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ABSTRACT Rapid expansion and the novel phenomenon of deep learning have manifested a variety of
proposals and concerns in the area of video description, particularly in the recent past. Automatic event
localization and textual alternatives generation for the complex and diverse visual data supplied in a video can
be articulated as video description, bridging the two leading realms of computer vision and natural language
processing. Several sequence-to-sequence algorithms are being proposed by splitting the task into two
segments, namely encoding, i.e., getting and learning the insights of the visual representations, and decoding,
i.e., transforming the learned representations to a sequence of words, one at a time. Implemented deep
learning approaches have gained a lot of recognition for the reason of their superior computing capabilities
and tremendous performance. However, the accomplishment of these algorithms strongly depends on the
nature, diversity, and amount of data they are trained, validated and tested on. Techniques applied on
insufficient and inadequate train/test data cannot deliver promising conclusions, consequently making it
complicated to evaluate the quality of generated results. This survey focuses explicitly on the benchmark
datasets, and evaluation metrics developed and deployed for video description tasks and their capabilities
and limitations. Finally, we concluded with the need for essential enhancements and encouraging research
directions on the topic.

INDEX TERMS Datasets, evaluation metrics, sequence to sequence, video description, video captioning,
vision to language, vision to text.

I. INTRODUCTION
The rapidly growing digital culture has fascinated peo-
ple to interact with thrilling multimedia data, i.e., images,
videos, voice notes, and texts everywhere. Video, the globally
renowned document type, is common everywhere at memo-
rable events, instructional purposes, evidence apprehension,
information exchange, business marketing. On average, there
are more cameras, i.e., CCTV, digital recorders, or phone
cameras, than the people on the face of the earth. According
to CISCO annual internet report, [1], ‘‘video will be 78% of
mobile data traffic by 2021’’. Visual data exploded to a drastic
degree within a couple of recent years. As most of the data on
the internet is visual data, robust algorithms are required to
deal with this data efficiently. Nevertheless, for the machines
to understand that visual data and automatically generate its
precise interpretation is a big challenge. More than 500 hours
of videos are uploaded to YouTube every minute [2] and
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while these numbers are staggering, watching all these videos
are almost impossible. 24/7 operating video-streaming and
sharing platforms are dealing effectively with the massive
number of videos indexing and retrieval. Although these sites
categorize videos based on their genre and duration, even
though, instead of the entire long-duration video, a precise
textual alternate will be more effective to serve the purpose
and save time.

Configuration of natural intelligence, a compendium of
general knowledge and prior life observations and experi-
ments have constituted human beings highbrowed enough to
presume and expound the plot of a scene or a tiny fragment
of it in a single glance but machines, no doubt, need to
acquire that astuteness for scene pertinent conception and
appropriate expression. Adequate understanding and learning
of visual data and then accurately describing it using a single
natural language sentence can be categorized as caption-
ing whereas multi-sentence or paragraph like captioning can
be termed description. The development of video descrip-
tion has attracted substantial attention from researchers in
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the inter-disciplinary field of computer vision exploring the
diverse areas of physics, biology, psychology for optics
understanding, image formation, visual information process-
ing, and natural language processing for automatic caption
generation.

The irrefutable benefits and real-time applications of video
description have drawn considerable attention from experts
and motivated them further to develop more technologi-
cally sound systems for the purpose. These applications
include human-robot collaboration, efficient content search
and retrieval, video surveillance, combined with speech can
describe the graphical content to the visually impaired, auto-
matic video subtitling, conversion of sign language videos
into natural language, procedure generation for instructional
videos, and autonomous vehicles. After meticulous research
on video tagging and image captioning, the field of video
description is in focus since the recent past. Continuous,
thorough exploration of the field is improving the quality of
generated captions day by day.

The research in captioning is gradually making progress
in getting closer to human annotations and generating cap-
tions as analogous as possible to the human description.
However, there are a few challenges faced while automat-
ically describing a video using natural language sentences.
One major challenge faced is the semantic gap or the visual
ambiguity present in the supplied visual data. Identifica-
tion of visual contents along with their spatial, temporal
relationship, and interconnections is sometimes challenging
because of the hard in capturing and expressing visual details.
For humans, straightforward to interpret visuals, scenes,
or gestures becomes tricky and challenging for the algorithm
to comprehend. Objects and action detection mechanisms
establish the basis of captioning systems. However, these
mechanisms not contemplating audio and motion multimodal
responses lack in expressing the diverse and complex scenes.
Likewise, some visuals can only be interpreted accurately
when there is an injection of general knowledge into the sys-
tem for scene awareness. The perfect assessment of concise,
efficient, and diverse caption generation plays an essential
role in further enhancement and improvement. Most of the
evaluation metrics used for the assessment and valuation are
not task-specific and cannot guarantee success. Similar is the
case with benchmark datasets. No task-specific standardized
datasets exist for the assessment of algorithms, particularly
concerning dense video captioning.

A. CLASSICAL APPROACH
Video description journey of evolution pioneered by the clas-
sical methods, based on SVO (Subject, verb, object) used
to describe a visual [3]–[6], [7]. It is a two-stage pipeline
where after identification of the subject, verb, and object in a
series of frames, plugging in a pre-defined standard template
is performed. Following vast exploration, the major limita-
tion of classical methods is their dependence on fixed pre-
defined templates, which cannot generate semantically rich
natural language sentences, hence not analogous to human

FIGURE 1. Hierarchical Structure of a Video.

annotations. Another limitation is the requirement of a set of
objects and actions for recognition because of individual clas-
sifier training for identification. Furthermore, these methods
can be considered useful in the scenarios where the video clip
is short, or the number of objects or actions in that clip is
limited, but not otherwise.

The temporal structure of the video is intrinsically lay-
ered [8]. The hierarchical structure of video comprises of the
scene, shot, and frames, increasing in granularity, decreasing
in semantics from top to bottom [9]. A single frame is the least
logical unit of the video and represents a static image. The
collection of such frames representing a solo camera motion
shape a shot, and multiple consistent and coherent shots con-
tributing to thematching concept or site produce a scene. This
assortment of scenes constitutes a video, as shown in Figure 1.
Segmentation of videos into scenes, shots, and frames facil-
itates efficient searching and indexing. Keyframe selection
also contributes towards the reduction of computational cost
and effective processing for summarization or description
purposes. Different mechanisms to select a keyframe are
available in the literature, like every fifth frame or every 16th
frame or shot boundary detection mechanism. It significantly
reduces the redundant frames to lower the computational cost
but ensuring that none of the critical information is lost.

B. IMAGE CAPTIONING VS VIDEO CAPTIONING
Initial research on captioning used metadata for tagging [10].
Video tags are generally the names of items, actions, or activ-
ities in the video, which are the video’s significantly con-
siderable entities or events. The systems based on tem-
plates and probabilistic graphical models following the SVO
approachwere developed in the past to generate captions [11].
Image captioning extended the tagging process by adding
a spatial relationship between the objects with the help
of natural language modeling. The crucial challenge faced
during caption generation is the semantic gap [11]. The
exciting part of video captioning is to add information on
the temporal relationship of the objects, actions, or events
detected in the video and their temporal order while gener-
ating the captions. So, the difference to mention is, for image
captioning, only spatial relationship is required, whereas,
for videos to be described appropriately, spatial-temporal
relationship [12], as well as temporal order, is mandatory for
adequate description. High temporal dependencies, complex
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FIGURE 2. System Model for Video Description (Video frames and
reference captions taken from MSVD dataset).

nature of the video, and diverse objects, scenes, actions, and
inter-connectivity make it very difficult to accurately caption
a video. However, recent deep-learning-based approaches
and techniques for image captioning [13]–[21] and video
captioning [22]–[29], [30]–[33] are noticeably pushing for-
ward the research in this field.

