under different experimental con-
ditions by several SA evaluation measurements, including
SAGAT, operation performance, 10D-SART, and eye move-
ment measures. The predicted SA value in the improved
model has shown more adequate consistency and sensitivity
with performance behavior and visual behavior.

The SAGAT is a computerized freeze probe technique.
Typically, a simulation task is randomly frozen, all displays
are temporarily blanked out, and a series of questions about
the current situation at the time of freeze are administered.
The operators are required to answer the questions according
to their knowledge and judgment. Their situational views are
compared with the operational scenario, and an overall SA
score is calculated at the end [4]. The SAGAT method is
widely used to provide an objective and effective measure of
operator SA. In the present study, the SAGAT method was
adopted for the assessment of operator SA for different SEs
from three levels. As high correlations existed between the
theoretical prediction values and accuracy rate, as well as
the accuracy response time, according to the experimental
results, the improved SA model was validated. Although
the accuracy rate of the three levels in the SAGAT method
has always been the most widely used and effective index,
the accuracy response time is shorter than that used for
SA assessment in the previous studies. In the present study,
the accuracy response time was highly and negatively corre-
lated with the theoretical prediction value, probably because
the SA enhancement can improve the operator cognitive
processing speed, reducing the reaction time. Therefore, the
accuracy response time can be considered as a good indicator
of the SA’s changing trend.

There are many studies across different domains in which
a high SA has been shown to support good task performance
[51], [52]. For example, it is common for researcher to pro-
pose an interface alteration that would improve SA and test

it by determining whether the alteration improved the perfor-
mance [53]. The maintenance of a high SA usually indicates
successful operator attention resource allocation strategies
[54], which was manifested by the fact that higher scores
were obtained by operators in the research. According to the
analysis of the experimental results, the theoretical prediction
value based on the improved SA model was significantly
and positively correlated with the operator performance; thus,
the SA model in the present study was confirmed to be
optimized compared with the previous model [41].

The 10D-SART self-rating scale was employed in our
research to evaluate the operator ‘‘demand of attention,’’
‘‘supply of attention,’’ and ‘‘understanding of the situation’’
from 10 different dimensions. However, the experimental
results indicated that the correlation between the theoretical
prediction value and the evaluation score of the 10D-SART
self-rating scale was low, probably owing to the operator’s
inadequate understanding of the scale and memory decay
by post-trial form. Additionally, operators’ overestimation or
underestimation of their subjective feelings may affect the
final evaluation results [55], [56]. Notably, the significant
correlation between the operation score and the understand-
ing dimension of 10D-SART, as well as the operation score
and the SAGAT accuracy of level 3 (projection) implied the
positive effects of comprehension and projection capacity
(the two higher levels of SA) on behavioral performance.

In our research, seven eye-movement indices were adopted
for SA measurement: the pupil diameter, eyelid opening,
blink frequency, fixation frequency, mean fixation time, mean
saccade rate, and fixation saccade ratio. Among them, the
pupil diameter was highly and positively correlated with
SA’s theoretical prediction value. This is possibly because
when the experimental conditions changed, operators needed
to closely monitor the display interface and engage more
cognitive efforts (manifesting as the enlargement of pupil
diameter) to obtain more information resources [57], so that
they could enhance their comprehension and prediction of
the dynamically updated information flow, which enhanced
their SA accordingly. Additionally, the analysis of the exper-
imental results suggested that a high negative correlation
existed between the fixation frequency and the SA’s the-
oretical prediction value. With an increase in the fixation
frequency, the consumed time of information extraction per
unit time increased, which might indicate the operator’s low
efficiency in information processing and poor current cogni-
tive level, corresponding to the relatively low SA. Another
eye-movement index that was negatively and significantly
correlated with the SA’s theoretical prediction value in the
present study was the fixation/saccade ratio. The fixation/
saccade ratio is considered as the ratio of the time spent
processing (fixations) information to the time spent search-
ing (saccades) information [58]. Research has indicated that
expert pilots exhibit more frequent fixations (viewed as
the increment of saccade behaviors) with a shorter dwell
time (viewed as the decrement of fixation behaviors) than
novice pilots when performing flight simulation tasks [59].
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Therefore, a low fixation/saccade ratio may suggest a type of
high-efficiency information perception and extraction mode
for operators, which results in enhancements in their cogni-
tive states and SA. Unfortunately, the correlations between
the other four eye-movement indices (eyelid opening, fixation
frequency, mean fixation time, mean saccade rate) and the
SA’s theoretical prediction value were relatively low. These
complex relationships need to be further investigated in future
studies.

Compared with the previous SA prediction model [41],
the positive correlation coefficient between the predicted SA
value and the operation performance was significantly larger
for the improved model. This revealed that the human oper-
ation performance can be directly indicated by the predicted
SA value through the improved model, and vice versa. Sim-
ilarly, the response behaviors (accuracy rate and response
time) in the SAGAT were more closely correlated with the
predicted SA in the improved model than in the previous
model, confirming the progression of the improved model
in measuring the SA according to behaviors. Additionally,
the negative correlation between the predicted SA value and
the fixation/saccade ratio was far stronger for the improved
model than for the previous model, suggesting that the
more efficient mode of information perception and extraction
(decreased fixation and increased saccade) can be indicated
by higher level of the predicted SA value in the improved
model.

Summarily, the improved SA prediction model has
made progress in the SA being indicated by operator’s
behaviors, including the operation performance and infor-
mation processing. The enhanced consistency between the
model-predicted SA and the actual performance behavior
can contribute to the computability and interpretability of
the ACT-R model in analyzing operator’s cognition and
behavior. Additionally, the consideration of the three levels
of SA (i.e., perception, comprehension, and projection) is
beneficial for providing more feasible and targeted solutions
in aviation engineering (e.g., interface display design, task
flow design, and ergonomic evaluation). However, the present
study had several limitations. The participants adopted in our
experiment were not pilots but graduate students from an
aeronautical science and engineering department with expe-
rience in operating the simulated flight platform. Considering
the participants’ ability and experience, we derived simu-
lated flight scenarios from actual flight tasks, the flight task
characteristics were properly displayed and the operational
procedures were simplified. In addition, the SA prediction
model focused more on visual information while insuffi-
ciently considered auditory information and communication
among stakeholders, which may restrict the model’s utility
in naturalistic scenarios, such as air route management in air
traffic control. Therefore, the reliability and robustness of our
conclusion can be further improved by recruiting experienced
pilots, and the effects of various typical naturalistic scenarios
on the utility of the ACT-R model for predicting human
cognition and behavior will be considered in future research.

VI. CONCLUSION
We improved a previous three-level SA prediction model
based on ACT-R cognitive theory and achieved advances in
indicating SA by human behaviors, such as the operation
performance, SAGAT response behavior, and visual behav-
ior. The support of SA for operation performance can be
substantiated in the improved model in view of the variation
consistency of SA and performance; thus, the operation per-
formance can be an effective indicator for monitoring and
predicting SA through the improved model. The behavioral
measurements of SA can be validated by the strengthened
correlation between the SAGAT response behaviors and the
predicted SA in the improved model. Visual behaviors such
as the fixation/saccade ratio can also be an indicator for
predicting the SA in the improved model, according to the
verified correlation between the SA and the efficiency of the
information-processing mode in the improved model. Owing
to the substantiated consistency between the model-predicted
SA and the performance behavior, as well as the comprehen-
sive consideration of the three levels of SA, the improved SA
prediction model provides a new auxiliary tool for quanti-
tative characterization of pilot’s SA during cockpit display
design optimization and ergonomic evaluation.
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