Encouraged by the accomplishment of image caption-
ing and machine translation tasks, the video captioning
approaches primarily employ encoder-decoder architecture.
The encoder-decoder framework is a neural network design
configuration. The architecture is partition into two compo-
nents, namely the encoder and the decoder. It has proven
to be a cutting-edge machine translation technology. The
research community around the globe has employed the mod-
ern approach to solving sophisticated tasks, i.e., image cap-
tioning, video description, text and video summarization [34],
and visual question answering system/ conversational mod-
eling, learning to execute, and movement classification. The
encoder or visual model encodes a video by extracting visual
information and generating a fixed dimension feature vector
or context/ thought vector for use by the decoder or language
model. The decoder processes the encoder-generated context
vector for caption generation and generates one word at a
time. Convolution neural networks (CNNs), recurrent neural
networks (RNNs) and their variants, long short term memory
(LSTM), gated recurrent unit (GRU) are used as visual and
language models. In recent literature, various strategies are
investigated for the quality enhancement and optimization of
generated captions, including attention mechanism incorpo-
ration, hierarchical approaches, multimodal techniques, rein-
forcement learning integration, and transformer mechanism.
Employment of these techniques boosted the performance
of captioning systems, but the desire to get a human-like
precise and accurate captioning for a supplied video is still
intensively under consideration.

C. DENSE VIDEO CAPTIONING
Automatic event localization and textual alternatives gener-
ation for the complex and diverse visual data supplied in a
video can be articulated as dense video captioning or video
description. Dense video captioning is similar to dense image
captioning [35] which localizes regions in image space and
then describes those localized regions using natural language.

For long videos description [36], proposal-module identifies
long and short events based on the extracted features. Then
each proposal consisting of unique start and end time accom-
panied by a hidden representation is fed to a language model
for caption generation for each event leveraging context from
neighboring events. The multi-scale event detection approach
is used to overcome the limitation of overlapping events
occurring in a video and introduced context utilization for
related events caption generation.

D. VIDEO TO VIDEO SUMMARIZATION
In the current world, the role of multimedia for informa-
tion exchange is beyond doubt. Videos are considered the
best way to convey information, but storage requirements
and time consumption for specific content retrieval make it
inconvenient in certain circumstances. As a solution, the auto-
matic video to video summarization technique produces a
condensed version of a full-length video stream by extract-
ing the most important content. Since the automatic min-
ing of video semantic contents is complex, video metadata
is mainly considered for content description and summary
generation. [37] explored duplicate frame removal and stro-
boscopic imaging for generalized video summarization. Spe-
cific to user diverse preferences and expectations, [38], [39]
proposed personalized summarization exploring incapability
of inefficient generalized technique for resolving the specific
individual requirements. Likewise, [40] also evaluated the
degree of importance based on user behavior to carry out
summarization reflecting the diversity of user choices and
interests. Real-time [40] or live videos quick and instanta-
neous summarization is also explored by analyzing intrinsic
video data and corresponding extrinsic metadata of the video
stream. Sports videos highlight generation from a sports TV
broadcast is also studied.

In this paper, a detailed exploration of benchmark datasets
and evaluation metrics for assessing open-domain video
description tasks is carried out. Benchmark datasets with their
key attributes and train/ validation/ test split are presented,
supporting their technical worth from the literature by qual-
itative & quantitative comparison among different models
proposed with time. Evaluation metrics used to examine the
quality of generated captions and their domain, computation
concept, and limitation are investigated in detail. Finally,
we identified future research directions for further improve-
ment in the video description system.

1) PROBLEM STATEMENT-VIDEO DESCRIPTION
Suppose for a given video V , such that V = {v1, v2, . . . .vN },
with N frames or clips, a textual description comprising of
automatically generated natural language sentence S where
S = {w1,w2, . . . .wn} consisting of n words, is required. Fur-
ther, for dense or paragraph description, we need to generate
a paragraph P, collection of temporally localized sentences,
such that P = {S1, S2, . . . ..ST } comprising of T sentences
and each sentence stamped with its start and end time.
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This paper is organized as follows: Section II pro-
vides a brief overview of the available literature on
the topic, Section-III explores the benchmark datasets
available for video description followed by Section-IV
presenting critical analysis regarding these benchmark
datasets. Section-V discusses in detail the metrics used for
the evaluation of the video description system accompanied
by Section-VI investigating the limitations, reliability, and
improvements in the available metrics for appropriate evalua-
tion. Section-VII elaborates the establishment of cross-modal
models,i.e., visual and language, employing pre-training
techniques for performance enhancement and Section-VIII
compares the quantitative as well as the qualitative bench-
mark results, and at the end, the survey is concluded in
Section-IX with few future directions.

II. LITERATURE REVIEW
Intensifying technological demands for automatic visual
details understanding and content summarization has moti-
vated the researchers to accomplish such capabilities bet-
ter. The promotion and efficiency of neural networks have
fashioned foremost advancements in accurately describing
videos/ images and has drawn increasing attention, so become
one of the hot research topics in the AI community around the
globe. The available literature explores many aspects of the
systems designed for the purpose. A majority of the available
surveys [41]–[43] report the diverse aspects, along with their
achievements and limitations. In the survey [28], the authors
argued the visual to text transformation techniques targeting
traditional/ classical natural language generation models as
well as deep learning-based techniques for both image and
video description. Considering classification and detection
as necessary steps for action recognition, complex human
action recognition and appropriate textual replacement are
still challenging. The survey focuses on the challenges of
fine-grained natural description, Intermediate representation
learning, recounting of visual content, along with benchmark
datasets and evaluation metrics. Authors presented natural
language generation methods with recent advancements in
image and video captioning. In survey [8], [44], and [45]
authors explored the methodologies, datasets and evaluation
metrics up to a certain extent.

Survey [11] aims at addressing the issues associated with
caption generation, i.e., semantic supervision, mitigation of
objective mismatch, dense captioning for jointly describing
multiple events in a video, and their localization similarly
in [41], the authors emphasized the algorithmic essence of
different attention mechanisms and their application on the
image captioning deep learning models available in the lit-
erature along with standard datasets and metrics requirement
for the evaluation of the model.

III. DATASETS
Describing video is a much more challenging and computa-
tionally expensive task as compared to that image captioning.
Proper understanding and precise interpretation of temporal

FIGURE 3. Example video frames and captions from MSVD dataset.

relationships along with temporal order are accommodated
while describing videos. A repository of video clips with its
corresponding single or multiple annotation or description is
referred to as a dataset that can work as a base for training,
validating, and testing proposed models. Domain-specific
datasets belong to the cooking, movies, social-media, wild,
and human-action domains. Whereas open-domain datasets
deal with a wide variety of videos, i.e., music, people, gam-
ing, sports, news, education, vehicles, beauty, advertisement.
Table-1 lists down a brief overview of the key attributes of
these datasets and table-2 shows the training/validation/test
splits of these datasets. Widespread benchmark datasets
employed in recent research for video descriptions are elab-
orated as follows.

A. MSVD (MICROSOFT VIDEO DESCRIPTION)
MSVD dataset [46] is one of the earlier available and fre-
quently used corpora by the research community around the
globe. It is a collection of 1970 YouTube video clips provided
with human annotations. The collection of these clips was
carried out by requesting AMT (Amazon Mechanical Turk)
workers. They were guided to pick short snippets depicting
single activity and mute the audio. Each video clip duration is
10 to 25 seconds on average. Afterward, these snippets were
labeled with multi-lingual, mono-sentence captions provided
by the annotators. On average, it took annotators 80 seconds
to complete the task, including the time required to watch
the video. Precisely, there exist approximately 40 English
descriptions per video snippet. Dataset has an incredible
vocabulary of 16k exclusive words with eight words per sen-
tence on average. Frequently used slices of the dataset for
training, validation, and testing are 1200, 100, and 670 video
clips, respectively. Some illustrative sample snippets from
MSVD dataset with their available description is shown
in Figure-3.

B. MSR-VTT (MICROSOFT RESEARCH-VIDEO TO TEXT)
MSR-VTT dataset [57] is an open domain, large scale bench-
mark with 20 broad categories and diverse video content
for bridging vision and language. It comprises 10,000 clips
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TABLE 1. Benchmark Datasets.

which are originated from 7180 videos. Being open-domain
includes video from categories like music, people, gaming,
sports, news, education, vehicles, beauty, and advertisement.
The duration of each clip, on average, is 10 to 30 sec-
onds resulting in a total duration of 41.2 hours. To pro-
vide good semantics of a clip, 1327 AMT workers were
engaged to annotate each clip with 20 natural sentences.
There are 200K clip-sentence pairs with 1.8M total words
and 29316 distinctive words. Data split in [57] suggests 65%
(6513 videos) for training, 5% (497 videos) for validation and
30% (2990 videos) for testing purposes. Figure-4 represents
an example video with provided reference caption from the
MSR-VTT dataset.

C. VTW (VIDEO TITLES IN THE WILD)
VTW dataset [58] comprises 18100 automatically crawled
user-generated videos (UGVs) and titles. The average dura-
tion of each video clip is 90 seconds, and a single description
is provided for every clip. In order to encourage the gen-
eration of diverse captions and learn sentence structure for
title generation, the sentence augmentation method is intro-
duced, which describes information not presented through the
video’s visual content. The dataset also provides additional
description sentences with comprehensive information about
each video, along with the title generation.

D. ActivityNet-CAPTIONS
ActivityNet-Captions [36] is dataset specific to dense cap-
tioning events. It covers a wide range of categories.

It comprises 20k videos taken from the activity net, centered
around human activities with a total duration of 849 hours
and 100k descriptions. The 112 AMT workers annotated
the videos. Overlapping events occurring in the video are
catered, and each description uniquely describes a dedicated
segment of the video, so describe events that span over time.
On average, each description is made up of 13.48 words
and approximately covers 36 seconds of the video. Tempo-
rally localized descriptions are used to annotate each video.
On average, each video is annotated with 3.65 sentences and
40 words. Event detection is demonstrated in small clips as
well as in long video sequences.

E. MP-II (MAX PLANK INSTITUTE FOR INFORMATICS)
MP-II Cooking dataset [47] distinguishes 65 fine-grained
cooking activities with low inter-class and high intra-class
variability, continuously recorded in a realistic setting by
12 participants preparing 14 different dishes. Activities such
as pour, spice, cut slices are included. Forty-four videos are
recorded with a total length of more than eight hours, and
the average duration per clip is approximately 600 seconds.
Activities annotation was performed by six persons resulting
in 5609 annotations for all 65 activity categories.

F. YouCook
YouCook, the dataset [48] comprises 88 YouTube cook-
ing videos, evenly split into six different cooking styles.
All videos are from a third-person camera view, as shown
in Figure-7, whereas MP-II cooking dataset videos are

VOLUME 9, 2021 121669



M. Rafiq et al.: Video Description: Datasets & Evaluation Metrics

FIGURE 4. Example video frames and captions from MSR-VTT dataset.

recorded with the fixed camera installed on the ceiling of
the kitchen. The 31% objects of the YouCook dataset belong
to the utensils category, 38% to bowls, remaining to food,
and others. AMT annotated each video with at least three
sentences with a minimum of 15 words per annotation. The
average number of words per description is 67. On average,
there are ten words per sentence, including stop words. The
average number of descriptions per video is eight. Data split
is 49 videos for training and 39 videos for test purposes,
respectively.

G. YouCook II
YouCook II, [51] the dataset comprises of 2k YouTube videos
that are almost uniformly distributed over 89 recipes from
major cuisines of Africa, America, Asia, and Europe, having
a wide variety of cooking styles, ingredients, recipes, and
utensils. Each video in the dataset contains 3 to 16 temporally
localized segments. These segments are annotated in English.
There are 7.7 segments per video on average. The duration
of each video is 5.27 minutes, with 175.6 hours of dataset
length. Segments length falls between 1 to 264 seconds.
About 2600words are used while describing the recipes. Data
split is 67% videos for training, 23% for validation, and 10%
for testing purposes.

H. TACoS (TEXTUALLY ANNOTATED COOKING SCENES)
TACoS [49] It is a dataset derived from MP-II Cooking
Composite Activities dataset [63]. Videos recording setup
and annotation procedures are the same as the MP-II cooking
dataset [47]. Videos are ranging from 1 minute to 23 min-
utes, with an average length of 4.5 minutes per video.
TACoS dataset is created by filtering through MSR-VTT
dataset [57]. It contains 127 videos with 26 fine-grained
cooking-related activities. AMT workers provided the align-
ment of videos with their corresponding sentences. Twenty

diverse textual descriptions were collected for each video.
A total of 146771 words are used, forming 11796 sentences.
Start and stop timestamps are used to align the description of
the activities.

I. TACoS-MultiLevel
TACoS-MultiLevel [50] provides a description in a coherent
way and at a varying level of detail. Text descriptions of
the videos in the TACoS corpus were collected via AMT
worker. Workers were guided to describe the video in detail
with at most 15 sentences, describe the video in short with
3 to 5 sentences, and describe the video in a single sen-
tence. Dataset has about 20 triples of descriptions for each
video.

J. MPII-MD (MAX PLANK INSTITUTE FOR INFORMATICS -
MOVIE DESCRIPTION)
MPII-MD dataset [52] is a recent collection of transcribed
Audio Descriptions (ADs) consisting of 68K sentences and
video clips from 94 HD Hollywood movies. Further, these
movies are divided into 68337 video clips. On average, each
clip is of 3.9 seconds duration, and the total duration is
almost 73.6 hours. The total vocabulary size is 6,53,467,
with 68,375 sentences, almost one sentence for each clip
(68,337 clips and 68,375 sentences). While setting up the
audio and video content configuration, every sentence was
manually aligned with the corresponding video clip. In order
to help visually impaired persons, the audio description track
is utilized for the description of the visual contents. Data
split for training, validation, and testing are 56,861 videos,
4,930 videos, and 6,584 videos, respectively.

K. M-VAD (MONTREAL VIDEO ANNOTATION DATASET)
M-VAD [53] comprises of about 49K video snippets
extracted from 92 different genre movies. It is based on
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FIGURE 5. Example video frames and captions (English + Chinese) from VATEX dataset.

Descriptive Video Service (DVS) encoded DVDs. Its narra-
tions are an appealing source of data for the video-sentence
large paired dataset. The average duration of each video
clip is 6.2 seconds, with a total duration of 84.6 hours.
A total of 55,904 sentences are provided for 49k video
snippets, in which some videos have more than one
sentence. Data split for training, validation, and test-
ing are 38,949 videos, 4,888 videos, and 5,149 videos,
respectively.

L. ActivityNet ENTITIES (ANet-ENTITIES)
ActivityNet Entities, The large scale ActivityNet-Captions
[36] dataset comprises of 20k videos from ActivityNet [64]
but lacks grounding annotations; therefore, bounding box
annotations are created at the entity level. 15k videos with
158k bounding box annotations from the ANet-Entities
dataset. The description is accompanied by grounding and
region attention. Dataset evaluates how well the generated
captions are grounded. 15k videos are distributed as 10k
videos for training, 2.5k videos for validation and testing
each. Description quality and grounding accuracy are key
characteristics of this dataset.

M. VideoStory
VideoStory [55] it is a collection of videos posted publicly
on social media with diverse topics, variable lengths, high
quality, and multiple viewpoints. In total, the dataset consists
of 20k videos with a duration ranging from 20 to 180 seconds
and provides a paragraph or multi-sentence description. Each
sentence in the paragraph is aligned with the timestamps
in the video. Each paragraph has 4.67 temporally localized
sentences on average. Dataset has a total of 26,245 para-
graphs with 123k sentences. On average, each sentence has
13.32 words. Each video has an average paragraph length
of 62.23 words. Each sentence is aligned to a clip of an aver-
age of 18.33 seconds, covering 26.04% of the full video on
average. Simultaneous or co-occurring events cause 22% of
temporal description overlap. Data split is 17,098 videos for
training, 999 videos for validation, 1,011 videos for testing,
and 1,039 videos for blind-test, respectively.

N. CHARADES: COLLECTION OF CASUAL DAILY ACTIVITIES
Charades, known as Hollywood in Homes approach [56],
comprising of 9848 annotated videos recorded in 15 differ-
ent indoor scenes with an average duration of 30 seconds
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TABLE 2. Training, Validation and Test Split Size of Benchmark Datasets.

for each video. A total of 267 people from 3 continents
contributed to the creation of this dataset. Charades pro-
vides 27,847 video descriptions, 66,500 temporally local-
ized intervals for 157 action classes and 41,104 labels for
46 object classes. Data split is 7,985 videos for training and
1,863 videos for testing purposes.

O. VATEX (VIDEO AND TEXT)
VATEX [59] is a multilingual, large, complex, and diverse
dataset for video description. It contains over 41,269 unique
videos covering 600 human activities reused from a
widely used benchmark for action classification dataset,
kinetic-600 [65]. Kinetic 600 consists of 600 human activ-
ities comprising of 500k video clips. The average length
of each clip is around 10 seconds, taken from a unique
video. There exist 10 English and 10 Chinese captions with
at least ten words for English and 15 words for Chinese
caption for every clip in the dataset. VATEX comprises 413k
English and 413k Chinese captions with 41.3k unique videos
from diverse 600 human activities. A 2,159 qualified AMT
English-speaking workers annotated 4,12,690 valid English
captions. 450 Chinese workers write 4,12,690 valid Chinese
captions. Chinese descriptions for each video clip are divided
into two parts; half of the descriptions directly describing the
video content while the other half is the paired translation
(translation done through Google, Microsoft, self-developed
translation system) of English description of the same clip.
Since half of the Chinese captions are paired translations of

FIGURE 6. Samples generation on the FFVD test dataset [60].

the English captions, the total translation pairs are 2,06,345.
The Figure-5 expresses the concept.

P. BFVD & FFVD (BUYER-GENERATED FASHION VIDEO
DATASET & FAN-GENERATED FASHION VIDEO DATASET)
BFVD& FFVD, Large scale product-oriented video caption-
ing datasets proposed by POET [60], for video captioning
in the field of e-commerce. The videos having page views
over 1,00,000 and a click-through rate of more than 5%
are collected from mobile Taobao (a Chinese shopping web-
site) and labeled as either buyer or fan-generated. There are
43,166 videos of 140.4 hours duration and 32,763 videos
of 252.2 hours in BFVD and FFVD. A considerable number
of unique words in the datasets make it among the largest
datasets for the task. Figure 6 represents the POET’s [60]
sample generation on FFVD test dataset in comparison to
AA-Transformer [60] and AA-Recnet [60] models.

Q. ViTT (VIDEO TIMELINE TAGS)
Aiming to fix the uniformly distributed nature of YouCook
II videos, the Video Timeline Tags (ViTT) dataset [61] is
introduced by sampling instructional videos, particularlywith
cooking/ recipe labels from YouTube-8M [66] dataset. The
Dataset contains 8,169 videos, of which 3,381 are related
to the cooking domain. On average, there are 7.1 segments
per video. 20% of captions are single-word, 22% are double-
word, and 25% are three-words. There are 56,027 unique tags
with a vocabulary size of 12,509 token types over 88,455 seg-
ments. After video identification, timeline annotations and
descriptive tags are collected. Each step of the instructional
video was identified by the annotators and assigned a descrip-
tive yet concise tag.
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TABLE 3. TVC [62] dataset split details.

R. TVC (TV SHOW CAPTION)
TV Show Caption dataset [62] is a multimodal captioning
dataset with 262K captions created by extending the TVR
(TV show Retrieval) dataset by storing additional descrip-
tions for every single annotated video clip or moment. Similar
to the TVR dataset, the TVC task involves utilizing both
video and subtitles for required information collection and
appropriate descriptions generation. The TVC contains 108K
video clips paired with 262K descriptions, and on average,
there exist two to four descriptions per video clip. Since
TVC is created on top of the TVR, it relates in many ways
with the TVR, like a variety of actions and people in a
single description, language range and diversity, and intense
inter-human connections and interactions. The human anno-
tators were engaged in writing descriptions for video only and
video+subtitle if a subtitle already exists. The TVC descrip-
tion type distribution shows a balance compared to TVR
with 50% descriptions belonging to the video only, whereas
around 31% belong to both video and subtitles, and 18%
of descriptions only come from subtitles. The statistics for
train/validation/test-public/test-private split can be viewed
in Table-3. The transformer-based MMT model [62] evalu-
ated on TVC with both video and subtitles modalities outper-
formed themodels with one of these modalities. It established
the fact that both videos and subtitles are equally valuable
for concise and appropriate description generation. Unlike
previous datasets employed for video description focusing on
captions illustrating the visual content, the TVC dataset aims
at captions that also describe subtitles.

IV. DISCUSSION ON DATASETS
Comparable to countless emerging deep learning-influenced
fields, visuolingusitic systems’ success undoubtedly counts
on the training data both in terms of quantity and qual-
ity. Currently, available datasets and the systems evaluated
using these datasets are in their formative or infancy phase.
Due to the uncomplicated and straightforward nature of the
videos and their reference captions, it is a bit difficult to pro-
duce coherent and concise captions. Increasing the difficulty
levels of the task-oriented and standardized datasets along
with the advancement in annotation practices employing rich
text aligned with the videos fulfilling the primary attributes
of reliability, genuineness, and diversity can enhance the
system performance. A few parameterized datasets are

designed explicitly in dense video captioning domain for
generating more natural, coherent, and diverse descriptions,
like ActivityNet Captions, YouCook-II, and VideoStory. As a
next step to improve the generated captions, the combination
of subtitles, if available, with the visuals also contribute to
improving the videos’ information-seeking capabilities like
the large-scale TVC and diverse ViTT dataset establishing
new benchmarks for driving more progress in this direction.
Likewise, the accessibility of acoustic attributes of videos
can also contribute to performance enrichment. Although
researchers have efficiently processed and conducted the
field’s technicalities and versatile models have been proposed
for captioning employing convolutions, recurrence, attention
mechanism, reinforcement learning, transformers approach
with the above-listed datasets. Furthermore, the inconsis-
tencies and discrepancies between the generated and actual
human-annotated descriptions diminish with a consistent
stride. However, to produce further human-like explana-
tions and make the systems significantly effective, size-
able task-orientated and standardized datasets exploiting text,
i.e., subtitles and audio already present within the videos and
extending substantial ground truth references for effective
training/validation/testing practice is indispensable.

V. EVALUATION METRICS
Video description is a joint venture of CV and NLP, whereas
the metrics commonly used for the evaluation of automat-
ically generated captions, i.e., BLEU, METEOR, ROUGE,
and WMD, are from the NLP domain, i.e., MT related, and
document summarization. Machine translation systems, eval-
uated using these automatic metrics, produce faster, easier
and cheaper evaluations as compared to the evaluation per-
formed by trained, bilingual human evaluators who can accu-
rately assess the predicted translations [67]. During the rise
of the image captioning task, the need arise for task-specific
evaluation metrics, which can gauge the performance of the
designed model. As a result, CIDEr [68] and SPICE [69]
evaluation metrics evolved. All these metrics are considered
for the evaluation of video descriptions in the literature. For
the video to be described using deep learning techniques,
single or multiple annotations or ground truth sentences per
video clip are available for the purpose of comparison with
the generated description. These provided human annotations
work as a reference while evaluating predicted descriptions.
Adequacy, fidelity, and eloquence of the translation are the
main aspects of machine translation observed by humans to
do the evaluation [70]. The most desirable characteristic of
an automatic evaluation metric is its strong correlation with
human scores [71], i.e., the closer the generated or predicted
translation to a professional human translation is considered
better. The accuracy of a metric is considered to be higher if it
assigns a greater score to the caption favored by humans [70].
A brief description and computation concept, along with
limitations exhibited by these automatic evaluation metrics,
are also summarized in table-4. Each metric in detail is given
below:
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FIGURE 7. Example video frames and captions from YouCook dataset.

TABLE 4. Evaluation Metrics.

A. BLEU (BILINGUAL EVALUATION UNDERSTUDY)
This well-known evaluation metric was proposed by [72].
The central concept behind the renowned evaluation met-
ric BLEU is the measurement of the numerical close-
ness of generated translation with the provided reference

annotation. BLEU computes the adequate overlap of a sin-
gle word, i.e., unigram or adjacent multiple words, i.e.,
n-gram between the automatically generated caption and the
provided reference human-annotation. Alternatively, we can
say it is defined as the geometric mean of the n-gram match
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count. A variant of the BLEU metric, referred to as the
‘‘NIST’’ metric, was proposed by [79]. BLEU was partic-
ularly designed to evaluate short sentences, so evaluating
complex or multi-sentence captioning using BLEU makes
it difficult to evaluate accurately. Providing a single video
with more reference human annotations will increase the
probability of getting a good BLEU score. The cornerstone
of this metric is the precision measure. Predicted translations
shorter than the ground truth references are penalized by
modified n-gram precision. BLEU uses Brevity Penalty (BP),
which penalizes generated translations for being too short.BP
can be computed as (1).

BP(P,R) =

{
1, ifLP > LR

e(1−
LP
LR ), ifLP ≤ LR

(1)

where LP is the length of the predicted translation and LR is
the length of the reference annotation. The Overall BLEU is
calculated using the geometric mean of the n-gram precision
(pn ) as shown in (2) and (3).

logBLEU = min
(
1−

LP
LR
, 0
)
+

N∑
n=1

(wnlogpn) (2)

logBLEU = BP+ ActualMatchScore (3)

where wn represents positive weights summing to 1 using
n-grams up to length N in (2). One major limitation of
BLEU is the only consideration of precision and lack of recall
measures. [80] showed that a significantly better correlation
could be obtained by emphasizing more on recall than on
precision.

B. METEOR (METRIC FOR EVALUATION OF TRANSLATION
WITH EXPLICIT ORDERING)
Meteor evaluation metric was proposed by [67]. The basis for
this metric lies in an explicit exact word matching between
the predicted translation and the single or multiple reference
annotations. Matching of words supports identical words and
the words with the identical stem as well as synonyms. The
score is calculated by comparing the generated sentence with
the best matching among all the reference sentences. The
computation idea behind this popular metric is the harmonic
mean of precision and recall of uni-gram matches between
sentences [76]. The limitation of BLEU, lack of recall, is tried
to be compensated by this metric. It captures the matching
as well as the order of the words in predicted and refer-
ence sentences. WordNet (WN) [81], a lexical database for
English, acts as a language resource, containing information
about around 155,000 nouns, verbs, adjectives, and adverbs,
including simple words, phrasal verbs, and idioms are used
for matching purposes have dramatically improved the eval-
uation accuracy [82]. Alignment of predicted and reference
sentences are performed in three stages, i.e., exact mapping,
porter mapping, andWN-stemmapping while calculating the
score.

METEOR score for predicted and reference sentences is
calculated using unigram precsion P as in (4) and unigram

recall R as in (5) where precision is the ratio of the number of
unigram co-occuring in both predicted and reference sentence
UGPR to the number of unigram in the predicted sentence
UGP.i.e

Precision = P =
UGPR
UGP

(4)

The recall is the proportion of the unigram co-occurring in
both predicted and reference sentenceUGPR to the number of
a unigram in the reference sentence UGR, i.e.

Recall = R =
UGPR
UGR

(5)

where UGPR represents number of unigram co-occuring in
predicted and reference sentences, UGR represents number
of unigram in reference sentences and UGP represents
number of unigram in predicted sentences. Mean har-
monic score (F), using precision and recall is calculated
as (6):

Fmean =
10PR
R+ 9P

(6)

The Penalty is computed and applied when taking
longer matches and non-adjacent mappings between the
predicted and reference sentences. Unigrams in predicted
sentence that are mapped to the unigrams in reference sen-
tences are grouped into chunks, resultantly longer n-gram
will have fewer chunks. Penalty (Pn) can be calculated
as (7):

Pn = 0.5 ∗
C
UM

(7)

where C represents the number of chunks andUM represents
the number of unigramsmatched. Finally theMETEOR score
for given alignment can be computed as (8):

METEOR = Fmean(1− Pn) (8)

It reduces the Fmean by a maximum of 50% if no longer
matches are there. Using spearsman’s correlation analy-
sis, [83] showed that METEOR is supposed to be more
intensely correlated with human judgment than the BLEU
score and the Meteor score is higher the better.

C. ROUGE (RECALL-ORIENTED UNDERSTUDY FOR
GISTING EVALUATION)
Rouge evaluation metric [73] initially designed for evaluation
of document summaries. Summaries evaluated by humans
require semantical coherence, conciseness, grammatical cor-
rection, readability, avoiding redundancy, and, most impor-
tantly, content itself as well as the logical organization of
the content [74] but consumes time. After the application of
automatic evaluation metrics to Machine Translation, it was
shown by [84] that the same might be applied to document
summarization. Rouge is a package containing multiple vari-
ants used to measure the similarities between the gener-
ated and reference summaries. These variants are Rouge-N
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(n-gram Co-occurrence), Rouge-L (Longest Common Sub-
sequence), Rouge-W (Weighted Longest Common Subse-
quence), and Rouge-S (Skip-bigram Co-occurrence). We will
review in detail only Rouge-N and Rouge-L, as they help
evaluate the image and video caption.

1) Rouge-N: It can be defined as an n-gram recall between
the predicted summary and one or multiple reference
summaries. It can be calculated as (9):

RN =

∑
R∈RS

∑
g∈R CM (grn)∑

R∈RS
∑

g∈R C(grn)
(9)

where RS refers to reference summaries, n stands for
length of n-gram, grn, and CM (grn) is the maximum
number of n-gram co-occurring in a predicted summary
and collection of reference summaries. As we addmore
summaries in the set of reference summaries, the num-
ber of the n-gram in the above formula’s denominator
also increases.

2) Rouge-L: It is the variant of Rouge can be used to
evaluate image and video captioning. It uses recall and
precision value of the longest common sub-sequence
between the generated and each reference sentence.
The perception is that longer LCS of predicted and
reference sentences will generate high similarity score.
Recall computed in (10), precision computed in (11)
and F-measure score in (12) on the basis of LCS
for predicted summary Ps of lengthLp and refer-
ence summary Rs of length Lr can be computed
as:

RLCS =
LCS(Rs,Ps)

Lr
(10)

PLCS =
LCS(Rs,Ps)

Lp
(11)

RougeLCS(Rs,Ps) = FLCS =
(1+ β2)RLCSPLCS
RLCS + β2PLCS

(12)

where LCS(Rs,Ps) represents the longest common
subsequence of Rs and Ps. β is the ratio of
LCS-Precision to LCS-Recall i.e. β = PLCS

RLCS
. We can

see that LCS(Rs,Ps) = 1 when both predicted and ref-
erence summaries are same and LCS(Rs,Ps) = 0 when
there is nothing similar between the two summaries.

D. WMD (WORD MOVER’S DISTANCE)
WMDproposed by [75] represents distance function between
text documents. WMD distance is a measure of dissim-
ilarity between two text documents. To resolve two sen-
tences with all different words that may convey the same
meaning, likewise two sentences having the same objects,
object-relationship, and characteristics but conveying dif-
ferent meanings, WMD was proposed. The metric lever-
ages results for computing the transportation cost from
word2vec [85] embedding. Text documents are presented
as embedded word’s weighted point cloud. WMD provides
substantial advantages over other metrics [76].

E. CIDEr (CONSENSUS-BASED IMAGE DESCRIPTION
EVALUATION)
CIDEr is an evaluation protocol proposed to evaluate image
description that uses human consensus [69]. The core idea
behind this evaluation metric is the measure of similarity
of a predicted sentence against a single or a set of refer-
ence captions provided for the image by human annotators.
Therefore, in sentence similarity, the concepts of promi-
nence, accuracy, grammatical, and significance are intrinsi-
cally apprehended by the CIDEr. It is an extension of tf-idf
weighing mechanism from information retrieval where com-
mon n-grams in all image captions are penalized. As cosine
similarity is used to compute CIDEr, therefore, at times, some
insignificant but repeatedly used fragments of the captions
get extraordinary weightage resulting in effective evaluation.
To show high agreement with accurate consensus, captions
per image as references need to be in high number, i.e., dataset
ABSTTRACT-50S with 50 reference captions per image was
used by [68], based on the dataset of [86]. All words in
both predicted and reference sentences are mapped to their
stem/basic/root form, i.e., ‘walks’, ‘walked’, and ‘walking’
is mapped to ‘walk’.

For evaluation of an image Ii automatically, the predicted
descriptionPimatches the consensus of a set of reference sen-
tences Si such that Si = {Si1, Si2, . . . Sim}. Cidern, score for
n-gram of length n can be computed as average cosine simi-
larity between predicted and reference captions as in (13).

CIDErn(pi, Si) =
1
m

∑
j

gn(pi).gn(Sij)
‖gn(pi)‖‖gn(Sij)‖

(13)

wherem is the number of reference captions, gn(pi) is a vector
representing all n-gram with length n and ‖gn(pi)‖ is the
magnitude of gn(pi), similar is the case for gn(Sij). Using
these parameters CIDEr score can be computed as (14):

CIDErn(pi, Si) =
N∑
n=1

wnCIDErn(pi, Si) (14)

where it was observed by the [68] that uniform weights wn =
1
N and N = 4 works best.
A variant of CIDEr, famous for image and video descrip-

tion evaluation, is CIDEr-D. Modifications carried out in
basic CIDEr was the removal of stemming, which ensured
the usage of correct forms of words. Repetition of higher
confidence words was avoided by introducing a Gaussian
penalty on the basis of difference in predicted and reference
captions. Finally, adding clipping to the n-gram count in
CIDErn numerator was done as a sentence length penalty.
It was shown that CIDEr-D variant has a high spearman’s
rank correlation with respect to original CIDEr score.

F. SPICE (SEMANTIC PROPOSITIONAL IMAGE CAPTION
EVALUATION)
SPICE evaluationmetric was proposed by [69] tomeasure the
quality of predicted or generated captions by exploring their
semantic contents. For automatic evaluation, n-gram overlap
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is neither essential nor adequate for both predicted and ref-
erence captions to communicate the same [87]. In order to
overcome the limitations exhibited of n-gram overlap by the
above-defined automatic evaluation metrics, propositional
semantic content is emphasized. A graph-based semantic
representation, known as a scene graph, is used for the
assessment of the quality of captions. These semantic scene
graphs allow for noun and object matching in the captions.
BAST [88] is closely related to SPICE for captioning.

The objective of SPICE is to calculate a score that captures
the similarity between predicted captions and a set of refer-
ence captions S where S = {S1, S2, . . . Sm}. Scene graph for
predicted caption p is G(p) whereas scene graph for set of
reference captions S isG(S) whereG(S) is union of allG(Si).
A scene graph tupleG(p) shown in (15) of predicted caption p
consists of semantic components such as object classes O(p),
relation types R(p) and attribute types A(p), parsing c to scene
graph:

G(p) = 〈O(p),R(p),A(p)〉 (15)

A function T is defined to get logical tuples from scene
graph and ⊗ acts as binary matching operator, then preci-
sion P, recall R and SPICE score can be computed as (16),
(17), and (18):

Precision = P(p, S) =
|T (G(p))⊗ T (G(S))|

|T (G(p))|
(16)

Recall = R(p, S) =
|T (G(p))⊗ T (G(S))|

|T (G(S))|
(17)

SPICE = F1(p, S) =
2.P(p, S).R(p, S)
P(p, S)+ R(p, S)

(18)

Fluency adjustment is not included while computing the
SPICE score because it is assumed to be a conceptually
simple and easily interpretable metric. It uses WordNet [81]
synonym matching approach similar toMeteor [67] metric.

G. SODA (STORY ORIENTED DENSE VIDEO CAPTIONING
EVALUATION FRAMEWORK)
The current dense video captioning evaluation framework,
an extension of dense image captioning (DIC), is insufficient
for evaluating video story descriptions. DIC does not con-
sider the temporal dependency between captions explicitly,
which causes the potential risk of overestimation. Another
problem associated with the current evaluation framework
is assigning a high score for producing a high number of
inadequate captions. Loose matching,i.e., matching a gener-
ated caption with many reference ground truths or matching
a reference caption with many generated captions, also adds
to the inefficiency. Overestimation of METEOR is due to
loose matching. Currently, averaging METEOR score cannot
tackle the coverage of generated captions (recall) and the
accuracy of the captions (precision). Generation of too many
or too few captions makes the evaluation system inadequate.
For an appropriate and correct evaluation of the video story
systems, a framework is required to consider a video story,
the ordering of captions, and penalize redundant captions.

Dense Video Captioning (DVC) evaluation involves two sig-
nificant attributes, i.e., the accuracy of localized events and
the accuracy of generated captions for each event. Since the
order of the events is also an essential factor, so SODA [77]
believes in the ordering of captions while measuring the
system performance. SODA gives low scores against too
many or too few captions and high scores against captions
whose number equals ground truth references. Furthermore,
SODA tends to give lower scores than the current evaluation
framework in evaluating captions in incorrect order.

SODA is helpful not only for the ActivityNet Captions
dataset but also for the other datasets created to evaluate
system captions that convey the story. It would be more tricky
to obtain a factitiously high score with SODA than the current
evaluation framework because SODA requires systems to
detect the exact number of events and captions that lead to
further progress of DVC tasks. SODA finds the best sequence
of generated proposals that maximizes the sum of the IoU
against reference proposals by first applying dynamic pro-
gramming that finds the optimal matching between generated
and reference captions considering the temporal ordering of
captions. It computes METEOR scores for the matched pairs
and derives precision and recall scores based on the calcu-
lated METEOR scores. The proposed framework evaluates
generated captions with F-measure scores from theMETEOR
scores to penalize redundant captions and to consider both the
numbers of generated and reference captions.

Let G be a set of manually-generated reference captions
for a video and P be a set of captions generated by a system.
We denote g as a reference caption and p as a caption gener-
ated by the system. Each caption has a proposal that indicates
a time span of an event that appears in a video. Here, the IoU
between g and p is defined as (19):

IoU (g, p) = max
(
0,
min(e(g), e(p))− max(s(g), s(p))
max(e(g), e(p))− min(s(g), s(p))

)
(19)

where function s(.) represents the start time of the event
proposal and e(.) indicates the event proposal end time.

Let τ represents the IoU threshold then the set of ground
truth captions with IoU exceeding τ (IoU (g, p) ≥ τ ) can be
defined as (20):

Gp,τ = {gεG|IoU (g, p) ≥ τ } (20)

Set of generated captions, P, is evaluated based on set of
reference captions, G, using the following equation (21):

E(G, p, τ ) =

∑
p∈P

∑
g∈Gp,τ f (g, p)∑

p∈P |Gp,τ |
(21)

where f (g, p) represents an evaluation metric; METEOR is
considered here.

A cost Ci,j is defined between a reference caption gi and a
generated caption pi based on IOU as (22):

Ci,j =

{
IoU (gi, pi), ifIoU (g, p) ≥ τ
0, Otherwise

(22)

VOLUME 9, 2021 121677



M. Rafiq et al.: Video Description: Datasets & Evaluation Metrics

S[i][j] is defined for holding themaximum score of optimal
matching between 1st and ith generated captions and 1st and
jth reference captions.

The f-measure for the set of references and generated
captions can be computed using Precision (as in (24)) and
Recall (as in (25)) by the following formula given in (23):

F − measure(G,P) =
2× Precision(G,P)× Recall(G,P)
Precision(G,P)+Recall(G,P)

(23)

where

Precision(G,P) =

∑
g∈G f (g, pa(g))

|P|
(24)

and

Recall(G,P) =

∑
g∈G f (g, pa(g))

|G|
(25)

VI. DISCUSSION ON EVALUATION METRICS
Human beings can describe any video in various ways accu-
rately and express what is happening appropriately. However,
it is equally difficult for the machines to automatically gener-
ate a caption for a given video and even more challenging
to evaluate that generated caption for its accuracy. A con-
siderable barrier impeding progress in the video description
domain is the lack of an appropriate evaluation mechanism.
Since evaluation metrics available at present are from the
machine translation, document summarization, and image
captioning domain except for SODA, designed explicitly for
dense video captioning evaluation. Limitations of these met-
rics include poor performance on words replacement with
synonyms (BLEU, CIDEr), weak correlation with human
judgment (BLEU, ROUGE), sensitivity to n-gram overlap
(METEOR), failure to capture the syntactic sentence struc-
ture (SPICE), word order change (BLEU, ROUGE, CIDEr),
and change in sentence length(BLEU, METEOR, ROUE).
Considering these limitations, there is a severe demand for
an evaluation metric that is closer to human judgments.
Instead of manual computations, a reinforcement learning-
based (or any machine learning or deep learning) mechanism
can be employed to learn metrics by exploration/exploitation
for generated caption evaluation. Although it has not been
studied in the literature at this time, SODA is a considerable
step towards the domain-specific evaluation metric goal and
success in the field.

VII. PRE-TRAINING VISUOLINGUISTIC TASKS
The introduction of deep learning in vision and lan-
guage domains employed a standard pipeline of CNN and
RNN(LSTMs, GRU) for visual and language modeling for
many years. The accomplishment of the deep-learning based
models initially in the NLP domain and afterward in the
cross-modal tasks of vision and language encouraged the
researchers to enhance performance further. One of these
performance enhancement techniques is pre-training; pre-
training plays a vital role in boosting the performance of

vision and language-related tasks. The concept revolves
around pre-training the proposed model on sizeable unla-
beled data and then fine-tuning the required downstream task
employing the related labeled data. Pre-training can influ-
ence the performance of both understanding tasks (retrieval)
and the generation tasks (captioning). BERT [95]; language
modeling based on the transformer got attention for both
performance enhancement due to parallelization (transformer
mechanism employment) and pre-training approach. Moti-
vated by the accomplishment of BERT for NLP tasks, several
cross-modal pre-training models demonstrating the effective-
ness of pre-training have been proposed recently, including
VideoBERT [93], ActBERT [91], ViLBERT [96], CBT [94],
HERO [22], BART [97],MASS [98], UniVL [90], VLM [89],
ViTT [61], and ASR-Trf [93].

ViLBERT [96] investigated the extension of the pre-training
idea presented in BERT for combined vision and lan-
guage tasks instead of only language modeling. The
ViLBERT’s [96] compositional model of CNN and RNN
with pre-training demonstrated surpassed results. To address
the semantic alignment of the video and language (extracted
from the audio of the same video), VideoBERT [93] proposed
hierarchical vector quantization to get the visual tokens to
generate caption and predict the next frame. CBT [94] work-
ing with S3D, proposed the sliding window mechanism for
visual features extraction. VideoBERT and CBT are the first
to explore the pre-training of language and vision on instruc-
tional videos. ActBERT [91] employed a pre-trained tangled
transformer-based model intending to predict the action per-
formed given the text and visual information, i.e., action clas-
sification. Recently, UniVL [90] explored understanding and
generation tasks by employing two single-modal encoders,
a cross encoder, and a decoder with a transformer backbone.
Most of the proposedmodels are evaluated on the YouCook II
dataset because cooking videos tend to possess high visual
and language semantics temporally alignment probability for
caption generation. The TransED [92] by pre-training on
Auto-captions on GIF and then fine-tuning it on MSR-VTT,
consistently presents better performances than TransED-
without pre-training across all the evaluation metrics. The
achieved performance confirms the merit of using vision-
language pre-training over Auto-captions on GIF, which
accelerates the downstream task of video captioning on both
online and offline test split of the MSR-VTT dataset. The
ViTT [61] model proposed separate-modality framework
employing co-attention transformer. The ViTT’s authors
constructed their own ViTT dataset to address the gener-
alization implications imposed by video’s small size, uni-
form nature, and uncomplicated behavior in the YouCook II
dataset. Table-5 compares the performance of some of the
recently presented models employing pre-training. It shows
that among the models evaluated on the YouCook II
dataset, UniVL demonstrated high results for BLEU,
METEOR, and ROUGE-L. For TVC evaluation, HERO
outperformed the ActBERT for BLEU, METEOR, and
CIDEr.
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TABLE 5. Performance comparison of cross-modal models employing pre-training.

One of the differences between pre-training and fine-
tuning datasets is the way video segments are defined.
For unsupervised or pre-training datasets, the segments are
defined by some empirical rule, whereas for the supervised
or fine-tuning dataset, human annotators define segments
corresponding to the video contents or instructional steps.
Second, although both types of datasets are similar in present-
ing abstracts of instructional videos, they vary in style, length,
and details. Despite these differences, pre-training data plays
a vital role in boosting performance. A brief overview of
some of the widely used video datasets for achieving the
pre-training objectives is given below.

A. HowTo100M
A collection of narrated videos, particularly instructional
videos containing complex tasks featuring 130M video
clips [99] extracted from 1.2 million videos comprising
of 12 categories of 23,611 visual tasks from YouTube asso-
ciated with a manually written or ASR generated English
subtitle. Videos with complex activities are relatively long,
with an average duration of 6.5 minutes. Each video produces

110 clip-caption pairs with an average duration of four sec-
onds per clip and 4 words per caption. 71% of the videos are
found to be instructional.

B. Recipe1M+

A large scale, structured corpus [100] of more than one
million cooking recipes along with 13 million food images
scraped from popular cooking websites. The dataset content
can be segregated into two groups. The first one comprises the
title, list of ingredients, and steps required for certain recipes.
The nutritional information is also contained in this group
if the measurement of ingredients is provided. The second
group contains associated images. Moreover, each recipe is
categorized with a category label like an appetizer, dessert,
side dish. Seventy percent of the data is labeled for the train-
ing purpose, and the rest is split uniformly between validation
and test set.

C. WikiHow
A large scale summarization dataset [121] consisting
of 230,843 diverse articles accompanied by their summaries
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TABLE 6. Video Description - Quantitative Performance Evaluation on
MSVD Dataset.

extracted from WikiHow knowledge base with an average
article length of 579.8 sentences and an average summary
length of 62.1 sentences. The total vocabulary size is 556,461.
Each article starts with the title ‘‘How to.’’ Each step starts
with a step summary and is then followed by a detailed
explanation of the step. ViTTmodelmined all step summaries
comprising 1,360,145 segments with 8.2 words per segment
and each of the instruction step is considered a distinct exam-
ple during pre-training of the model.

D. YouTube-8M
It is the largest multi-label video classification dataset [66]
consisting of around eight million videos, resulting in 500k
hours of watch time, with the aim to determine the topical
themes of a video. These videos are annotated automatically
with the vocabulary of 4800 visual entities/classes catego-
rized into 24 top-level classes for diversity illustration. The
dataset contains frame-level features of over 1.9 billion video
frames. These videos are annotated with the YouTube video
annotation system to get topic annotation for a video and get
a video for any given topic. Unlike typical event recognition
or object detection, this dataset aims to understand what is
happening in the video and afterward summarize into few key
topics. A video may be annotated with more than one class.
On average, there exist 1.8 classes per video. The average
length of a video is 229.6 seconds.

E. KINETICS
The Kinetics dataset containing 400 human action classes
with 400∼1150 video clips for each action was introduced

to address the small-sized HMDB-51 and UCF-101 with
insufficient variations to train and test deep learning-based
human action classification models. Each video clip is from
YouTube with an average duration of ten seconds having
variable resolution and frame rate.

F. AUTO-CAPTIONS ON GIF
The diverse and complex video-sentence dataset [92]
constructed for the video understanding task contains
163,183 GIF videos and 164,378 sentences with 31,662
vocabularies derived automatically from billions of web
pages with immense video categories. The open domain
nature of the dataset facilitates the generalization capability
of pre-trained representation on downstream tasks. For each
crawled GIF video, a corresponding sentence is selected
free from polarity annotations. Sentences with a high rep-
etition rate, absence of noun or preposition, use of high
frequency but less informative phrases, and semantically mis-
matched GIF video-sentence pairs are filtered out. Sentences
passing through human-like annotation binary classifiers,
i.e., matching with human written sentences from MSVD,
MSR-VTT, and MSCOCO dataset but simultaneously not
matching the set of discarded sentences, are used for dataset
construction.

VIII. QUANTITATIVE & QUALITATIVE RESULTS
The qualitative and quantitative results generated by var-
ious models using benchmark datasets in the recent past
are discussed in this section. Segregation according to the
dataset used by the model has been further categorized in
chronological order accordingly. For models having multiple
variants during experimentation, the best performing variant
is reported here. Scores shown in bold letters are the best
performing. Since all the evaluationmetrics follow the higher,
the better strategy, therefore, higher scores are considered
to be better for all BLEU, METEOR, ROUGE, and CIDEr.
For the models computing BLEU@1, BLEU@2, BLEU@3,
and BLEU@4, only BLEU@4 is reported here because of its
analogous characteristic with the human annotation. Figure 8
represents the comparison of the qualitative results of various
models employing encoder-decoder architecture with a brief
explanation.

MSVD and MSR-VTT datasets are famous among
researchers because of their wide-ranging comprehensive cat-
egories and diverse nature of the videos and the availability
of multiple ground truth captions for model training and
evaluation, and most importantly, task specificity. Table-6
summarized the quantitative results of popular models on the
MSVD dataset. Regarding the BLEU metric, SeFLA, where
apart from visual features, semantic features are also consid-
ered, and captions are generated by employing an attention
mechanism. VNS-GRU surpassed the rest of the proposed
models for METEOR, ROUGE, and CIDEr scores. Similarly,
Table-7 presents the scores reported using the MSR-VTT
dataset where VNS-GRU exhibited the highest score for
BLEU and CIDEr metrics and DCM-Best1(M) employing
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FIGURE 8. Qualitative Analysis and brief explanation of Models with reference annotations/Ground-Truth(GT) and generated captions(G-1, G-2,
G-3).

conditional generative adversarial network, reported excel-
lent scores for METEOR and ROUGE metrics. Table-8
demonstrates results reported on dense captioning datasets
like ActivityNet Captions, YouCook-II, TVC, VATEX,and
Charades. For ActivityNet captions and YouCook-II datasets,
COOT, a cooperative hierarchical transformer model, outper-
formed all the models for all four metrics BLEU, METEOR,

ROUGE, and CIDEr. Similarly, recently proposed HERO on
the TVC dataset reported comparable results after a close
competition with MMT on the same TVC dataset. Recently
proposed transformer-based models exhibited remarkable
performance and proved that free from recurrence and solely
dependent on self-attention, capable of handling long-term
dependency, transformer mechanism handles sequential data
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TABLE 7. Video Description - Quantitative Performance Evaluation on
MSR-VTT Dataset.

TABLE 8. Video Description - Quantitative Performance Evaluation on
Miscellaneous Datasets (ANC:ActivityNet Captions, YC2:YouCook-II,
VATEX, TVC, Charades, MPII-MD, MVAD, VATEX(En: English, Ch: Chinese)).

in a parallel manner allowing accelerated training on large
datasets.

IX. CONCLUSION
Video description is an emerging research topic employ-
ing cross-modal visuolinguistic modeling for concise and
appropriate description generation. These models primarily
focus on the compositional structure of convolutional and
recurrent neural networks. However, with the technological
advancements, these models further accommodate attention
mechanisms, reinforcement learning, and transformer mech-
anism for strength and efficiency. Since the nature of the

task is sequence to sequence, it is mainly concerned with
the recurrence of the sequential data. One of the issues asso-
ciated with sequential data processing is the way to deal
with the long-term dependencies. The transformer was ini-
tially introduced in the NLP domain for text modeling. How-
ever, keeping its characteristics of parallelization, recurrence-
free, solely dependent on self-attention, accelerated training,
space efficiency, and proficiently dealing with the long-term
dependencies, it was exploited for both vision and language
modeling tasks, i.e., video description. The results for which
are tremendous, although in its formative phase. The trans-
formers can be further explored for addressing the concerns
hindering progress in this field.

This survey paper explored the benchmark datasets both
for pre-training and fine-tuning of video description mod-
els. We also investigated the currently available evaluation
metrics for assessing the generated captions and emphasized
the need for specific and standardized datasets and evalua-
tion metrics to boost the performance. Training the systems
with much-complexed/ versatile videos, using subtitles and
audio (if available), and providing more reference captions
can enhance the system’s performance. The introduction of
visually diverse and complicated as well as textually dense
datasets is a promising research direction.

We expect this survey paper better to understand the video
description datasets and evaluationmetrics and accommodate
researchers in their future explorations and accomplishments.
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